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Abstract. In [Hilton, P. Non-cancellation properties for certain finitely presented groups.
Classical and categorical algebra (Durban, 1985). Quaestiones Math. 9 (1986), no. 1-4, 281-
292], Hilton carried out a construction of specific groups expressed in the form of semidirect
products Ao C, where A is a C-module whose underlying abelian group structure is Zn and C
a free cyclic group. This enable him to determine the structure and the exponent of the genus
group. From [14, Theorem 1.4], it appeared that these groups carried some remarkable property
which gives rise to the exploration of the non-cancellation phenomenon. In this paper, we gener-
alize it toR-modules, whereR is some commutative ring. To achieve this, we form a category of
metabelian groups CR whose objects G are semidirect products obtained from R-modules. For
an object G, a group structure is induced on the non-cancellation set of the localization of G at
the set of primes {3, 7} . An example of trivial non-cancellation set in CR is given.

1 Introduction

Until the mid-seventies, research on the cancellation question focused mainly on finitely gener-
ated projective modules over polynomial rings of algebraic varieties. The reason for this focus
was the celebrated question raised by J.P. Serre [23] in 1955: If R is the polynomial ring in a
finite number of variables over a field, is every finitely generated projective module free? This
question reduces to the cancellation question. If P and Q are finitely generated R-modules such
that P ⊕ R ∼= Q ⊕ R, are P and Q necessarily isomorphic? Serre’s question inspired a huge
amount of research on the cancellation question for projective modules, from the Bass cancella-
tion Theorem [1, Chap IV, (3.5)] (which gives a positive answer if the rank of P is greater than
the number of variables) to the eventual solution by Quillen [20] and Suslin [24].
Efforts to answer Serre’s problem resulted in many important results on cancellation and fail-
ure of cancellation for projective modules over more general rings (see [19, 28, 27]). More-
over, research on these questions continued long after the solution of Serre’s problem (see
[1, 18, 25, 26]). The modules we are going to consider will not in general be projective. Much
less is known about cancellation in general. Among the first results was the theorem, due to
Vasconcelos [29], that says cancellation holds for finitely generated modules over commutative
semilocal rings. Other early results on cancellation are the following:

(1) Let R be any ring and let C be the class of R-modules with finite length. Then cancellation
holds for C.

(2) Let R be a local Noetherian commutative ring. Then cancellation holds for the class of
finitely generated R-modules.

(3) Let R be a Dedekind domain. Then cancellation holds for the class of finitely generated
R-modules.

The concept of cancellation is closely related to those of genus and localization of groups and
modules. For example, cancellation holds for the class of finitely generated R-modules where
R is a local noetherian commutative ring. The localization of a ring results to local ring. A
local ring is a ring with just one maximal ideal. Ever since Krull’s paper (1938), local rings
have occupied a central position in commutative algebra. The technique of localization reduces
many problems in commutative algebra to problems about local rings. This often turns out to
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be extremely useful. Most of the problems with which commutative algebra has been successful
are those that can be reduced to the local case. Despite this, localization as a general procedure
was defined rather late. In the case of integral domains, it was described by Grell, a student of
Noether in 1927. It was not defined for arbitrary commutative rings until the work of Chevalley
(1944) and Uzkov (1948). The process of localization does not lose much information about the
ring. For example, if R is an integral domain, the fields of fractions of R and Rp (the localization
of R at a prime ideal p) are the same. This process permits operations which, from a geomet-
rical point of view, provide information about the neighborhood of p in Spec(R) (the set of all
primes ideals of R). The localization of an R-module M at a prime ideal p is the Rp-module Mp

obtained by tensoring M with Rp. Modules having isomorphic localization are said to be in the
same genus. Cancellation holds also in every genus of R-modules if R is commutative and has
no nilpotent elements, see [7].

The theory of P -localization of groups, where P is a family of primes, appears to have been
first discussed in [15, 16] by Mal’cev and Lazard . In their work emphasis was placed on the
explicit construction of the localization and properties of the localization GP of the nilpotent
group G were deduced from the construction, utilizing nilpotent group theory. Baumslag in [2]
has given a comprehensive treatment of the main properties of nilpotent groups as they relate to
the problem of localization. He has explicitly shown in [3] how to construct GP in the case of an
arbitrary nilpotent group G and an arbitrary family of primes P . Thus extending the generality
of Malcev’s original construction. Bousfield-Kan [4] exploit this general Mal’cev construction
in their study of completion and localization.
In the 1970s, Hilton and Mislin became interested, through their work on the localization of
nilpotent spaces, in the localization of nilpotent groups. Mislin [17] define the genus G(N) of
a finitely generated nilpotent group N to be the set of isomorphism classes of finitely generated
nilpotent groups M such that the localizations Mp and Np are isomorphic at every prime p. This
version of genus became known as the Mislin genus, and other very useful variations of this
concept came into being. In [9] Hilton and Mislin define an abelian group structure on the genus
set G(N) of a finitely generated nilpotent group N with finite commutator subgroup.
For nilpotent groups which belong to class K (of semidirect products of the form T oZk, where
T is a finite abelian group and k is a positive integer), many computations of the genus groups
appear in the literature. Indeed, the groups considered in [5, 11, 13, 21] all belong to this class.
When localizing non-nilpotent groups, it may happen that the kernel of the localizing homomor-
phism is bigger than what we would require. So for a non-nilpotent finitely generated group
G with finite commutator subgroup, rather than considering localization, the idea of the genus
is generalized through non-cancellation. For a group G, the non-cancellation set, denoted by
χ(G), is the set of isomorphism classes of groups H such that G× Z ∼= H × Z.

