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Abstract This paper derives the set-indexing numbers of certain graphs subsequently identi-
fying some set-semigraceful graphs.

1 Introduction

In the mathematical discipline of Graph Theory, labeling of graphs is a mapping that sends
the edges or vertices or both of a graph to the set of numbers or subset of a set under certain
conditions. Ever since the introduction of the concept labeling of graphs, it has been an active
area of research in Graph Theory.

Most graph labelings trace their origin to a paper by Rosa [14]. In 1983, B. D. Acharya [1]
initiated a general study of the labeling of the vertices and edges of a graph using the subset of a
set known as set-valuation of graphs and indicated their potential applications in different areas
of human inquiry. He introduced the concept of set-indexer of a graph and proved that every
graph admits a set-indexer. Acharya also pioneered the notion of set-indexing number of a graph
developing the classes of set-graceful as well as set-semigraceful graphs.

Meanwhile, Acharya and Hegde [5] undertook the study of yet another notion of set-valuation
of graphs called set-sequential labeling as a set analogue of the well known sequential graphs
and obtained some noteworthy results. Following this, Mollard and Payan [13] settled two con-
jectures about set-graceful graphs suggested by Acharya in [1]. Certain necessary conditions for
a graph to have set-graceful and set-sequential labeling were obtained by Hegde in [9]. Acharya
and Hegde [6] in 1999 published a lot of graph labeling problems including certain set-labeling
problems. The survey of Acharya [3] on set-indexers of graphs focussing set-graceful graphs set
a new momentum to this area of study in 2001. Later, many authors have investigated various
aspects of set-valuation of graphs and derived new properties concerning them in [4], [10] and
[15]. Recently, Vijayakumar [21] settled Hegde’s [10] conjecture that every complete bipartite
graph that has a set-graceful labeling is a star. Motivated by this, the authors studied set-indexers
of graphs in [16], [17], [18] and [19].

In continuation of the study on set-indexers, this paper derives the set-indexing numbers of
certain graphs. A relationship among the set-indexing numbers of the wheels, suns and cycles is
established. The study also sheds some light on set-semigraceful graphs and obtains a character-
ization for set-semigraceful double stars.

2 Preliminaries

In this section we include certain definitions and known results needed for the subsequent
development of the study. For a nonempty set X , the set of all subsets of X is denoted by 2X .
We always denote a graph under consideration by G and its vertex and edge sets by V and E
respectively. By G′ ⊆ G we mean G′ is a subgraph of G while G′ ⊂ G we mean G′ is a proper
subgraph of G. The empty graph of order n is denoted by Nn. The order and size of a graph G is
denoted by o(G) and s(G) respectively. The basic notations and definitions in graph theory are
assumed to be familiar to the reader.

Definition 2.1. [2] Let G = (V,E) be a given graph and X be a nonempty set. Then a mapping
f : V → 2X , or f : E → 2X , or f : V ∪ E → 2X is called a set-assignment or set-valuation of
the vertices or edges or both.

Definition 2.2. [2] Let G be a given graph and X be a nonempty set. Then a set-valuation
f : V ∪ E → 2X is a set-indexer of G if

(i) f(u, v) = f(u) ⊕ f(v),∀(u, v) ∈ E, where ‘⊕’ denotes the binary operation of taking the
symmetric difference of the sets in 2X
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(ii) the restriction maps f |V and f |E are both injective.

In this case, X is called an indexing set of G. Clearly a graph can have many indexing sets and
the minimum of the cardinalities of the indexing sets is said to be the set-indexing number of G,
denoted by γ(G). The set-indexing number of trivial graph K1 is defined to be zero.

Theorem 2.3. [2] Every graph has a set-indexer.

Theorem 2.4. [2] If X is an indexing set of G = (V,E). Then

(i) |E| ≤ 2|X| − 1 and

(ii) dlog2(|E|+ 1)e ≤ γ(G) ≤ |V | − 1, where d e is the ceiling function.

