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Abstract We construct a new Gray map from Sn to F 3n
2 where S = F2+uF2+u2F2, u

3 = 1.
It is both an isometry and a weight preserving map. It was shown that the Gray image of cyclic
code over S is quasi-cyclic codes of index 3 and the Gray image of quasi-cyclic code over S is
l-quasi-cyclic code of index 3. Moreover, the skew cyclic and skew quasi-cyclic codes over S
introduced and the Gray images of them are determined.

1 Introduction

By using generator polynomials in skew polynomial rings, there are a lot of works about gen-
eralizing notions of cyclic, constacyclic, quasi-cyclic codes to skew cyclic, skew constacyclic,
skew quasi-cyclic codes respectively.

Skew polynomial rings form an important family of non-commutative rings. There are many
applications in the construction of algebraic codes. As polynomials in skew polynomial ring
exhibit many factorizations, there are many more ideals in a skew polynomial ring than in the
commutative case. So the research on codes have result in the discovery of many new codes with
better Hamming distance.

Works began with D. Boucher, W. Gieselmann, F. Ulmer’s paper in [1]. They generalized the
notion of cyclic codes. They gave many examples of codes which improve the previously best
known linear codes.

In [3], D. Boucher and F. Ulmer studied linear codes over finite fields obtained from left ideals
in a quotient ring of a (non-commutative) skew polynomial ring. They show how existence and
properties of such codes are linked to arithmetic properties of skew polynomials. This class of
codes is generalization of the θ−cyclic codes discussed in [1]. Moreover, they shown that the
dual of a θ−cyclic code is still θ−cyclic.

D. Boucher, P. Sole and F. Ulmer generalized the construction of linear codes via skew poly-
nomial rings by using Galois rings instead of finite fields as coefficients. Codes that are principal
ideals in quotient rings of skew polynomial rings by a two side ideals were studied in [2]. In
[4], they studied a special type of linear codes called skew cyclic codes in the most general case.
They shown that these codes are equivalent to either cyclic or quasi-cyclic codes.

Skew polynomial rings over finite fields and over Galois rings had been used to study codes.
In [9], they extended this concept to finite chain rings. The structure of all skew constacyclic
codes is completely determined.

In [11], T. Abualrub, P. Seneviratre studied skew cyclic codes over F2 + vF2, v
2 = v.

In [10], T. Abualrub, A. Ghrayeb, N. Aydın, İ. Şiap introduced skew quasi-cyclic codes. They
obtained several new codes with Hamming distance exceeding the distance of the previously best
known linear codes with comparable parameters. In [7], M. Bhaintwal studied skew quasi-cyclic
codes over Galois rings.

In [8], they investigated the structures of skew cyclic and skew quasi-cyclic of arbitrary length
over Galois rings. They shown that the skew cyclic codes are equivalent to either cyclic and
quasi-cyclic codes over Galois rings. Moreover, they gave a necessary and sufficient condition
for skew cyclic codes over Galois rings to be free.

Jian Gao, L. Shen, F. W. Fu studied a class of generalized quasi–cyclic codes called skew
generalized quasi-cyclic codes. They gave the Chinese Remainder Theorem over the skew poly-
nomial ring which lead to a canonical decomposition of skew generalized quasi-cyclic codes.
Moreover, they focused on 1-generator skew generalized quasi-cyclic code in [6].

J.F. Qian et. al. introduced linear (1+ u)-constacyclic codes and cyclic codes over F2 + uF2
and characterized codes over F2 which are the Gray images of (1 + u)-constacyclic codes or
cyclic codes over F2 + uF2 in [5 ]. It was introduced (1 − um)-constacyclic codes over F2 +
uF2 + ...+ umF2 and characterized codes over F2 in [12 ].