Investigations into non-cancellation phenomena on groups in the class K (of semidirect products
of the form T oω Zk, where T is a finite abelian group and k is a positive integer) appear in
[31, 32], and reveal some similarities with genus computations for nilpotent groups in K. One
such instance is observed in [31, Theorem 4.2] on triviality of the non-cancellation set of a group
inK, which is a direct generalization of [21, Theorem 4.1] on triviality of the genus of a nilpotent
group in K. Such similarities are of course not completely surprizing in view of Warfield’s result
[30, Theorem 3.6], which asserts that for finitely generated nilpotent groups N and M having
finite commutator subgroups, the condition N ×Z ∼=M ×Z is equivalent to Np ∼=Mp for every
prime number p, in other words, G(N) = χ(N).

In [22], Scevenels and Witbooi give an alternate description of the non-cancellation group of a
group G = T oω Zk where T is a finite abelian group and ω the action Zk → AutT with k a
positive integer. This enable them to make some computations.
Hilton in [14] carried out a construction of specific groups expressed in the form of semidirect
products Ao C, where A is a C-module whose underlying abelian group structure is Zn and C
a free cyclic group.
This enable him to determine the structure and the exponent of the genus group.
From [14, Theorem 1.4], it appeared that these groups carried some remarkable property which
gives rise to the exploration of the non-cancellation phenomenon.
We generalize this for R-modules, where R is some commutative ring. We form a category of
metabelian groups denoted by CR whose objects are semidirect products T oζ F where T is a
finitely generated torsion R-module, F a free R-module and ζ : F → AutRT an action of F
on T . For such object G, we describe the non-cancellation set χR(G), which is the set of all
isomorphism classes of groups H such that G×R ∼= H ×R.
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The remainder of this paper is organized as follows:

In Section 2, we describe morphisms in CR. Morphisms in this category are group homomor-
phisms with some specific properties.
Section 3 consists of a characterization of isomorphisms in CR. This is presented in Propositions
3.2 and 3.3. Proposition 3.4 describes the non-cancellation set for objects in CR. This section
ends with two examples illustrating the usefulness of this construction. In the first one, we estab-
lish in Theorem 3.2, a surjective function between the non-cancellation sets χ(H) and χR(H̄),
where R = Z[ 1

3 ,
1
7 ] and H̄ the localization of H at the set of primes {3, 7}. This is showing that

a group structure can be induced on χR(H̄). In the second one, we present an example of trivial
non-cancellation set in CR.

When T is a finite group and F a free abelian group, in Section 4, we compute the non-
cancellation of Zkn oµ Zk+1 which turns to be trivial. This is an illustration of the known result
that the non-cancellation set is always trivial in the case where the rank of the image of ζ in
Aut(T ) is less than the free rank of F .

2 A category of metabelian groups

Let us fix some commutative ring R. We observe some properties of the groups G of the form
T oζ F where T is a finitely generated torsion R-module and F is a finite rank free R-module.
For G = T oζ F , let CG(F ) be the centralizer of F in G.

CG(F ) = {(a, x) ∈ G : (a, x) ∗ (0, y) = (0, y) ∗ (a, x) for all y ∈ F}

In order to describe the morphisms we first observe that there is a (natural) module structure on
CG(F ).

Proposition 2.1. Let G = T oζ F . Then

CG(F ) = {(a, x) ∈ G : ζy(a) = a for all y ∈ F} .

Proof. Given (a, x) ∈ CG(F ), for all y ∈ F , (a, x) ∗ (0, y) = (0, y) ∗ (a, x)
i.e. (a, x+ y) = (ζy(a), x+ y)
i.e. a = ζy(a).

Remark 2.1. For (a, x), (b, y) ∈ CG(F ), (a, x) ∗ (b, y) = (a+ b, x+ y).