Theorem 2.5. [12] For any graph G, dlog2 |V |e ≤ γ(G).

Theorem 2.6. [2] If G′ is a subgraph of G, then γ(G′) ≤ γ(G).

Theorem 2.7. [17] If G is a star graph, then γ(G) = dlog2 o(G)e.

Theorem 2.8. [17] γ(K1,n) = γ(Nn+1).

Theorem 2.9. [17] γ(K2m,n) = m+ l; l = blog2nc+ 1.

Definition 2.10. [2] A graph G is set-graceful if γ(G) = log2(|E| + 1) and the corresponding
set-indexer is called a set-graceful labeling of G.

Theorem 2.11. [13] For any integer n ≥ 2, the cycle C2n−1 is set-graceful.

Theorem 2.12. [18] γ(C4) = 3.

Theorem 2.13. [3] γ(C5) = 4.

Theorem 2.14. [19] For k ≥ 7, γ(Ck) =

{
n; k = 2n − 1

n+ 1; 2n ≤ k ≤ 2n + 2n−1 − 2.

Definition 2.15. [7] An n-sun is a graph that consists of a cycle Cn and an edge terminating in a
vertex of degree one attached to each vertex of Cn.

3 Set-Indexing Numbers

This section focusses mainly on the set-indexing numbers of certain suns, cycles and wheels.
Upper bounds for the set-indexing numbers of complete k-partite graphs have been derived.

Theorem 3.1. If m is not a power of 2, then γ(Km,n) ≤ dlog2 me+ dlog2 ne.

Proof. Let V = {u1, . . . , um, v1, . . . , vn}; d(ui) = n for 1 ≤ i ≤ m and d(vj) =m for 1 ≤ j ≤ n.
Consider the sets X = {x1, . . . , xp} and Y = {y1, . . . , yq} where p = dlog2 me and q = dlog2 ne.
Assigning any m distinct nonempty subsets of X to the vertices u1, . . . , um and any n distinct
subsets of Y to the vertices v1, . . . , vn in any order we get a set-indexer of Km,n with indexing
set X ∪ Y . Consequently, γ(Km,n) ≤ p+ q.

Remark 3.2. If both m and n are powers of 2, the above upper bound need not be true. For
example, take Km,n = K4,16. Then, 6 = dlog2 me + dlog2 ne < γ(Km,n) = 7, by Theorem 2.9.

Theorem 3.3. γ(Kn1,...,nk
) ≤

k∑
i=1

dlog2 nie + k − 1.

Proof. Let V = V1 ∪ . . . ∪ Vk be a partition of the vertex set of Kn1,...,nk
. Let p1 = dlog2 n1e

and pi = dlog2 nie + 1 for 2 ≤ i ≤ k. Let X1, . . ., Xk be any k disjoint sets with |Xi| = pi
for 1 ≤ i ≤ k. Now, assign the vertices in V1 with distinct subsets of X1 and the vertices in
Vi; 2 ≤ i ≤ k with distinct nonempty subsets of Xi, in any order. This gives a set-indexer for

Kn1,...,nk
so that γ(Kn1,...,nk

) ≤
k∑

i=1

dlog2 nie + k − 1.

The upper bound for the set-indexing number of the cycles C2n−2; n ≥ 3 given by the
following
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Theorem 3.4. [18] For every integer n ≥ 3, γ(C2n−2) ≤ n+ 1

is the best one possible. For, below we prove that all such cycles attain that upper bound.

Theorem 3.5. γ(C2n−2) = n+ 1; n ≥ 3.

