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Abstract The paper provides a generalization of the arithmetic-geometric alternate sequence
introduced recently by Rabago [2].

1 Introduction

The natural numbers, usually denoted by N, is given by the sequence 1, 2, 3, 4, 5, 6, 7, . . .. This
type of number sequence is an example of what we call arithmetic sequence. An arithmetic se-
quence is a number sequence in which every term except the first is obtained by adding a fixed
number, called the common difference, to the preceeding term. Another example is the sequence
1, 3, 5, 7, 9, 11, . . . whose common difference is 2. Denote the nth term of the arithmetic se-
quence with first term a and common difference d as an and the sum of the first n terms of the
sequence as Sn. Then, an is define recursively as

a1 = a, an = an−1 + d, (n ≥ 2).

An explicit formula for an is given by

an = a+ (n− 1)d, (n ≥ 2).

The sum Sn is given by
Sn =

n

2
[2a+ (n− 1)d], (n ≥ 1).

Another type of sequence of numbers is the so-called geometric sequence. A geometric
sequence is a number sequence in which every term except the first is obtained by multiplying the
previous term by a constant, called the common ratio. For example, 2, 4, 8, 16, . . . is a geometric
sequence with common ratio 2. Let an denote the nth term of the geometric sequence with first
term a and common ratio r. Then, an is define recursively as

a1 = a, an = an−1 · r, (n ≥ 2).

An explicit formula for an is given by

an = a · rn−1, (n ≥ 2).

The sum Sn is given by

Sn = a
rn − 1
r − 1

, r 6= 1 (n ≥ 1).

In a recent paper, Rabago [2] introduced the concept of arithmetic-geometric alternate se-
quence of numbers as follows:

Definition 1.1. A sequence of numbers {an} is called an arithmetic-geometric alternate sequence
of numbers if the following conditions are satisfied:

(i) for any k ∈ N,
a2k

a2k−1
= r,

(ii) for any k ∈ N, a2k+1 − a2k = d,

where r and d are called the common ratio and common difference of the sequence {an}, re-
spectively.

In this study, we present two types of generalization of the arithmetic-geometric alternate
sequence [2]. We also present in this work an explicit formula for the nth term of the sequence
as well as the sum for the first n terms.
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2 Periodic Arithmetic-Geometric Alternate Sequence

We start off with the definition of what we call periodic sequence of numbers with alternate
common difference and ratio.

Definition 2.1. A sequence of numbers {an} is called a periodic sequence of numbers with
alternate common difference and ratio if for a fixed natural number m the following conditions
are satisfied:

(i) for any k = 1, 2, . . . and for all natural number j ≤ m− 1,

am(k−1)+j+1 − am(k−1)+j = d,

(ii) for any k = 1, 2, . . .,
amk+1

amk
= r.

Clearly, the above definition takes the following form:

a1, a1 + d, a1 + 2d, . . . , a1 + (m− 1)d, (a1 + (m− 1)d)r, (a1 + (m− 1)d)r + d, . . . ,

(a1 + (m− 1)d)r + (m− 1)d, ((a1 + (m− 1)d)r + (m− 1)d)r, . . . (2.1)

From the previous definition we may define m as the period of the sequence and the terms
{a1, a2, . . . , am} can be defined as the elements of the 1st interval (or period) of length m,
{am+1, am+2, . . . , a2m} as the elements of the 2nd interval of length m, and so on, and in gen-
eral, the terms {a(k−1)m+1, a(k−1)m+2, . . . , akm} can be considered as the elements of the k-th
interval of length m. It can be observed easily that for each interval, the terms are in arithmetic
progression with d as the common difference.

Throughout in the paper we denote the greatest integer contained in x as bxc.

Theorem 2.2. Let d and r be any two real numbers such that r 6= 1 and {an} be a periodic
sequence of numbers with alternate common difference d and ratio r. Then, the formula for the
nth term of {an} is given by,

an = a1r
e1 + (m− 1)

(
1− re1

1− r

)
dr + (n− 1−me1)d, (2.2)

where e1 =
⌊
n−1
m

⌋
.

Proof. The formula is clearly true for n ≤ m. We only have to show that the formula is valid
for n > m. To do this, first, we will show that formula (2.2) holds for any fixed natural number
k > 1. We let k be a fixed natural number and p = m(k − 1) + j, where j is a natural number
less than m. Note that ap+1 = ap + d for all j ≤ m− 1. This implies that,

ap = a1r
e1 + (m− 1)

(
1− re1

1− r

)
dr + (p− 1−me1)d+ d

Here, e1 =
⌊
p−1
m

⌋
. Replacing p by m(k − 1) + j, we’ll obtain,

ap = a1r
k−1 + (m− 1)

(
1− rk−1

1− r

)
dr + jd.

