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Abstract. A module is called an extending (or CS) module if every submodule is essential
in a direct summand of the module. In this survey, we consider various generalizations of the
extending property that the authors have developed over the last 25 years. To this end, we provide
results, examples, applications, and open problems to motivate further interest and research on
the extending condition and related concepts. Our generalizations make it clear how much of the
extending condition is maintained in various closure operations.

Introduction

All rings are associative with unity and all modules are unital.
Recall a module is called an extending module if every submodule is essential in a direct

summand of the module. This condition was identified by Utumi as the C1 condition in his
work on continuous and self-injective rings in the 1960’s [36] . The importance of this condition
is due, at least in part, to the fact that it is a common generalization of the injective condition
and the semisimple condition on modules. The extending condition is also known as the CS-
condition. Since the 1960’s this condition has been developed in numerous papers and in at least
3 research monographs [24], [20], and [15].

In this survey, we focus on various generalizations of the extending property that the au-
thors have developed over the last 25 years. We give results, examples, applications, and open
problems. Unfortunately, the class of extending modules lacks closure with respect to direct
sums, direct products, submodules, homomorphic images, extensions and essential extensions.
The class of right extending rings lacks closure with respect to full and upper triangular matrix
rings, trivial extensions, generalized triangular matrix rings, homomorphic images, and polyno-
mial rings. There are at least two ways to overcome these obstructions to the usefulness of the
extending property:

(1) adjoin additional conditions on the module to obtain the desired closure properties; or

(2) generalize or weaken the extending condition to obtain the desired closure properties.

Herein we consider way (2) to obtain closure properties. Thus our generalizations answer the
question : "How much of the extending condition is maintained in various closure operations?"
The generalized extending properties of interest in this paper are :

(1) M is G-extending if for each X a submodule of M , there exists a direct summand D of M
such that X ∩D is essential in both X and D.

(2) M is C11 if each submodule has at least one complement which is a direct summand.

(3) M is PI-extending if each projection invariant submodule is essential in a direct summand
of M .

(4) M is ( strongly ) FI-extending if each fully invariant submodule is essential in a ( fully
invariant ) direct summand of M .

These conditions range from stronger to weaker:

extending =⇒ G − extending =⇒ C11 =⇒ PI − extending

=⇒ FI − extending and strongly FI − extending =⇒ FI − extending.
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These implications are, in general, irreversible:

(a) G − extending 6⇒ extending: The ring T2(Z4) is right G − extending but not right extend-
ing.

(b) C11 6⇒ G − extending: The ring T2(Z) is right C11 but not right G-extending.

(c) PI − extending 6⇒ C11: This is only a conjecture by the authors at the present time.

(d) FI − extending 6⇒ PI − extending: Every prime ring is strongly FI-extending, however
the free ring, Z < x1, x2, · · · >, in 2 or more indeterminates is right strongly FI-extending
domain but not right PI-extending.

There are at least two conditions on a module M for which

extending ⇐⇒ G − extending ⇐⇒ C11 ⇐⇒ PI − extending :

(1) M is indecomposable.

(2) End(MR) is Abelian (i.e., every idempotent is central) and for each submodule X of M ,
X =

∑
i∈I

hi(M) where hi ∈ End(MR).

At the end of the paper, we briefly discuss a recent paper which investigates the C−extending
condition. This condition targets a designated subset C of submodules (e.g., the projective sub-
modules) of a module for the extending condition. Moreover, this condition abstracts several of
the aforementioned generalized extending conditions.

This survey is not a comprehensive listing of results, examples, and applications of general-
ized extending properties. Its purpose is to generate further interest in various generalizations of
the extending condition. Therefore readers are encouraged to read the papers in the references as
well as the forthcoming book [32], which contains a more comprehensive and detailed coverage
of this topic.