Proposition 2.2. Let G = T oζ F . Then the centralizer of F in G, CG(F ) becomes an R-module
with the multiplication R× CG(F )→ CG(F ) given by
r(a, x) = (ra, rx) for r ∈ R, (a, x) ∈ CG(F ).

Proof. We first show that (CG(F ), ∗) is an abelian group.

Given (a, x), (b, y) ∈ CG(F )
(a, x) ∗ (b, y) = (a+ b, x+ y) by Remark 5.2.1
(b, y) ∗ (a, x) = (b+ a, y + x) by Remark 5.2.1

= (a+ b, x+ y) since T and F are abelian
Thus (a, x) ∗ (b, y) = (b, y) ∗ (a, x).

Let r, s ∈ R and (a, x), (b, y) ∈ CG(F ).

r[(a, x) ∗ (b, y)] = r(a+ b, x+ y)

= [r(a+ b), r(x+ y)]

= (ra+ rb, rx+ ry) since T and F are R-modules.
= (ra, rx) ∗ (rb, ry)
= r(a, x) ∗ r(b, y)

(r + s)(a, x) = [(r + s)a, (r + s)x]

= (ra+ sa, rx+ sx) since T and F are R-modules
= (ra, rx) ∗ (sa, sx)
= r(a, x) ∗ s(a, x)
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(rs)(a, x) = [(rs)a, (rs)x]

= [r(sa), r(sx)] since T and F are R-modules
= r[s(a, x)].

Thus CG(F ) is an R-module.

Now let CR be the category having as its objets all groups of the form
G(ω) = T oω F . The morphisms in CR will be group homomorphisms

h : G(ζ) = T1 oζ F1 → G(ξ) = T2 oξ F2

satisfying the following conditions:

(i) h(T1) ⊆ T2

(ii) h(F1) ⊆ CGξ(F2)

(iii) The restrictions h1 = h|T1 and h0 = h|F1 are R-homomorphisms onto their images.

3 Isomorphisms in CR

The morphisms in CR can be expressed in terms of simpler components. Let h be such morphism.
We define h2 and h3 as follows :

h(0, x) = h0(0, x) = (h2(x), h3(x))

Let (a, x) ∈ G(ζ). Then we can calculate:
h(a, x) = h [(a, 0) ∗ (0, x)]

= h(a, 0) ∗ h(0, x)
= (h1(a), 0) ∗ h0(0, x) where h1, h0 are homomorphisms defined previously
= (h1(a), 0) ∗ (h2(x), h3(x))

= (h1(a) + ζ0h2(x), 0 + h3(x))

= (h1(a) + h2(x), h3(x)) ,
thus

h(a, x) = (h1(a) + h2(x), h3(x)) . (2.A)

Proposition 3.1. Let h be an morphism in CR. Then

h1 ◦ ζx(a) = ξh3(x) ◦ h1(a) (2.B)

Proof. Let h be a morphism of CR from G(ζ) to G(ξ) and (a, x) ∈ G(ζ). We have,
(0, x) ∗ (a, 0) = (0 + ζx(a), x)

= (ζx(a), x)

= (ζx(a), 0) ∗ (0, x)

h[(0, x) ∗ (a, 0)] = h[(ζx(a), 0) ∗ (0, x)]
= h(ζx(a), 0) ∗ h(0, x)
= (h1 ◦ ζx(a), 0) ∗ (h2(x), h3(x))

= (h1 ◦ ζx(a) + h2(x), h3(x))

On the other hand,

h[(0, x) ∗ (a, 0)] = h(0, x) ∗ h(a, 0)
= (h2(x), h3(x)) ∗ (h1(a), 0)
=

(
h2(x) + ξh3(x) ◦ h1(a), h3(x)

)
Therefore h1 ◦ ζx(a) + h2(x) = h2(x) + ξh3(x) ◦ h1(a) and since T2 is abelian, we can cancel
h2(x) in the latter equation and obtain :

h1 ◦ ζx(a) = ξh3(x) ◦ h1(a)

Proposition 3.2. Suppose h is determined by h1, h2 and h3. Then h is an isomorphism if and
only if h1 and h3 are isomorphisms.
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Proof. Let l ∈ MorCR (G(ζ), G(ξ)) defined by :

l(b, y) =
(
h−1

1 (b)− h−1
1 ◦ h2 ◦ h−1

3 (y), h−1
3 (y)

)
.