Because ⌊
m(k − 1) + j − 1

m

⌋
=

⌊
m(k − 1) + j

m

⌋
,

for all natural number j ≤ m− 1, then

ap+1 = a1r
e0 + (m− 1)

(
1− re0

1− r

)
dr + ((p+ 1)− 1−me0)d,

where e0 =
⌊
(p+1)−1

m

⌋
.
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Now we need to show that amk+1 = amk · r for each interval k. Clearly, amk+1 = amk · r is
true for k = 1. So, we assume that amp+1 = amp · r for some natural number p > 1. Hence,

am(p+1) · r =

(
a1r

p + (m− 1)
(

1− rp

1− r

)
dr + (m(p+ 1)− 1−mp)d

)
· r

= a1r
p+1 + (m− 1)

(
1− rp

1− r

)
dr2 + (m− 1)dr

= a1r
p+1 + (m− 1)

(
1− rp+1

1− r

)
dr

= am(p+1)+1,

proving the theorem.

Lemma 2.3. For any integer m > 0 and natural number n,

n∑
i=1

⌊
i

m

⌋
=
⌊ n
m

⌋(
n+ 1− m

2

⌊
n+m

m

⌋)
.

Lemma 2.4. For any integer m > 0 and natural number n,

n∑
i=1

rei = m− 1 + rm

(
1− ren−1

1− r

)
+ (n+ 1−men) r

en , (r 6= 1),

where ei =
⌊

i
m

⌋
.

For the proof of Lemma (2.3) and Lemma (2.4), see [2] and [3], respectively.

Theorem 2.5. The sum of the first n terms of (2.1) is given by

Sn = nM + (a1 −M)Rn +
n(n− 1)d

2
−mdEn, (2.3)

where

M =
(m− 1)dr

1− r

Rn = m− 1 + rm

(
1− ren−1

1− r

)
+ (n−men) r

en ,

en =

⌊
n− 1
m

⌋
,

En =

⌊
n− 1
m

⌋(
n− m

2

⌊
n+m− 1

m

⌋)
.

Proof. Let m > 0 be an integer, r be a real number different from 0 and 1, n a natural number,
and ei =

⌊
i−1
m

⌋
. Let {an} be a sequence of the form as in (2.1). Then,

n∑
i=1

ai =
n∑

i=1

(
a1r

ei + (m− 1)
(

1− rei

1− r

)
dr + (i− 1−mei)d

)

=
n(m− 1)dr

1− r
+

(
a1 −

(m− 1)dr
1− r

) n∑
i=1

rei +
n(n− 1)d

2
−md

n∑
i=1

ei

and by Lemma (2.3) and Lemma (2.4), conclusion follows.

We end this section with the following remark.

Remark 2.6. We note that by letting m → ∞ in (2.2), we’ll obtain the explicit formula for
the usual arithmetic sequence of numbers with common difference d. Also, one may verify that
Rn → n as m → ∞ and that the formula for the sum of n terms Sn given by (2.3) in Theorem
(2.5) will approach a1n+ n(n−1)

2 d as m→∞.
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3 Periodic Geometric-Arithmetic Alternate Sequence

In this section, we present another generalization of arithmetic-geometric sequence with the fol-
lowing definition of a periodic sequence of numbers with alternate common ratio and difference.

Definition 3.1. A sequence of numbers {an} is called a periodic sequence of numbers with al-
ternate common ratio r and difference d if for a fixed natural number m the following conditions
are satisfied:

(i) for any k = 1, 2, . . . and for all natural number j ≤ m− 1,
am(k−1)+j+1

am(k−1)+j

= r,

(ii) for any k = 1, 2, . . ., amk+1 − amk = d.

It can be seen easily that the number sequence {an} has the following form:

a1, a1r, a1r
2, . . . , a1r

m−1, a1r
m−1 + d, (a1r

m−1 + d)r, (a1r
m−1 + d)r2, . . . ,

(a1r
m−1 + d)rm−1 + d, ((a1r

m−1 + d)rm−1 + d)r, . . . (3.1)

Here we say that the terms {a1, a2, . . . , am} belong to the 1st interval of length m, {am+1, am+2, . . . , a2m}
belong to the 2nd interval of length m, and so on, and in general, the terms {a(k−1)m+1, a(k−1)m+2, . . . , akm}
belong to the k-th interval of length m. Note that for each interval, the terms are in geometric
progression with r as the common ratio.

Theorem 3.2. Let d and r be any two real numbers such that r 6= 1 and {an} be a periodic
sequence of numbers with alternate common ratio r and difference d. Then, the formula for the
nth term of {an} is given by,

an = a1r
n−1−e1 + d

(
1− (rm−1)e1

1− rm−1

)
rn−1−me1 , (3.2)

where e1 =
⌊
n−1
m

⌋
.

Proof. Obviously formula (3.2) is valid for every natural number n ≤ m. We only need to
verify the validity of the formula for n > m. To do this, we first show that for every interval
k = 1, 2, . . ., the formula is true and then, we show that for every k, amk+1 = amk + d.