Let R be a ring and M a right R-module. If X ⊆ M , then X ≤ M , X ≤ess M , X E M ,
Soc(M), Z(M), Z2(M), J(M), E(M), Ẽ(M) and End(MR) denote X is a submodule of M ,
X is an essential submodule of M , X is a fully invariant submodule of M , the socle of M , the
singular submodule of M , the second singular submodule of M , the Jacobson radical of M , the
injective hull of M , the rational hull of M , and the ring of endomorphisms of M , respectively.
For R, Tm(R) and Matm(R) symbolize the ring of m-by-m upper triangular matrices over R,
and the ring of m-by-m matrices overR. Z and Zm will stand for ring of integers and the quotient
module Z/Zm, respectively. A module is called UC if every submodule has a unique closure
[28]. A module is called polyform if every essential submodule is dense [20]. A module is called
strongly bounded if every nonzero submodule contains a nonzero fully invariant submodule [10].
A ring is called quasi-Baer if the left annihilator of every ideal is generated by an idempotent of
the ring [15]. Other terminology and notation can be found in [24], [20] and [15].

1 Goldie Extending Modules

To the authors there are at least two sources for the motivation of the Goldie extending condition.
To understand the first source we need the following definition.

Definition 1.1. Let M be a module. On the set of submodules of M , we define the β relation by
XβY if X ∩Y ≤ess X and X ∩Y ≤ess Y . Equivalently, XβY if X ∩A = 0 implies Y ∩A = 0
and Y ∩B = 0 implies X ∩B = 0, for all A,B ≤M . Note β is an equivalence relation.

This relation is defined in [22] for right ideals of a ring and used later in [28].
So the G-extending condition answers the question: Can one combine the β relation and the

extending condition in a meaningful and fruitful manner?
Another source is the somewhat strange condition in the characterization of the extending

Abelian bounded p-groups as direct sums of Zpn and Zpn+1 . Thus even though A = Z2 ⊕ Z8
is a finite direct sum of uniform (hence extending) Abelian groups, A is not extending. So one
may ask: Is there a generalization of the extending condition which is satisfied by all finitely
generated Abelian groups and all bounded p-groups? In the following results we see that the
aforementioned question has an affirmative answer in the G-extending condition.

Proposition 1.2. [1, Proposition 1.5] Let M be a module. The following conditions are equiva-
lent.
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(i) M is G-extending;

(ii) For each Y ≤ M , there exists X ≤ M and a direct summand D of M such that X ≤ess Y
and X ≤ess D;

(iii) For each Y ≤ M there exists a complement L of Y and a complement K of L such that
Y βK and every homomorphism f : K ⊕ L→M extends to a homomorphism.

Proposition 1.3. [1, Proposition 1.8(ii)] Let M be a UC-module (e.g., M is nonsingular). Then
M is G-extending if and only if M is extending.

The following definition generalizes the notion of a module N being M -injective. This gen-
eralization is extremely useful in analyzing the structure of G-extending modules.

Proposition 1.4. [1, Proposition 1.6] Let M be a module and consider the following conditions:

(i) M is extending;

(ii) M is G-extending;

(iii) M has C11;

(iv) M is FI-extending.
Then (i)⇒ (ii)⇒ (iii)⇒ (iv). In general, the reverse implications do not hold.

Definition 1.5. [1, Definition 2.1] Let N and M be modules. We say that N is M -ejective if, for
each K ≤ M and each homomorphism f : K → N , there exists a homomorphism f̄ : M → N
and a X ≤ess K such that f̄(x) = f(x), for all x ∈ X .

Proposition 1.6. [1, Proposition 2.2] Let ρ be a left exact preradical and M =M1 ⊕M2, where
ρ(M) ≤ess M2. Then M1 is M2-ejective.

Theorem 1.7. [1, Theorem 2.7] Let M1 and M2 be modules such that M =M1⊕M2. Then M1
is M2-ejective if and only if for every K ≤M such that K ∩M1 = 0, there exists M3 ≤M such
that M =M1 ⊕M3 and K ∩M3 ≤ess K.

From Proposition 1.3, the extending and G-extending conditions coincide on nonsingular
modules. Since the ring R = T2(Z) is nonsingular but neither left nor right extending, it is
neither left nor right G-extending. However RR is a direct sum of two uniform submodules.
So the class of G-extending modules is not closed under direct sums. Moreover, it is an open
question whether or not the class of G-extending modules is closed under direct summands.
The next two theorems and corollaries provide some conditions which ensure closure of the
G-extending class of modules under direct sums and/or direct summands.