This paper is organized as follows. In section 2, we give some basic knowledges about the
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finite ring S, cyclic and quasi-cyclic code. In section 3, we define a new Gray map from S to
F 3

2 , Lee weights of elements of S and Lee distance in the linear codes over S. We show that
if C is self orthogonal so is ϕ (C) and we obtain in the Gray images of cyclic and quasi-cyclic
codes over S. In section 4, we give skew cyclic and quasi-cyclic codes over S. In section 5, we
obtain in the Gray images of skew cyclic and skew quasi-cyclic codes over S and we give some
examples.

2 Preliminaries

We first start with a general overview of the ring S. The ring S = F2 + uF2 + u2F2 is defined
as characteristic 2 ring subject to the restrictions u3 = 1. S is a commutative ring with eight
elements. Note that S is not a finite chain ring, its ideals can easily be described as follows

I0 = {0} ⊆ I1+u+u2 ⊆ I1 = S

I0 = {0} ⊆ I1+u = I1+u2 = Iu+u2 ⊆ I1 = S

where

I1+u = I1+u2 = Iu+u2 = {0, 1 + u, 1 + u2, u+ u2}
I1+u+u2 = {0, 1 + u+ u2}

We note that S is semilocal ring with two maximal ideals and principal ideal ring. The
elements 1, u and u2 are three units of S.

A linear code C over S of length n is a S−submodule of Sn. An element of C is called a
codeword.

For any x = (x0, x1, ..., xn−1), y = (y0, y1, ..., yn−1), the inner product is defined as

x.y =
n−1∑
i=0

xiyi

If x.y = 0, then x and y are said to be orthogonal. Let C be linear code of length n over S,
the dual code of C

C⊥ = {x : ∀y ∈ C, x.y = 0}

which is also a linear code over S of length n. A code C is self orthogonal if C ⊆ C⊥ and self
dual if C = C⊥. We note that the dual ideals of S as follows,

I⊥1+u = I⊥1+u2 = I⊥u+u2 = I1+u+u2

I⊥1+u+u2 = I1+u = I1+u2 = Iu+u2

A cyclic code C over S is a linear code with the property that if c = (c0, c1, ..., cn−1) ∈ C,
then σ (c) = (cn−1, c0, ..., cn−2) ∈ C. A subset C of Sn is a linear cyclic code of length n iff it is
polynomial representation is an ideal of S [x] / 〈xn − 1〉 .

Let C be code over F2 of length n and ć = (ć0, ć1, ..., ćn−1) be a codeword of C. The Ham-
ming weight of ć is defined as wH (ć) =

∑n−1
i=0 wH (ći) where wH (ći) = 1 if ći = 1 and

wH (ći) = 0 if ći = 0. The Hamming distance of C is defined as dH (C) = min{dH (c, ć)},
where for any ć ∈ C, c 6= ć and dH (c, ć) is the Hamming distance between two codewords with
dH (c, ć) = wH (c− ć) .

Let a ∈ F 3n
2 with a = (a0, a1, ..., a3n−1) =

(
a(0)

∣∣a(1)∣∣ a(2)) , a(i) ∈ Fn2 , for i = 0, 1, 2. Let
σ⊗3 be a map from F 3n

2 to F 3n
2 given by

σ⊗3 (a) =
(
σ
(
a(0)
) ∣∣∣σ (a(1))∣∣∣σ (a(2)))

where σ is a cyclic shift from Fn2 to Fn2 given by

σ
(
a(i)
)
= ((a(i,n−1)), (a(i,0)), ..., (a(i,n−2)))

for every a(i) =
(
a(i,0), ..., a(i,n−1)

)
where a(i,j) ∈ F2, j = 0, 1, ..., n − 1. A code of length 3n

over F2 is said to be quasi cyclic code of index 3 if σ⊗3 (C) = C.
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Let n = sl. A quasi-cyclic code C over S of length n and index l is a linear code with the
property that if

e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) ∈ C, then τs,l (e) = (es−1,0,...,es−1,l−1,
e0,0, ..., e0,l−1, es−2,0, ..., es−2,l−1) ∈ C.