Proof. By Theorem 2.4 and Theorem 3.4, n ≤ γ(C2n−2) ≤ n+1 where C2n−2 = (v1, . . ., v2n−2,
v1). Suppose γ(C2n−2) = n and let f be the corresponding set-indexer with indexing set X . Let
f(vi) = Ai; 1 ≤ i ≤ 2n − 2. Then the edge labels given by A1 ⊕ A2, A2 ⊕ A3, . . ., A2n−2 ⊕ A1
are 2n−2 distinct nonempty subsets of X . Hence, there exists exactly one nonempty subset say,
B of X such that B /∈ f(E). Now,
(A1 ⊕A2)⊕ (A2 ⊕A3)⊕ . . .⊕ (A2n−2 ⊕A1)⊕B = ∅ ⇒ B = ∅ – a contradiction.
Consequently, γ(C2n−2) = n+ 1, as required.

Now for the sake of completeness, we combine certain known results on the set-indexing
numbers of cycles below:

Theorem 3.6. For k ≥ 7, γ(Ck)=

{
n ; k = 2n − 1
n+ 1; k = 2n − 2 or 2n ≤ k ≤ 2n + 2n−1 − 2

.

Theorem 3.7. [18] If G is the (2n − 1)-sun; n ≥ 2, then γ(G) = n + 1.

Theorem 3.8. [18] For n ≥ 2, γ(2n−sun) = n+ 2.

Theorem 3.9. γ(5−sun) = 4.

Proof. The set-valuation given in Figure 1 together with Theorem 2.5 shows that γ(5−sun) =
4.
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Figure 1: An optimal set-indexer of the 5-sun

Theorem 3.10. [18] If G is the (2n + 1)-sun; n ≥ 3, then γ(G) = n+ 2.

Theorem 3.11. γ(6−sun) = 4.

Proof. The Figure 2 and Theorem 2.4 account for the proof.
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Figure 2: An optimal set-indexer of the 6-sun

Theorem 3.12. [18] If G is the (2n + 2)-sun; n ≥ 3, then γ(G) = n+ 2.

For the convenience of future references, the results of Theorem 3.7, Theorem 3.8, Theorem
3.9, Theorem 3.10, Theorem 3.11 and Theorem 3.12 are summarized as follows:

Theorem 3.13. γ(k−sun) =

{
n+ 1 if k = 2n − 1; n ≥ 2

n+ 2 if k = 2n, 2n + 1, 2n + 2; n ≥ 2
.

Definition 3.14. [11] The wheel graph with n spokes,Wn, is the graph that consists of an n-cycle
and one additional vertex, say u, that is adjacent to all the vertices of the cycle.

Theorem 3.15. [18] The set-indexing number of the wheel W2n−1; n ≥ 2 is n + 1.

Theorem 3.16. [18] For every integer n ≥ 2, the set-indexing number of the wheel W2n is n+2.

Theorem 3.17. γ(W5) = 4.

Proof. The set-valuation of W5 given in Figure 3 together with Theorem 2.4 shows that γ(W5)
= 4.
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Figure 3: An optimal set-indexer of the wheel W5
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Theorem 3.18. [18] The set-indexing number of the wheel W2n+1; n ≥ 3 is n+ 2.

Theorem 3.19. The set-indexing number of the wheel W6 is 4.

Proof. In the light of Theorem 2.4, the proof is evident from the set-indexer given in Figure
4.
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Figure 4: An optimal set-indexer of the wheel W6
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Theorem 3.20. [18] The set-indexing number of the wheel W2n+2; n ≥ 3 is n+ 2.

Now we summarize the results of Theorem 3.15, Theorem 3.16, Theorem 3.17, Theorem
3.18, Theorem 3.19 and Theorem 3.20 for the convenience of future references.

Theorem 3.21.

γ(Wk) =

{
n+ 1 if k = 2n − 1; n ≥ 2

n+ 2 if k = 2n, 2n + 1, 2n + 2; n ≥ 2

The following Theorem shows that the set-indexing number ofWn is either γ(Cn) or γ(Cn)+
1.

Theorem 3.22. γ(Cn) ≤ γ(Wn) ≤ γ(Cn) + 1.