Theorem 1.8. [1, Corollary 3.2] Let M =
n⊕

i=1
Mi be a finite direct sum.

(i) If Mi is Mj-ejective for all j > i and each Mi is G-extending, then M is G-extending.

(ii) If all the Mi are relatively injective and M is G-extending, then each Mi is G-extending.

Theorem 1.9. [1, Theorem 3.7] Let K be a projection invariant submodule of M .

(i) If M is G-extending, there exists M1,M2 ≤M such that M =M1 ⊕M2 and K ≤ess M2.

(ii) If M is G-extending and K has a unique essential closure, then there exists M1,M2 ≤ M
such that M =M1 ⊕M2, K ≤ess M2, and M1 and M2 are G-extending.

(iii) If M = M1 ⊕M2, where M1 and M2 are G-extending and ρ(M) ≤ess M2, for some left
exact preradical ρ, then M is G-extending.

Corollary 1.10. [1, Corollary 3.8] If M is G-extending and M =
⊕
i∈I

Mi, where each Mi is

projection invariant, then each Mi is G-extending.

Corollary 1.11. [1, Corollary 3.10] Let ρ be the radical for a stable hereditary torsion theory
(e.g., ρ = Z2). Then a module M is G-extending if and only if M = M1 ⊕M2, where M1 and
M2 are G-extending and M2 = ρ(M).

The following result characterizes the G-extending Abelian groups. This result has been
extended to principal ideal domains and partially extended to Dedekind domains in [2].
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Theorem 1.12. [1, Theorem 3.15] The following conditions are equivalent for an Abelian group
A:

(i) A is G-extending;

(ii) Every pure subgroup of A is a direct summand;

(iii) A = D ⊕ T ⊕ F , where D is a divisible group, T is a reduced torsion group each of whose
p-components, Tp, is a bounded p-group and F is a direct sum of a finite number of copies
of a fixed subgroup X of rational numbers.

Thus every finitely generated Abelian group and every bounded Abelian group are G-extending.

Theorem 1.13. [38, Theorem 2.1] Let M be a G-extending module satisfying C3. Then every
direct summand of M is G-extending.

The next theorem and corollary consider conditions which ensure that a G-extending module
is a direct sum of uniform modules.

Theorem 1.14. [1, Theorem 4.2] LetR be a ring and letM be anR-module such thatR satisfies
the ACC on right ideals of the form r(m), where m ∈M . Then:

(i) If M is G-extending, then for each m ∈ M such that r(m) is maximal in {r(x) | 0 6=
x ∈M}, there exists a primitive idempotent e ∈ End(MR) with mRβeM ;

(ii) If every direct summand of M is G-extending, then mR is uniform for each m ∈ M such
that r(m) is maximal in {r(x) | 0 6= x ∈M}. Hence any direct summand ofM contains
a uniform direct summand;

(iii) If M is G-extending and has SIP or satisfies C3, then M is a direct sum of uniform sub-
modules.

Corollary 1.15. [1, Corollary 4.4] For any ring R, any locally Noetherian G-extending module
which has SIP or satisfies C3 is a direct sum of uniform submodules.

Our next result and example show that Mod − R has a minimal cogenerator which is G-
extending and strongly bounded, but, in general, it is not extending. Recall that a module is
strongly bounded if every nonzero submodule contains a nonzero fully invariant submodule.

Theorem 1.16. [1, Theorem 4.6 (ii)] Let {Xi | i ∈ I} be a set of representatives of the iso-
morphism classes of all simple R-modules, and C =

⊕
i∈I

E(Xi). Then C is G-extending. More-

over, every minimal cogenerator and every minimal injective cogenerator is strongly bounded.

Example 1.17. [1, Example 4.7] There exists rings R such that C is not extending, where C is
as in Theorem 1.16. Osofsky [27] indicates that if C is quasi-injective, then C is the unique (up
to isomorphism) minimal cogenerator of Mod−R. She then produces several rings for which C
is not the unique (up to isomorphism) cogenerator. Hence for such rings C is not quasi-injective.
By [20, Corollary 8.10], C is not uniform-extending (hence not extending) for these rings.