Then
l ◦ h(a, x) = l[(h1(a) + h2(x), h3(x))]

=
(
h−1

1 (h1(a) + h2(x))− h−1
1 ◦ h2 ◦ h−1

3 (h3(x)), h
−1
3 (h3(x))

)
=

(
a+ h−1

1 ◦ h2(x)− h−1
1 ◦ h2(x), x

)
= (a, x),

and
h ◦ l(b, y) = h[h−1

1 (b)− h−1
1 ◦ h2 ◦ h−1

3 (y), h−1
3 (y)]

=
(
h1(h

−1
1 (b)− h−1

1 ◦ h2 ◦ h−1
3 (y)) + λ(h−1

3 (y)), h3(h
−1
3 (y))

)
=

(
b+ h2 ◦ h−1

3 (y)− λ ◦ h−1
3 (y), y

)
= (b, y).

Hence l is a left and right inverse of h, thus h is an isomorphism.

Conversely suppose h is determined by h1, h2 and h3 and that h is an isomorphism. Let l be the
inverse of h.
l is determined by h′1, h′2 and h′3. We then have,

l ◦ h(a, x) = [h′1 ◦ h1(a) + h′1 ◦ h2(x) + h′2 ◦ h3(x), h
′
3 ◦ h3(x)] = (a, x)

and
h ◦ l(b, y) = [h1 ◦ h′1(b) + h1 ◦ h′2(y) + h2 ◦ h′3(y), h3 ◦ h′3(y)] = (b, y)

We have by identification
h′1 ◦ h1(a) + h′1 ◦ h2(x) + h′2(x) ◦ h3(x) = a
h′3 ◦ h3(x) = x
h1 ◦ h′1(b) + h1 ◦ h′2(y) + h2 ◦ h′3(y) = b
h3 ◦ h′3(y) = y
That is
h3 ◦ h′3 = h′3 ◦ h3 = Id
h′1 ◦ h1 = h1 ◦ h′1 = Id
Therefore h1 and h3 are isomorphisms with inverses h′1 and h′3 respectively and h′2 = −h′1◦h2◦h′3.

Proposition 3.3. If G(ζ) ∼= G(ξ), then the image of ξ is a conjugate of the image of ζ.

Proof. Given an isomorphism h : G(ζ) → G(ξ), then h1 and h3 are isomorphisms. Given any
x ∈ F1, by formula (2), we have ζx = h−1

1 ◦ ξh3(x) ◦ h1.
Since h3 is an epimorphism, Imξ = Im(ξ ◦ h3) and the result follows.

Remark 3.1. We note that if ζ : F → AutRT is a homomorphism of groups and if ζ ′ = ζ ◦ q
where q : F ×R→ F is the projection onto the first factor. Then

T oζ′ (F ×R) ∼= (T oζ F )×R

Proposition 3.4. Let G(ζ) = T oζ F , G(ξ) = T oξ F be objects of CR.
The following conditions are equivalent :

(i) G(ζ)×R ∼= G(ξ)×R (isomorphic in CR)

(ii) There exist ν ∈ AutRT , ϕ ∈ AutR(F ×R) such that the following diagram commutes.

F ×R
ϕ

//

ζ′

��

F ×R

ξ′

��
Imζ

θν // Imξ
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where θν : γ 7→ ν−1γν induced by the inner automorphism, ζ ′ = ζ ◦ q and ξ′ = ξ ◦ q where
q : F ×R→ F is the projection onto the first factor.

Definition 3.1. Let G be an object of CR. The non-cancellation set denoted by χR(G), is the set
of all isomorphism classes of groups H ∈ Obj(CR) such that G×R ∼= H ×R.

In the following example, let R be a subring of the rational number Q containing Z as a subset,
Z ⊂ R ⊂ Q. We take T = Z112 and F = R = Z[ 1

3 ,
1
7 ].

Let H = Z112 oω Z and H̄ = Z112 oω′ R where ω′ = ω ◦ η, with η the floor function from R to
Z. We want to show that there is a surjective function from χ(H) to χ(H̄).

Example 3.1. We will consider the particular case h3 = Id. Let H = Z112 oω Z and let ω(1) be
of order 110. Then from [22, Theorem 3.8], χ(H) ∼= Z∗110/± 1.
Let K = Z112 oµ Z and K � H .
Let h : H̄ → K̄ be a homomorphism from H̄ to K̄, where K̄ = Z112 oµ′ R with µ′ = µ ◦ η.
From (2.A) , h is given by h(a, x) = (h1(a) + h2(x), h3(x)) for a ∈ Z112 and x ∈ R. We will
consider the special case h3 = Id.

Lemma 3.1. If K � H , then K̄ � H̄ .

Proof. Suppose K̄ ∼= H̄ and K � H . Then by Proposition 3.1,
ω′(x) = h−1

1 ◦ µ′(x) ◦ h1 where µ′ = µ ◦ η.
Therefore
ω(z) = h−1

1 ◦ µ(z) ◦ h1 where z = η(x).
Thus K ∼= H by [22, Theorem 3.2], which is in contradiction with the hypothesis.

