Negatively Indexed Pell Numbers as the Permanent of Tridiagonal Matrix

Meral Yaşar and Durmuş Bozkurt

Communicated by Faruk Uygul

MSC 2010 Classifications:

Keywords and phrases: Pell numbers, contraction method, Laplace expansion formula.

Abstract. In this paper, we obtain negatively indexed Pell numbers as the permanents of a tridiagonal matrix sequence. We prove an identity for this number sequence by using Laplace expansion formula.

1 Introduction

Pell numbers are defined as

\[P_n = 2P_{n-1} + P_{n-2} , \quad n \geq 2 \]

with the initial conditions \(P_0 = 0 \), \(P_1 = 1 \). The first few Pell numbers are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985. The recurrence relation (1.1) can be used to extend the sequence backward, thus

\[P_{-n} = -2P_{-n+1} + P_{-n+2}. \]

In [1], some relationships between Pell and Perrin numbers and permanents of special Hessenberg matrices are obtained as the determinant of the Hadamard product of two matrices. Some Fibonacci-Hessenberg matrices are derived and using the elementary row operations of the matrices, the Pell and Perrin numbers are obtained in a different way in [2]. In [3], the authors consider the relationship between the generalized Fibonacci numbers and the permanent of a \((0,1)\)-matrix. In [4], the authors develop the relationships between the second order linear recurrences and the permanent and determinants of the tridiagonal matrices.

In [5], an identity of Fibonacci numbers is proved via the determinant of tridiagonal matrix.

Let \(A \) be an \(n \times n \) matrix, \(A([i_1, i_2, \ldots, i_k], [j_1, j_2, \ldots, j_k]) \) be a \(k \times k \) (\(1 \leq k < n \)) submatrix of \(A \) and \(\hat{A}([i_1, i_2, \ldots, i_k], [j_1, j_2, \ldots, j_k]) \) be the \((n-k) \times (n-k)\) submatrix of \(A \) obtained from \(A \) by deleting the rows \(i_1, i_2, \ldots, i_k \) and the columns \(j_1, j_2, \ldots, j_k \). We will call the submatrices \(\hat{A}([i_1, i_2, \ldots, i_k], [j_1, j_2, \ldots, j_k]) \) the corresponding submatrices. The permanent of the matrix \(A \) is

\[\text{per} \ (A) = \sum_{1 \leq i_1, i_2, \ldots, i_k \leq n} \text{per} \ (A([i_1, i_2, \ldots, i_k], [j_1, j_2, \ldots, j_k])) \]

The expansion of the permanent in (1.3) is called the Laplace expansion by rows \(i_1, i_2, \ldots, i_k \). [6].

Let \(A = [a_{ij}] \) be an \(m \times n \) matrix with row vectors \(r_1, r_2, \ldots, r_m \). We call \(A \) contractible on column \(k \), if column \(k \) contains exactly two nonzero elements. Suppose that \(A \) is contractible on column \(k \) with \(a_{ik} \neq 0 \neq a_{jk} \) and \(i \neq j \). Then the \((m-1) \times (n-1)\) matrix \(A_{ij} : k \) obtained from \(A \) replacing row \(i \) by \(a_{jk} r_i + a_{ik} r_j \) and deleting row \(j \) and column \(k \) is called the contraction of \(A \) on column \(k \) relative to rows \(i \) and \(j \). If \(A \) is contractible on row \(k \) with \(a_{ki} \neq 0 \neq a_{kj} \) and \(i \neq j \), then
the matrix $A_{k;i,j} = \left[A^T_{ij;k} \right]^T$ is called the contraction of A on row k relative to columns i and j [7].

In this paper, we obtain the permanents of $n \times n$ square tridiagonal matrix depending on P_{-n} negatively indexed Pell numbers by using contraction method. The calculation of contraction will be on the first column. Then we give a proof of an identity for negatively indexed Pell numbers using Laplace expansion formula.

2 Main Result

Theorem 2.1. Let A_n be an $n \times n$ tridiagonal matrix as in the following:

$$A_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & 1 & -2 \\ 0 & \cdots & 0 & 1 & -2 \end{bmatrix}.$$

Then the following equality holds

$$\text{per} (A_n) = P_{-n}. \tag{2.1}$$

Proof. The contraction method can be applied the matrix A_n on the second column. Let A^1_n be the kth contraction of A_n for $1 \leq k \leq n - 3$. For $k = 1$ the first contraction of A_n is

$$A^1_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & P_{-3} & P_{-2} \\ & 1 & -2 & 1 \\ & & 1 & \ddots \\ & & & \ddots & 1 \\ & & & & 1 & -2 \end{bmatrix}.$$

For $k = 2$ the second contraction can be found as in the following by using the contraction method according to the second column of A^1_n:

$$A^2_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & P_{-4} & P_{-3} \\ & -1 & -2 & 1 \\ & & 1 & \ddots \\ & & & \ddots & 1 \\ & & & & 1 & -2 \end{bmatrix}.$$

Continuing like this, we have the $(n - 2)^{th}$ contraction as

$$A^{n-2}_n = \begin{bmatrix} 1 & 0 \\ 0 & P_{-n} \end{bmatrix}.$$

then

$$\text{per} (A_n) = \text{per} (A^{n-2}_n) = P_{-n}.$$

So, this shows that equality (2.1) is true. \qed
We prove the identity $P_{-n} = P_{-k}P_{-n+k} + P_{-k+1}P_{-n+k}$ of negatively indexed Pell numbers using the relation between the tridiagonal matrix A_r and Laplace expansion formula given in (1.3). Before proving this identity, we give the following theorem.