The remaining results of this section focus on G-extending rings.

Theorem 1.18. [4, Theorem 1] Let S be a right essential overring of R.

(i) If RR is G-extending, then SR and SS are G-extending;

(ii) If S is a subring of Q(R), then SR is G-extending if and only if SS is G-extending.

For the remaining results in this section, T denotes the generalized triangular matrix ring[
R M

0 S

]
, where R and S are rings and M is an (R,S)-bimodule.

Theorem 1.19. [3, Theorem 2.6] TT is G-extending if and only if all of the following conditions
are satisfied.

1. If DS is a direct summand of MS , then there is an f = f2 ∈ R such that DSβfMS ;

2. MS and SS are G-extending;

3. MS is SS-ejective;

4. Let A = `R(M). There exists a = a2 ∈ R such that aR = A and aRR is G-extending.
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The following corollary generalizes one of the main results of [31, Theorem 3.4]

Corollary 1.20. [3, Corollary 2.7] TT is nonsingular and extending if and only if all of the
following conditions are satisfied.

1. For every complement K in MS , there exists f = f2 ∈ R such that K = fM ;

2. SS is nonsingular and extending;

3. MS is nonsingular and injective;

4. Let A = `R(M). There exists a = a2 ∈ R such that aR = A and aRR is extending;

5. {c ∈ R | cJ = 0, for some JS ≤ess MS} ∩ {c ∈ R | cK = 0, for some KR ≤ess

AR} = 0

Corollary 1.21. [3, Corollary 2.8] Let W be a ring with unity.

1. T2(W ) is right G-extending if and only if W is right G-extending and WW is WW -ejective.

2. For n > 2, Tn(W ) is right G-extending if and only ifW is right G-extending and cTn−1(W )
is Tn−1(W )-ejective, where c ∈ Tn−1(W ) with 1 in the (1, 1)-position and zero elsewhere.

3. If W is right selfinjective, then Tn(W ) is right G-extending for all n > 0.

Example 1.22. [3, Example 2.9]

(i) Let S be any commutative subdirectly ring. Then S is extending and by [1, Corollary 2.5],
S-ejective. Therefore, T2(S) is right G-extending by Corollary 1.21(1). Since there exists
commutative subdirectly irreducible rings that are not selfinjective [1, Example 2.6 (ii) ],
the converse of Corollary 1.21(3) does not hold.

(ii) There exists selfinjective rings S such that T2(S) is not right extending. Let S = D/Mn,
where D is a Dedekind domain and M is a maximal ideal of D. By Corollary 1.21, T2(S)
is right G-extending. For S = Zpn , T2(S) is not extending for n > 1. To see this, note that

the right ideal generated by

[
0 q̄

0 p̄

]
, where q is a prime such that q 6= p and q̄, p̄ ∈ S,

is not essential in an idempotent generated right ideal of T2(S). Note that D/Mn is also a
commutative subdirectly irreducible ring.

(iii) Let R = A ⊕ E, where A and E are rings such that AA is G-extending, EE is injective,
M = E E R, and S = E(the ring). Then, by Theorem 1.19, TT is G-extending and
`R(M) = A.

Corollary 1.23. [3, Corollary 2.12] Let S be a Dedekind domain that is not a field, MS a finitely
generated torsion module, and R be a subring of End(MS) such that for each direct summand
DS of MS , there is an f = f2 ∈ R such that DSβfMS (e.g., R = End(MS)). Then TT is
G-extending, but TT is not extending.

Our last example of this section makes a connection with Operator theory.

Example 1.24. [3, Example 2.21] Let S be a commutative AW ∗-algebra, MS a simple module,
and R the field of complex numbers. Then T is a Banach algebra that is right G-extending. If S
is (von Neumann) regular, then MS is injective (since S is a V -ring); so TT is extending. In fact,
TT is extending for all simple M in Mod− S if and only if S is regular.