Now, let p = m(k− 1)+ j with k fixed then, ap+1 = ap · r for all natural number j ≤ m− 1.
Hence,

ap+1 =

(
a1r

p−1−e1 + d

(
1− (rm−1)e1

1− rm−1

)
rp−1−me1

)
· r,

where e1 =
⌊
p−1
m

⌋
. Simplifying and noting that⌊

m(k − 1) + j − 1
m

⌋
=

⌊
m(k − 1) + j

m

⌋
,

for all natural number j ≤ m− 1, we obtain

ap+1 = a1r
(p+1)−1−e0 + d

(
1− (rm−1)e0

1− rm−1

)
r(p+1)−1−me0 ,

where e0 =
⌊
(p+1)−1

m

⌋
. On the other hand, it can be shown easily that amk+1 = amk + d is true

for k = 1. So, we assume that amp+1 = amp + d for some natural number p > 1. This implies
that,

am(p+1) + d = a1r
m(p+1)−1−e1 + d

(
1− (rm−1)e1

1− rm−1

)
rm(p+1)−1−me1 + d

where e1 =
⌊
m(p+1)−1

m

⌋
. But,

⌊
m(p+1)−1

m

⌋
= p, then

am(p+1) + d = a1r
m(p+1)−1−p + d

(
1− (rm−1)p

1− rm−1

)
rm(p+1)−1−mp + d

= a1r
(m−1)(p+1) + d

{(
1− (rm−1)p

1− rm−1

)
rm−1 + 1

}
= a1r

(m−1)(p+1) + d

(
1− (rm−1)p+1

1− rm−1

)
= am(p+1)+1.
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This proves the theorem.

Similar to what we remarked in the previous section, we can notice easily that formula (3.2)
will approach the form a1r

n−1 as m → ∞. That is, we’ll obtain the explicit formula for the
usual geometric sequence of numbers with common ratio r.

Lemma 3.3. Let R be the sum
n∑

i=1

ri−1−ei , r 6= 0, 1,

where ei =
⌊
i−1
m

⌋
. Then, for any natural numbers m and n,

R =

(
1− rm

1− r

)(
1− (rm−1)p

1− rm−1

)
+

1
rp

(
1− rn−mp

1− r

)
, (3.3)

where p =
⌊
n−1
m

⌋
.

Proof. Let m > 0 be an integer, r be a real number different from 0 and 1, n a natural number,
and p =

⌊
n−1
m

⌋
. Then,

n∑
i=1

ri−1−ei =
n∑

i=1

ri−1
(

1
r

)b i−1
m c

=

{
m∑
i=1

ri−1 +

(
1
r

) 2m∑
i=m+1

ri−1 +

(
1
r

)2 3m∑
i=2m+1

ri−1 + . . .

+

(
1
r

)p−1 mp∑
i=(p−1)m+1

ri−1

+

(
1
r

)p n∑
i=mp+1

ri−1

=

{
m∑
i=1

ri−1 +
(
rm−1) m∑

i=1

ri−1 +
(
rm−1)2

m∑
i=1

ri−1 + . . .

+
(
rm−1)p−1

m∑
i=1

ri−1

}
+

1
rp

n−mp∑
i=1

ri−1

=

(
1− rm

1− r

) p∑
j=1

(rm−1)j−1 +
1
rp

n−mp∑
i=1

ri−1

=

(
1− rm

1− r

)(
1− (rm−1)p

1− rm−1

)
+

1
rp

(
1− rn−mp

1− r

)
.

Lemma 3.4. Let R̄ be the sum
n∑

i=1

ri−1−mei , r 6= 0, 1,

where ei =
⌊
i−1
m

⌋
. Then, for any natural numbers m and n,

R̄ =

⌊
n− 1
m

⌋(
1− rm

1− r

)
+

(
1− rn−mp

1− r

)
, (3.4)

where p =
⌊
n−1
m

⌋
.

We omit the proof since it similar on how we prove (3.3).

Theorem 3.5. The sum of the first n terms of (3.1) is given by

Sn =

(
a1 −

d

1− rm−1

)
R+

(
d

1− rm−1

)
R̄, (3.5)

where R and R̄ are given by equations (3.3) and (3.4), respectively.
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Proof. Let ei =
⌊
i−1
m

⌋
n∑

i=1

ai =
n∑

i=1

(
a1r

i−1−ei + d

(
1− (rm−1)ei

1− rm−1

)
ri−1−mei

)

=

(
a1 −

d

1− rm−1

) n∑
i=1

ri−1−ei +

(
d

1− rm−1

) n∑
i=1

ri−1−mei

, and by Lemma (3.3) and Lemma (3.4), conclusion follows.

Note that the formula given by (3.5) will approach the expression of the form a1

(
1−rn

1−r

)
as

m→∞ because R→ 1−rn

1−r as m→∞.
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