Theorem 3.1. If K × Z ∼= H × Z then K̄ ×R ∼= H̄ ×R

Proof. Suppose K × Z ∼= H × Z. Then by [22, Theorem 3.1],
ω(Z) = h−1

1 ◦ µ(Z) ◦ h1 for some h1 in Aut(Z112).
Since η(R) = Z, the above equation implies that ω ◦ η(R) = h−1

1 ◦ µ ◦ η(R) ◦ h1
therefore
ω′(R) = h−1

1 ◦ µ′(R) ◦ h1 for some h1 in Aut(Z112).
Thus by taking ν = h1 and ϕ = Id, the result follows by Proposition 3.4.

Theorem 3.2. Fix Z ≤ R ≤ Q. If H is a group in K (That is of the form of semidirect product)
and H̄ = HR, then there is a surjective function
φ : χ(H)→ χR(H̄).

Proof. φ is well-defined by Theorem 3.1.
Let [K̄] ∈ χ(H̄) where K̄ = Z112 oζ R.
Then K = Z112 oµ Z with µ = ζ ◦ i where i is the inclusion map, is a suitable candidate.

Fixing any natural number k. Let us assume that in R the elements 2, 3, · · · , k − 1 are multi-
plicatively invertible.
For r ∈ R, we define α(r) = 1 + (rx) + (2!)−1(rx)2 + · · ·+ ((k − 1)!)−1(rx)k−1.
In the next example, we consider R = Zpn [x] where p is a prime number and n ≥ 1. We are
going to present here an object G = T oζ F of CR with trivial non-cancellation set χR(G).

Example 3.2. Taking cyclic R-modules F = R, T = R/J where J =< xk >. We assume that
n is relatively prime to the numbers {2, 3, · · · , k − 1}.
Let ζ : R→ AutRT given by r 7→ ζr with ζr(a) = α(r).a

ζ is well-defined : For r, s ∈ R and a ∈ T ,
ζr+s(a) = α(r + s).a

= α(r). (α(s).a)

= ζr (ζs(a))

= ζr ◦ ζs(a)
hence ζr+s = ζr ◦ ζs and ζr ◦ ζ−r = ζ−r ◦ ζr = IdT .

Moreover, for λ ∈ R,
ζr(λ a) = α(r)(λ a)

= (α(r)λ) a since T is an R-module
= (λα(r)) a by commutativity of R
= λ (α(r)a) since T is an R-module
= λζr(a)



428 Jules Clement Mba

Thus ζr ∈ AutRT .

Let m be a natural number. Consider another action ξ of the form : ξr = ζmr .

Consider F = R =< 1 > and T =< 1+ J >, let t be the order of the image of α(1) in R/J .

Lemma 3.2. Let ζ and ξ be as given above. If G(ζ) ∼= G(ξ), then there exists an integer u such
that um ≡ ±1mod(t).

Proof. If h : G(ζ) ∼= G(ξ), then there exists a commutative diagram

T //

h1 ∼=

��

G //

h

��

R

h3 ∼=

��

h0

��
T // H // R

where h1, h0 = (h2, h3) are induced by h.

For F = R being cyclic, h3(1) = u or −u where u is some unit. Following the formula (2.B),
we have in particular,
h1 ◦ ζ1(1 + J) = ξh3(1) ◦ h1(1 + J),
i.e. h1(α(1) + J) = α(u)mh1(1 + J) or α(−u)mh1(1 + J)
i.e. h1(α(1) + J) = h1(α(u)m + J) or h1(α(−u)m + J)
i.e. α(1) + J = α(u)m + J or α(−u)m + J since h1 is injective.
Therefore α(1) ≡ α(u)m mod J or α(−u)m mod J .
Hence α(1)um−1 ≡ 1 mod J or α(1)um+1 ≡ 1 mod J so that um ≡ ±1mod(t).

Now let u, v be units, R×R =< u, v > and consider the actions ζ ′ = ζ ◦ q, ξ′ = ξ ◦ q where q
is the projection onto the first factor.

Let c, d be positive integers relatively prime. Let

(
m t

c d

)
be the unimodular matrix (such

exists since c, d are relatively prime). Then the map φ : R × R → R × R given by : u 7→
mu+ cv, v 7→ tu+ dv, is an automorphism.

φ is compatible with the identity map IdT : T → T that is ξ′u(a) = ζ ′φ(u)(a) and ξ′v(a) = ζ ′φ(v)(a).

For ξ′u(a) = α(u)m.a in T , we have
ζ ′φ(u)(a) = ζmu(a)

= α(mu).a

= α(u)m.a in T
.