Let a ∈ F 3n
2 with a = (a0, a1, ..., a3n−1) =

(
a(0)

∣∣a(1)∣∣ a(2)) , a(i) ∈ Fn2 , for i = 0, 1, 2. Let Γ

be a map from F 3n
2 to F 3n

2 given by

Γ (a) =
(
µ
(
a(0)
) ∣∣∣µ(a(1))∣∣∣µ(a(2)))

where µ is the map from Fn2 to Fn2 given by

µ
(
a(i)
)
= ((a(i,s−1)), (a(i,0)), ..., (a(i,s−2)))

for every a(i) =
(
a(i,0), ..., a(i,s−1)

)
where a(i,j) ∈ F l2 , j = 0, 1, ..., s − 1 and n = sl. A code of

length 3n over F2 is said to be l−quasi cyclic code of index 3 if Γ (C) = C.

3 Gray Image of Cyclic and Quasi-cyclic Codes Over S

Let x = a+ ub+ u2c be an element of S where a, b, c ∈ F2. We define Gray map ϕ from S to
F 3

2 by

ϕ : S → F 3
2

a+ ub+ u2c 7→ ϕ
(
a+ ub+ u2c

)
= (a+ b+ c, a+ b, a+ c)

From definition, the Lee weight of elements of S are defined as follows

wL (0) = 0 wL (1 + u) = 1

wL (1) = 3 wL
(
1 + u2) = 1

wL (u) = 2 wL
(
u+ u2) = 2

wL
(
u2) = 2 wL

(
1 + u+ u2) = 1

Let C be a linear code over S of length n. For any codeword c = (c0, ..., cn−1) the Lee
weight of c is defined as wL (c) =

∑n−1
i=0 wL (ci) and the Lee distance of C is defined as

dL (C) = min{dL (c, ć)}, where for any ć ∈ C, c 6= ć and dL (c, ć) is the Lee distance be-
tween two codewords with dL (c, ć) = wL (c− ć) . Gray map ϕ can be extended to map from Sn

to F 3n
2 .

Theorem 3.1. The Gray map ϕ is a weight preserving map from (Sn,Lee weight) to (F 3n
2 ,Hamming

weight). Moreover it is an isometry from (Sn,Lee distance) to (F 3n
2 ,Hamming distance).

Theorem 3.2. If C is an (n, k, dL) linear codes over S, then ϕ (C) is a (3n, k, dH) linear codes
over F2 where dH = dL.

Proof. Let x = a1 + ub1 + u2c1, y = a2 + ub2 + u2c2 ∈ S, α ∈ F2, then

ϕ (x+ y) = ϕ
(
a1 + a2 + u (b1 + b2) + u2 (c1 + c2)

)
= (a1 + a2 + b1 + b2 + c1 + c2, a1 + a2 + b1 + b2, a1 + a2 + c1 + c2)

= (a1 + b1 + c1, a1 + b1, a1 + c1) + (a2 + b2 + c2, a2 + b2, a2 + c2)

= ϕ (x) + ϕ (y)

ϕ (αx) = ϕ
(
αa1 + uαb1 + u2αc1

)
= (α(a1 + b1 + c1), α(a1 + b1), α(a1 + c1))

= α (a1 + b1 + c1, a1 + b1, a1 + c1)

= αϕ (x)

So, ϕ is linear. As ϕ is bijective, then |C| = |ϕ (C)|. From theorem 3.1, we have dH =
dL.
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Theorem 3.3. If C is self orthogonal, so is ϕ (C) .

Proof. Let r = a1 + ub1 + u2c1, r1 = a2 + ub2 + u2c2 where a1, b1, c1, a2, b2, c2 ∈ F2. r.r1 =
a1a2 + b1c2 + c1b2 +u (a1b2 + b1a2 + c1c2)+u2 (a1c2 + b1b2 + c1a2), if C is self orthogonal, so
we have a1a2 + b1c2 + c1b2 = 0, a1b2 + b1a2 + c1c2 = 0, a1c2 + b1b2 + c1a2 = 0. From

ϕ (r) .ϕ (r1) = (a1 + b1 + c1, a1 + b1, a1 + c1) . (a2 + b2 + c2, a2 + b2, a2 + c2)
= 0

Therefore, we have ϕ (C) is self orthogonal.