Theorem 2.2. The matrix A_n has only k submatrices which are $k \times k$ and for $r = 1, 2, \ldots, k$ the permanent of these submatrices can be obtained as in the following

$$
\text{per} \left(A \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \right) = P_{(k-r+1)}
$$

where $\alpha = [1, 2, \ldots, k]$ and $\beta = [1, \ldots, k-r+1, k-r+3, \ldots, k+1]$.

Proof. We will prove the equality (2.2) using the induction method on k. For $k = 1$ then

$$
\text{per} \left(A \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right) = P_{-1}.
$$

Now, we assume that the equality (2.2) holds for $k = t$ ($t \geq 2$). Then we will show that the equality (2.2) holds for $k = t+1$. So, we devide the $(t+1) \times (t+1)$ submatrix $A \left(\begin{array}{c} [1, \ldots, t+1], [1, \ldots, t-r+2, t-r+4, \ldots, t+2] \end{array} \right)$ into four block matrices as

$$
A \left(\begin{array}{c} [1, \ldots, t+1], [1, \ldots, t-r+2, t-r+4, \ldots, t+2] \end{array} \right) = \begin{bmatrix}
P & R \\
N & M
\end{bmatrix}
$$

where P is $(t-r+2) \times (t-r+2)$ submatrix of A_n, R is $(t-r+2) \times (r-1)$ zero matrix, N is $(r-1) \times (t-r+2)$ matrix as in the following

$$
N = \begin{bmatrix}
0 & \cdots & 0 & 1 \\
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0
\end{bmatrix}
$$

and M is $(r-1) \times (r-1)$ lower triangular matrix as

$$
M = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
-2 & 1 & 0 & & \\
1 & -2 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 1 & -2 & 1
\end{bmatrix}
$$

Using the following fact

$$
\text{per} \left(\begin{bmatrix}
P & R \\
N & M
\end{bmatrix} \right) = \text{per} \left(A \right) \text{per} \left(M - NP^{-1}R \right)
$$

the permanent of the submatrix $A \left(\begin{array}{c} [\alpha_1], [\beta_1] \end{array} \right)$ obtained as

$$
\text{per} \left(A \left(\begin{array}{c} [\alpha_1], [\beta_1] \end{array} \right) \right) = \text{per} \left(A \left([1, \ldots, t-r+2], [1, \ldots, t-r+2] \right) \right) = P_{-(t-r+2)}
$$

where $\alpha_1 = [1, \ldots, t+1]$ and $\beta_1 = [1, \ldots, t-r+2, t-r+4, \ldots, t+2]$.

The permanents of the corresponding submatrices are obtained as

$$
\text{per} \left(A \left(\begin{array}{c} [\alpha], [\beta] \end{array} \right) \right) = \text{per} \left(A[k+1, k+2, \ldots, n], [k-r+2, k+2, k+3, \ldots, n] \right).
$$

But for the reason the first column of $A[k+1, k+2, \ldots, n], [k-r+2, k+2, k+3, \ldots, n]$ is $\begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^T$ for $r = 3, 4, \ldots, k$, all the permanents of the corresponding submatrices are zero except for $r = 1$ and $r = 2$.

Negatively Indexed Pell Numbers · · ·
For \(r = 1 \) the permanent of the corresponding submatrix is
\[
\text{per} \left(\hat{A} \left(\left[1, \ldots, k \right], \left[1, \ldots, k \right] \right) \right) = P_{-(n-k+1)}
\]
and \(r = 2 \) the permanent of the corresponding submatrix is
\[
\text{per} \left(\hat{A} \left(\left[1, \ldots, k \right], \left[1, \ldots, k - 1, k + 1 \right] \right) \right) = P_{-(n-k)}.
\]

Theorem 2.3. For \(1 \leq k \leq n \), the sequence given in (1.2) satisfies the following identity
\[
P_{-n} = P_{-k}P_{-n+k-1} + P_{-k+1}P_{-n+k}.
\] (2.3)

Proof. We obtain the permanent of the matrix \(A_n \) using the first \(k \) rows. We know from Theorem 2 that only the permanents of the corresponding submatrices for \(r = 1 \) and \(r = 2 \) are nonzero. So the permanent of the matrix \(A_n \) is obtained as
\[
\text{per} \left(A_n \right) = P_{-k}P_{-n+k-1} + P_{-k+1}P_{-n+k}.
\]

If we combine the equality (2.1), the proof is completed. \(\square \)

References

Author information

Meral YaÅsr, Department of Mathematics, Nigde University, Turkey.
E-mail: myasar@nigde.edu.tr

DurmuÅs Bozkurt, Department of Mathematics, Selcuk University, Turkey.
E-mail: dbozkurt@selcuk.edu.tr

Received: May 22, 2015.

Accepted: October 21, 2015