Proof. Let f be any set-indexer of Cn with indexing set X . Then f can be extended to a set-
indexer g of Wn with indexing set X ∪ {a}; a /∈ X defined as follows:
g(v) = f(v) for all v ∈ V (Cn) and g(w) = {a}; V (K1) = {w}.

Hence, γ(Wn) ≤ γ(Cn)+1. Since Cn ⊂Wn, the first inequality follows from Theorem 2.6.

Similarly, the set-indexing number of n-sun is also either γ(Cn) or
γ(Cn) + 1.

Theorem 3.23. γ(Cn) ≤ γ(n−sun) ≤ γ(Cn) + 1.

Proof. Let the n-sun G contain the cycle Cn = (v1, . . . , vn, v1) and {(ui, vi);
i = 1, . . . , n} be the pendant edges of G. Let f be any set-indexer of Cn with indexing set X .
Now we can define a set-indexer g of G with indexing set X ∪ {a}; a /∈ X as follows:

g(vi) = f(vi); i ∈ {1, . . . , n} and
g(ui) = f(vi−1) ∪ {a}; i ∈ {1, . . . , n}, v0 = vn.

Now by Theorem 2.6, γ(Cn) ≤ γ(n− sun) ≤ γ(Cn) + 1.

Thus, γ(Cn) ≤ γ(Wn), γ(n−sun) ≤ γ(Cn) + 1 and it has been already proved that, γ(Wk)
= γ(k−sun) = γ(Ck) + 1 where k = 2n − 1, 2n, 2n + 1, 2n + 2 and n ≥ 3. Also, γ(Wk) =
γ(k−sun) = γ(Ck) + 1 where k = 3, 4 and γ(Wk) = γ(k−sun) = γ(Ck) where k = 5, 6.

In the light of the above observations we put forward the following:

Conjecture 3.24. γ(Wn) = γ(n−sun); n ≥ 3.
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4 Set-semigraceful Graphs

In 1986, B. D. Acharya introduced the concept of set-semigraceful graphs:

Definition 4.1. [2] A graph G is said to be set-semigraceful if γ(G) = dlog2(|E|+ 1)e.

Obviously, all set-graceful graphs are set-semigraceful.
By Theorem 3.6, it can be easily seen that, the cycles Ck; 2n−1 ≤ k ≤ 2n+2n−1−2, n ≥ 3

are set-semigraceful while by Theorem 3.5, C2n−2; n ≥ 3 are not set-semigraceful. Further,
C3 and C4 are set-semigraceful by Theorem 2.11 and Theorem 2.12 respectively. But C5 is not
set-semigraceful by Theorem 2.13.

Also set-semigraceful paths have been characterized in [19]:

Theorem 4.2. The paths Pn is set-semigraceful if and only if n 6= 2m; m > 1.

Again by Theorem 3.21, Theorem 3.22 and Theorem 2.14, the wheels Wk; 2n − 1 ≤ k ≤
2n + 2n−1 − 2, n ≥ 2 are set-semigraceful.

Further, the k-suns; 2n−1 ≤ k ≤ 2n+2n−1−2, n ≥ 2 are also set-semigraceful by Theorem
3.13, Theorem 3.23 and Theorem 2.14.

Now we shall look into set-semigraceful double stars.

Definition 4.3. [22] The double star graph ST (m,n) is the graph formed by two stars K1,m and
K1,n by joining their centers by an edge.

Theorem 4.4. [20] For a double star graph ST (m,n) with |V | = 2l; l ≥ 2

γ(ST (m,n)) =

{
l if m is even,
l+ 1 if m is odd.

Theorem 4.5. [20] γ(ST (m,n)) = l+ 1 if 2l < |V | < 2l+1.

Theorem 4.6. A double star is set-semigraceful if its order is not a power of 2.

Proof. Let ST (m,n) be a double star whose order is not a power of 2. Then there exists a
positive integer l ≥ 2 such that 2l < |V | < 2l+1. By Theorem 4.5, γ(ST (m,n)) = dlog2 |V |e
= dlog2(|E|+ 1)e, since ST (m,n) is a tree. Therefore, ST (m,n) is set-semigraceful.