Proposition 3.4. Let σ and σ⊗3 be as in the preliminaries.Then ϕσ = σ⊗3ϕ.

Proof. Let ri = ai+ubi+u2ci be the elements of S for i = 0, 1, ...., n−1.We have σ (r0, r1, ..., rn−1) =
(rn−1, r0, ..., rn−2) . If we apply ϕ, we have

ϕ (σ (r0, ..., rn−1)) = ϕ(rn−1, r0, ..., rn−2)

= (an−1 + bn−1 + cn−1, ..., an−2 + bn−2 + cn−2,

an−1 + bn−1, ..., an−2 + bn−2, an−1 + cn−1,

..., an−2 + cn−2)

On the other hand ϕ(r0, ..., rn−1) = (a0 + b0 + c0, ..., an−1 + bn−1 + cn−1, a0 + b0, ..., an−1 +
bn−1, a0 + c0, ..., an−1 + cn−1). If we apply σ⊗3, we have

σ⊗3 (ϕ (r0, r1, ..., rn−1)) = (an−1+bn−1+cn−1, ..., an−2+bn−2+cn−2, an−1+bn−1, ..., an−2+
bn−2, an−1 + cn−1, ..., an−2 + cn−2). Thus, ϕσ = σ⊗3ϕ.

Theorem 3.5. Let σ and σ⊗3 be as in the preliminaries. A code C of length n over S is cyclic
code if and only if ϕ (C) is quasi cyclic code of index 3 and length 3n over F2.

Proof. Suppose C is cyclic code. Then σ (C) = C. If we apply ϕ, we have ϕ (σ (C)) = ϕ (C) .
From proposition 3.4, ϕ (σ (C)) = σ⊗3 (ϕ (C)) = ϕ (C) . Hence, ϕ (C) is a quasi- cyclic code
of index 3. Conversely, if ϕ (C) is a quasi-cyclic code of index 3, then σ⊗3(ϕ (C)) = ϕ (C) .
From proposition 3.4, we have σ⊗3 (ϕ (C)) = ϕ (σ (C)) = ϕ (C) . Since ϕ is injective, it follows
that σ (C) = C.

Proposition 3.6. Let τs,l be quasi-cyclic shift on S. Let Γ be as in the preliminaries. Then
ϕτs,l = Γϕ.

Proof. Let e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) with ei,j = ai,j + ubi,j +
u2ci,j where i = 0, 1, ..., s−1 and j = 0, 1, ..., l−1. We have τs,l (e) = (es−1,0, ..., es−1,l−1, e0,0, ...,
e0,l−1, ..., es−2,0, ..., es−2,l−1). If we apply ϕ, we have

ϕ(τs,l (e)) = (as−1,0 + bs−1,0 + cs−1,0, ..., as−2,l−1 + bs−2,l−1 + cs−2,l−1,

as−1,0 + bs−1,0, ..., as−2,l−1 + bs−2,l−1, as−1,0 + cs−1,0, ...,

as−2,l−1 + cs−2,l−1)

On the other hand,

ϕ(e) = (a0,0 + b0,0 + c0,0, ..., as−1,l−1 + bs−1,l−1 + cs−1,l−1, a0,0 + b0,0,

..., as−1,l−1 + bs−1,l−1, a0,0 + c0,0, ..., as−1,l−1 + cs−1,l−1)

Γ(ϕ(e)) = (as−1,0+bs−1,0+cs−1,0, ..., as−2,l−1+bs−2,l−1+cs−2,l−1, as−1,0+bs−1,0, ..., as−2,l−1+
bs−2,l−1, as−1,0 + cs−1,0, ..., as−2,l−1 + cs−2,l−1). So, we have ϕτs,l = Γϕ.

Theorem 3.7. The Gray image of a quasi-cyclic code over S of length n with index l is a l-quasi
cyclic code of index 3 over F2 with length 3n.