For ξ′(v)(a) = a in T , we have

ζ ′φ(v)(a) = ζtu(a)

= α(tu).a

= α(u)t.a

= α(1)ut.a
= a in T

Thus φ : R × R → R × R, IdT : T → T together determine an isomorphism of T oζ′ (R × R)
with T oξ′ (R×R). But by Proposition 3.4, T oζ′ (R×R) ∼= (T oζR)×R and T oξ′ (R×R) ∼=
(T oξ R)×R
Thus G(ζ)×R ∼= G(ξ)×R.

Theorem 3.3. Let t be the order of the image of α(1) in R/J . For a positive integer m, let
G(m) = T oξ R where the action is given by : ξ1 : a 7→ α(1)m.a. The following conditions are
equivalent :

(i) For any u ∈ (Zt)∗, u.m 6≡ ±1mod t,

(ii) G(1)×R ∼= G(m)×R.

Proof. (1)⇒ (2) has been shown above. Now let us look at (2)⇒ (1) :
Suppose G(1)×R ∼= G(m)×R and u.m ≡ ±1mod t for some u ∈ (Zt)∗. Then by Proposition

3.4, there exist ν ∈ AutRT , ϕ ∈ AutR(R × R) such that θν ◦ ζ ′u = ξ′ ◦ ϕ(u). Let

(
m t

c d

)
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be the unimodular matrix (such exists since m, t are relatively prime) defining ϕ. The equality
θν ◦ ζ ′u = ξ′ ◦ ϕ(u) implies that ν−1 ◦ ζu ◦ ν(1 + J) = ξmu(1 + J) for a ∈ T . Therefore
α(u) + J = α(mu)m + J

i.e. α(1)u(m
2−1) ≡ 1 mod J

i.e. u(m2 − 1) ≡ 0 mod t. Hence m ≡ ±1 mod t which is in contradiction with u.m ≡ ±1mod t.

Therefore we have the following proposition

Proposition 3.5. If n = p is a prime number, then t = p and the non-cancellation set χR(G(1))
is trivial. More precisely for any m ∈ (Zp)∗, G(1) ∼= G(m).

4 Calculating the non-cancellation set of a group H(k,k+1)

In [17] Mislin introduced the concept of the genus of a finitely generated nilpotent group N .
This is the set of isomorphism classes of finitely generated nilpotent groups M such that the
localizations Mp and Np are isomorphic at every prime p. In [5, 8] the Mislin genus G(N) of a
finitely generated nilpotent group N belonging to a certain class N1. The class N1 consists of
those nilpotent groups N , given in terms of the associated short exact sequence

(1.1) TN � N � FN,

where TN is the torsion subgroup and FN the torsion-free quotient, by the conditions

(a) TN and FN are commutative

(b) Relation (1.1) splits for the action ω : FN → AutTN

(c) ω(FN) lies in the center of AutTN .
(It was observed in [5] that, in the presence of (a), (c) is equivalent to (c’))

(c’) For all ξ ∈ FN , there exists an integer u such that ξ · a = ω(ξ)(a) = ua for all a ∈ TN .
(Here, TN is written additively.)

It is shown in [13] that the genus G(N) of a groupN inN1 is trivial unless FN is cyclic. Suppose
then that FN is cyclic generated by ξ, and let d be the multiplicative order of u (see (c′)) modulo
m, where m is the exponent of TN . Then the calculation of the genus yields

(1.2) G(N) ∼= (Zd)∗/± 1

where (Zd)∗ is the multiplicative group of units in the ring Zd.
In [13], to study the case FN is not cyclic, Hilton and Scevenels generalized the procedure used
in [10]. Thus we have, as previously presented, a finitely generated nilpotent group N belonging
to N1 and fitting into a split short exact sequence

(1.3) TN � N � FN,

but now FN is free abelian of rank r ≥ 2. We then know that we can write

(1.4) FN =< ξ1, ξ2, · · · , ξr >,

where for i = 1, 2, · · · , r,

ξi · a = uia, for all a ∈ TN (1.5)

and the multiplicative order of ui modulo m is di, where m is the exponent of TN and

d1|d2| · · · |dr (1.6)

As in [5], it is known that the genus of N is given by

G(N) ∼= (Zd1)
∗/± 1. (1.7)

However, [13, Theorem 2.2] tells us that, in fact,

d1 = d2 = · · · = dr−2 = 1, dr−1 = 1 or 2. (1.8)
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Note that, since FN is commutative, the commutator subgroup of N is finite.