Remark 4.7. The converse of Theorem 4.6 is not true. For example consider the double star
ST (m,n); m = 4 and n = 2. By Theorem 4.4, γ(ST (m,n)) = 3 = dlog2(|E|+ 1)e so that
ST (m,n) is set-semigraceful.

Theorem 4.8. The double star ST (m,n) is set-semigraceful if m is even.

Proof. Since o(ST (m,n)) ≥ 4, there exists a positive integer l ≥ 2 such that 2l ≤ |V | ≤ 2l+1−1.
If |V | = 2l, then by Theorem 4.4, γ(ST (m,n)) = l = dlog2 |V |e = dlog2(|E|+ 1)e so that
ST (m,n) is set-semigraceful. Otherwise, the required result follows from Theorem 4.6.

Remark 4.9. The converse of the above Theorem is not true as the double star ST (5, 7) is
set-semigraceful by Theorem 4.6.

The following theorem characterizes the set-semigraceful double stars.

Theorem 4.10. The double star ST (m,n) is set-semigraceful if and only if either the order is
not a power of 2 or m is even.

Proof. For a double star ST (m,n), suppose the order is a power of 2 and m is odd. Then by
Theorem 4.4, γ(ST (m,n)) = dlog2 |V |e+ 1 = dlog2(|E|+ 1)e+ 1 > dlog2(|E|+ 1)e.
⇒ ST (m,n) is not set-semigraceful. Consequently, if ST (m,n) is set-semigraceful, then either
the order is not a power of 2 or m is even.

The converse part follows from Theorem 4.6 and Theorem 4.8.

The following theorem gives a necessary condition for the set-semigracefulness of a graph.

Theorem 4.11. If G is a (p, q)-graph such that p > 2n > q for some n, then G is not set-
semigraceful.
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Proof. By Theorem 2.5, γ(G) ≥ dlog2 pe
> dlog2(q + 1)e, by hypothesis.

Thus, γ(G) > dlog2(|E|+ 1)e so that G is not set-semigraceful.

Remark 4.12. The above Theorem provides a class of disconnected graphs that are not set-
semigraceful. However, there are disconnected graphs that are not set-semigraceful and do not
belong to the above class. For instance, K8∪K1 andK10∪K1. Further, the converse of Theorem
4.11 is not true as there are infinitely many connected graphs that are not set-semigraceful by
Theorem 4.2.

The following theorem identifies the set-semigraceful spanning subgraphs of stars.

Theorem 4.13. Let G = (V,E) be a spanning subgraph of K1,n; n ≥ 2. Then G is set-
semigraceful if and only if 2dlog2 ne−1 ≤ |E| ≤ 2dlog2 ne − 1.

Proof. Suppose G is set-semigraceful so that γ(G) = dlog2(|E|+ 1)e. By Theorem 2.7 and
Theorem 2.8, dlog2 ne = γ(Nn+1)

≤ γ(G), by Theorem 2.6
≤ γ(K1,n), again by Theorem 2.6
= dlog2 ne, by Theorem 2.7

⇒ dlog2(|E|+ 1)e = dlog2 ne
⇒ 2dlog2 ne−1 < |E|+ 1 ≤ 2dlog2 ne

⇒ 2dlog2 ne−1 ≤ |E| ≤ 2dlog2 ne − 1.
Conversely, suppose 2dlog2 ne−1 ≤ |E| ≤ 2dlog2 ne − 1. By Theorem 2.7 and Theorem 2.8,

dlog2 ne = γ(Nn+1)
≤ γ(G), by Theorem 2.6
≤ γ(K1,n), again by Theorem 2.6
= dlog2 ne, by Theorem 2.7.

But, dlog2(|E|+ 1)e = dlog2 ne = γ(G) so that G is set-semigraceful.
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