Proof. Let C be a quasi-cyclic code over S of length n with index l. That is τs,l (C) = C. If
we apply ϕ, we have ϕ(τs,l (C)) = ϕ(C). From the Proposition 3.6, ϕ (τs,l (C)) = ϕ (C) =
Γ (ϕ (C)). So, ϕ (C) is a l quasi-cyclic code of index 3 over F2 with length 3n.
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4 Skew Cyclic and Quasi-cyclic Codes Over S

We are interested in studying skew codes using the ring S = F2 + uF2 + u2F2 where u3 = 1.
We define non-trivial ring automorphism

θ : S −→ S

0 −→ 0

1 −→ 1

u −→ u2

u2 −→ u

The ring S[x, θ] = {a0 + a1x+ ...+ an−1x
n−1 : ai ∈ S, n ∈ N} is called a skew polynomial

ring. This ring is a non-commutative ring. The addition in the ring S[x, θ] is the usual polynomial
addition and multiplication is defined using the rule, (axi)(bxj) = aθi(b)xi+j . Note that θ2(a) =
a for all a ∈ S. This implies that θ is a ring automorphism of order 2.

Definition 4.1. A subset C of Sn is callled a skew cyclic code of length n if C satisfies the
following conditions,
i) C is a submodule of Sn,
ii) If c = (c0, c1, ..., cn−1) ∈ C, then σθ (c) =

(
θ(cn−1), θ(c0), ..., θ(cn−2)

)
∈ C

Let (f(x)+ (xn−1)) be an element in the set Sn = S [x, θ] /(xn−1) and let r(x) ∈ S [x, θ].
Define multiplication from left as follows,

r(x)(f(x) + (xn − 1)) = r(x)f(x) + (xn − 1)

for any r(x) ∈ S [x, θ].

Theorem 4.2. Sn is a left S [x, θ]-module where multiplication defined as in above.

Theorem 4.3. A code C in Sn is a skew cyclic code if and only if C is a left S [x, θ]-submodule
of the left S [x, θ]-module Sn.

Theorem 4.4. Let C be a skew cyclic code in Sn and let f(x) be a polynomial in C of minimal
degree. If f(x) is monic polynomial, then C = (f(x)) where f(x) is a right divisor of (xn − 1).

Definition 4.5. A subset C of Sn is called a skew quasi-cyclic code of length n if C satisfies the
following conditions,
i) C is a submodule of Sn,
ii) If e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, .., es−1,l−1) ∈ C, then τθ,s,l (e) = (θ(es−1,0), ...,
θ(es−1,l−1), θ(e0,0), ..., θ(e0,l−1), θ(es−2,0), ..., θ(es−2,l−1)) ∈ C.

We note that xs − 1 is a two sided ideal in S [x, θ] if m|s where m = 2 is the order of θ. So
S [x, θ] /(xs − 1) is well defined.

The ring Rls = (S [x, θ] /(xs − 1))l is a left Rs = S [x, θ] /(xs − 1) module by the following
multiplication on the left f(x)(g1(x), ..., gl(x)) = (f(x)g1(x), ...f(x)gl(x)). If the map γ is
defined by

γ : Sn −→ Rls

(e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) 7→ (c0(x), ..., cl−1(x)) such that ej(x) =∑s−1
i=0 ei,jx

i ∈ Rls where j = 0, 1, ..., l− 1 then the map γ gives a one to one correspondence Sn
and the ring Rls.

Theorem 4.6. A subset C of Sn is a skew quasi-cyclic code of length n = sl and index l if and
only if γ(C) is a left Rs-submodule of Rls.