LetX0 be the class of finitely generated groups having a finite commutator subgroup. For a group
H ∈ X0, recall that χ(H) is the set of all isomorphism classes of groups G with the property that
G× Z ∼= H × Z. By a theorem of Warfield [30], χ(H) = G(H) if H is nilpotent.
We recall the following notation, used in [6]. If (n, u) is a relatively prime pair of natural
numbers, then the group

< a, b | an = 1, bab−1 = au >

is denoted by G(n, u). G(n, u) happens to be (isomorphic to) a semidirect product Zn oµ Z,
where µ : Z → Aut(Zn) is the action for which µ(1) is the automorphism t 7→ ut of Zn. Now
let H = G(n, u) and let d be the multiplicative order of u modulo n. From [22], we have that
χ(H) ∼= Z∗d/± 1. By Z∗d/± 1 we mean the quotient group Z∗d/

{
−1̄, 1̄

}
.

For a natural number k, note that there is an obvious action ω : Zk → Aut(Zkn) for which
Hk = Zkn oω Zk. From [33] we have an epimorphism θ : Z∗d/± 1→ χ(Hk) and [32, Theorem
2.2] gives conditions under which θ is an isomorphism. Now we change the notation.
Let us denote Zn oλ Z = Z1

n oλ Z1 by H(1,1). For a natural number k, note that there is an
obvious action ω : Zk → Aut(Zkn) for which (H(1,1))k = H(k,k) = Zkn oω Zk. We want to
calculate the genus of H(k,k+1) = Zkn oµ Zk+1.
Let u be a fixed natural number which is relatively prime to n and d a multiplicative order of u
modulo n. In [32], Aut(Zkn) was identified withM = GL(Zn, k) the group of invertible k × k-
matrices with coefficients in Zn and Imµ with the subgroup U =< U1, U2, · · · , Uk > where Ui
is a matrix in M for which the (i, i)-entry is u with 1 elsewhere on the main diagonal, and 0
everywhere off the main diagonal. U is an abelian group with exponenet d.
In the specific case of the group H(k,k+1) = Zkn oµ Zk+1, there exits i, j ∈ {1, 2, · · · , k + 1},
such that Uj = U li where l is a divisor of d. Otherwise, if (l, d) = 1 then Uj would describe a
direct factor of a (isomorphism class) group in the χ(H(k,k+1)) as we know for the simple case
of group in N1. Thus we can formulate it as follows.

Lemma 4.1. Let ξ1, ξ2, · · · , ξk+1 be the generators of the free abelian group Zk+1 in H(k,k+1) =
ZknoµZk+1 such that µ(ξi) = Ui for i ∈ {1, 2, · · · , k + 1}. Then there exist i, j ∈ {1, 2, · · · , k + 1},
i 6= j such that Uj = U li where l is a divisor of d.

Starting with k = 1. Let H(1,2) = Zn oγ Z2 where γ : Z2 → Aut(Zn). Let ξ1 = (1, 0) and
ξ2 = (0, 1) be the generators of Z2. Then by Lemma 4.1, there exists l such that ξ1 · a = ua
and ξ2 · a = ula for all a ∈ Zn. Let t be the multiplicative order of ul modulo n. Then by [12,
Theorem 2.2], t|d and t = 1 or 2. Therefore χ(H(1,2)) is trivial.
In the general case, there is an action δ : Zk−1 → Aut(Zk−1

n ) such that H(k,k+1) = H(1,2) ×
H(k−1,k−1). Since χ(H(k−1,k−1)) ∼= (Z∗d/ {±1}) /Kerθ where θ is an epimorphism χ(H(k−1,k−1))→
Z∗d/± 1 (see [33]) and remember that χ(H(1,2)) is trivial, therefore it results that χ(H(k,k+1)) is
trivial. Thus we have the following theorem:

Theorem 4.1. For a natural number k, χ(H(k,k+1)) is trivial.

References
[1] Bass H. Algebraic K-theory. W.A. Benjamin, Inc., New York-Amsterdam. 1968.

[2] Baumslag G. Lecture notes on nilpotent groups. Regional Conference Series in Mathematics. No. 2, Amer-
ican Mathematical Society, Providence, R.I. 1971.

[3] Baumslag G. Some remarks on nilpotent groups with roots. Proc. Amer. Math. Soc. 12 (1961) 262-267.

[4] Bousfield A.K. and Kan D. M. Homotopy limits, completions and localizations. Lecture Notes in Mathe-
matics. Vol. 304. Springer-Verlag, Berlin-New York. 1972.

[5] Casacuberta C. and Hilton P. Calculating the Mislin genus for a certain family of nilpotent groups. Comm.
Algebra. 19 (1991), no. 7, 2051-2069.

[6] Fransman A. and Witbooi P. Non-cancellation sets of direct powers of certain metacyclic groups. Kyung-
pook Math. J. 41 (2001), no. 2, 191-197.

[7] Guralnick R.M. and Levy L.S. Cancellation and direct summands in dimension 1. J. Algebra. 142 (1991),
no. 2, 310-347.

[8] Hilton P. On the genus of nilpotent groups and spaces. Israel J. Math. 54 (1986), no. 1, 1-13.