5 Gray Images of Skew Cyclic and Quasi-cyclic Codes Over S

Proposition 5.1. Let σθ be the skew cyclic shift on Sn, let ϕ be the Gray map from Sn to F 3n
2

and let σ⊗3 be as in the preliminaries. Then ϕσθ = λσ⊗3ϕ where λ(x, y, z) = (x, z, y) for every
x, y, z ∈ Fn2 .
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Proof. Let ri = ai + ubi + u2ci be the elements of S, for i = 0, 1, ...., n − 1. We have
σθ (r0, r1, ..., rn−1) = (θ(rn−1), θ(r0), ..., θ(rn−2)) . If we apply ϕ, we have

ϕ (σ (r0, ..., rn−1)) = ϕ(θ(rn−1), θ(r0), ..., θ(rn−2))

= (an−1 + bn−1 + cn−1, ..., an−2 + bn−2 + cn−2, an−1 + cn−1

, ..., an−2 + cn−2, an−1 + bn−1, ..., an−2 + bn−2)

On the other hand, ϕ(r0, ..., rn−1) = (a0 + b0 + c0, ..., an−1 + bn−1 + cn−1, a0 + b0, ..., an−1 +
bn−1, a0 + c0, ..., an−1 + cn−1). If we apply σ⊗3, we have

σ⊗3 (ϕ (r0, r1, ..., rn−1)) = (an−1+bn−1+cn−1, ..., an−2+bn−2+cn−2, an−1+bn−1, ..., an−2+
bn−2, an−1 + cn−1, ..., an−2 + cn−2). If we apply λ, we have λ(σ⊗3 (ϕ (r0, r1, ..., rn−1))) =
(an−1+bn−1+cn−1, ..., an−2+bn−2+cn−2, an−1+cn−1, ..., an−2+cn−2, an−1+bn−1, ..., an−2+
bn−2). So, we have ϕσθ = λσ⊗3ϕ.

Theorem 5.2. The Gray image a skew cyclic code over S of length n is permutation equivalent
to quasi-cyclic code of index 3 over F2 with length 3n.

Proof. Let C be a skew cyclic codes over S of length n. That is σθ(C) = C. If we apply ϕ, we
have ϕ(σθ(C)) = ϕ(C). From the Proposition 5.1, ϕ(σθ(C)) = ϕ(C) = λ(σ⊗3(ϕ(C))). So,
ϕ(C) is permutation equivalent to quasi-cyclic code of index 3 over F2 with length 3n.

Proposition 5.3. Let τθ,s,l be skew quasi-cyclic shift on Sn, let ϕ be the Gray map from Sn to
F 3n

2 , let Γ be as in the preliminaries, let λ be as above. Then ϕτθ,s,l = λΓϕ.

Proof. The proof is similar to the proof of Proposition 5.1.

Theorem 5.4. The Gray image a skew quasi-cyclic code over S of length n with index l is per-
mutation equivalent to l quasi-cyclic code of index 3 over F2 with length 3n.

Proof. The proof is similar to the proof of Theorem 5.2.

Example 5.5. Let S = F2 + uF2 + u2F2, n = 4.

x4 − 1 = (x+ 1) (x+ 1) (x+ 1) (x+ 1)

= (x+ u)
(
x+ u2) (x+ u)

(
x+ u2)

= (x+ u)
(
x+ u2) (x+ 1) (x+ 1)

= (x+ 1)
(
x+ u2) (x+ u) (x+ 1)

Let f(x) = x + u. Then f(x) generates a skew cyclic code of length 4 with the minimum
distance d = 2. This code is equivalent to a quasi-cyclic code of index 3 over F2 with length 12.

Example 5.6. Let S = F2+uF2+u2F2, n = 6, x6−1 = (x3+u)(x3+u2). Let f(x) = x3+u2.
Then f(x) generates a skew cyclic code of length 6 with the minimum distance d = 2. This code
is equivalent to a quasi-cyclic code of index 3 over F2 with length 18.

6 Conclusion

We introduced skew cyclic and skew quasi-cyclic codes over the finite ring S. We construct a
new Gray map. It is shown that if C is self orthogonal so is ϕ(C). Moreover, by using this Gray
map, the Gray images of cyclic, quasi-cyclic,skew cyclic and skew quasi-cyclic codes over S are
obtained. So, it can be obtained the new codes with better Hamming distance.
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