[9] Hilton P. and Mislin G. On the genus of a nilpotent group with finite commutator subgroup. Math. Z. 146
(1976), no. 3, 201-211.

[10] Hilton P. and Scevenels D. Calculating and interpreting the Mislin genus of a special class of nilpotent
spaces. Proc. Amer. Math. Soc. 127 (1999), no. 11, 3433-3438.



Non-cancellation of groups from module action 431

[11] Hilton P. and Scevenels D. Calculating the genus of a direct product of certain nilpotent groups. Publ.
Mat. 39 (1995), no. 2, 241-261.

[12] Hilton P. and Scevenels D. On the Mislin genus of certain circle bundles and non-cancellation. Int. J.
Math. Math. Sci. 24 (2000), no. 8, 539-548.

[13] Hilton P. and Schuck C. On the structure of nilpotent groups of a certain type. Topol. Methods Nonlinear
Anal. 1 (1993), no. 2, 323-327.

[14] Hilton, P. Non-cancellation properties for certain finitely presented groups. Classical and categorical al-
gebra (Durban, 1985). Quaestiones Math. 9 (1986), no. 1-4, 281-292.

[15] Kurosh A.G. The theory of groups. Vol. II. Translated from the Russian and edited by K. A. Hirsch.
Chelsea Publishing Company, New York, N.Y. 1956.

[16] Lazard M. Sur les groupes nilpotents et les anneaux de Lie. (French) Ann. Sci. Ecole Norm. Sup. (3) 71
(1954) 101-190.

[17] Mislin G. Nilpotent groups with finite commutator subgroups. Localization in group theory and homotopy
theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash. 1974), 103-120. Lecture
Notes in Math. Vol. 418. Springer, Berlin. 1974.

[18] Mohan K.N. , Murthy M.P. and Roy A. A cancellation theorem for projective modules over finitely gen-
erated rings. Algebraic geometry and commutative algebra. Vol. I, 281-287, Kinokuniya, Tokyo. 1988.

[19] Murthy M.P. and Swan R.G. Vector bundles over affine surfaces. Invent. Math. 36 (1976) 125-165.

[20] Quillen D. Projective modules over polynomial rings. Invent. Math. 36 (1976) 167-171.

[21] Scevenels, D. On the Mislin genus of a certain class of nilpotent groups. Comm.Algebra. 26 (1998), no.
5, 1367-1376.

[22] Scevenels, D., Witbooi, P.J. Non-cancellation and Mislin genus of certain groups and H0-spaces. Journal
of Pure and Applied Algebra. 170 (2002), 309-320.

[23] Serre J.P. Faisceaux algébriques cohérents. (French) Ann. of Math. (2) 61 (1955) 197-278.

[24] Suslin A.A. Projective modules over polynomial rings are free. (Russian) Dokl. Akad. Nauk SSSR. 229
(1976), no. 5, 1063-1066.

[25] Suslin A.A. The cancellation problem for projective modules, and related questions. (Russian) Proceed-
ings of the International Congress of Mathematicians, (Helsinki, 1978). pp. 323-330, Acad. Sci. Fennica,
Helsinki. 1980.

[26] Swan R.G. Failure of cancellation for direct sums of line bundles. Trans. Amer. Math. Soc. 336 (1993),
no. 2, 581-605.

[27] Swan R.G. A cancellation theorem for projective modules in the metastable range. Invent. Math. 27 (1974)
23-43.

[28] Swan R.G. Serre’s problem. Conference on Commutative Algebra –1975 (Queen’s Univ., Kingston, Ont.,
1975), 1-60. Queen’s Papers on Pure and Applied Math. No. 42, Queen’s Univ., Kingston, Ont., 1975.

[29] Vasconcelos W.V. On local and stable cancellation. An. Acad. Brasil. Ci. 37 (1965) 389-393.

[30] Warfield, R. Genus and cancellation for groups with finite commutator subgroup. J. Pure Appl. Algebra.
6 (1975) 125-132.

[31] Witbooi, P. J. Non-cancellation for certain classes of groups. Comm. Algebra 27 (1999), no. 8, 3639-3646.

[32] Witbooi P. J. Non-unique direct product decompositions of direct powers of certain metacyclic groups.
Comm. Algebra. 28 (2000), no. 5, 2565-2576.

[33] Witbooi, P. J. Generalizing the Hilton-Mislin genus group. J. Algebra 239 (2001), no. 1, 327-339.

Author information
Jules Clement Mba, Department of Mathematics, University of Johannesburg, Kingsway Campus, P.O. Box
524, Auckland Park 2006, South Africa.
E-mail: jmba@uj.ac.za

Received: February 10, 2014.

Accepted: April 6, 2014.