We note that the β relation can be dualized to a β∗ relation and this allows a dualization of the
G-extending condition to a G∗-lifting condition (equivalently, the H-supplemented condition).
For more details see [8].

2 C11-modules

This section is devoted to deal with the class of modules which satisfy the C11 property. Recall
that C11-modules were defined and developed as a generalization of C1-modules in [29,33], and
then investigated in [17, 30, 34, 35].

Definition 2.1. A module M satisfies C11 if every submodule of M has a complement which is
a direct summand of M ( i.e., for each submodule N of M there exists a direct summand K of
M which is maximal with respect to having zero intersection with N in M ).
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The next lemma characterizes the C11 condition in terms of complement submodules and also
shows that any module with C1 (i.e., extending) satisfies C11.

Lemma 2.2. [29, Proposition 2.3] The following statements are equivalent for a module M .

(i) M has C11.

(ii) For any complement submodule L in M , there exists a direct summand K of M such that
K is a complement of L in M .

(iii) For any submodule N of M , there exists a direct summand K of M such that N ∩K = 0
and N ⊕K is an essential submodule of M .

(iv) For any complement submodule L in M , there exists a direct summand K of M such that
L ∩K = 0 and L⊕K is essential submodule of M .

Any indecomposable module with C11 is uniform. The next theorem and corollary show that
every module which is a direct sum of uniform modules satisfies C11. In particular, for any prime
p, the Z-module M = (Z/Zp)⊕ (Z/Zp3) satisfies C11. However M does not satisfy C1.

Theorem 2.3. [29, Theorem 2.4] Any direct sum of modules with C11 satisfies C11.

Corollary 2.4. [29, Corollary 2.6] Any direct sum of uniform modules satisfies C11.

Our next result shows that the study of modules with C11 reduces to the case of Goldie torsion
modules and nonsingular modules. It is the analogue of [23, Theorem 1].

Theorem 2.5. [29, Theorem 2.7] A module M satisfies C11 if and only if M = Z2(M)⊕K for
some (nonsingular) submodule K of M and Z2(M) and K both satisfy C11.

The following two results consider nonsingular C11-modules. The first result shows that the
study of nonsingular modules satisfying C11 reduces to the case of modules with essential socle
and modules with zero socle.

Lemma 2.6. [29, Lemma 2.8] Let M be a module which satisfies C11. Then M = M1 ⊕M2
where M1 is a submodule of M with essential socle and M2 a submodule of M with zero socle.

Theorem 2.7. [29, Theorem 2.9] A nonsingular module M satisfies C11 if and only if M =
M1 ⊕M2 where M1 is a module satisfying C11 and having essential socle and M2 is a module
satisfying C11 and having zero socle.

Theorem 2.5 and 2.7 raise the following natural question: Let M be a module which satis-
fies C11. Does any direct summand of M satisfy C11? We answer this question negatively by
providing the following counterexample. Incidentally, for more examples, refer to [35].

Example 2.8. [30, Example 4] Let n ≥ 3 be any odd integer. Let R be the real field and S the

polynomial ringR[x1, x2, . . . , xn]. Then the ringR/sS, where s = (
n∑

i=1
x2
i )−1, is a commutative

Noetherian domain. Let MR =
n⊕

i=1
R be a module. Then MR is a C11-module which contains a

direct summand that is not a C11-module.

Our next objective is to give some special cases such that the aforementioned question has a
positive answer. The first result is based on Abelian groups (i.e., Z-modules).

Theorem 2.9. [29, Theorem 5.5] Let M be a Z-module such that M is a direct sum of uniform
modules. Then any direct summand of M is a direct sum of uniform modules.

Proposition 2.10. [29, Proposition 2.11] Let M be a module which satisfies C11. Let N be a
direct summand of M such that M/N is an injective module. Then N satisfies C11.

Theorem 2.11. [29, Theorem 4.3] Let M be a module such that M satisfies C11 and C3. Then
every direct summand of M satisfies C11.

Proposition 2.12. [17, Lemma 2.1] Let M = M1 ⊕M2, where M1 E M . Then M has C11 if
and only if both M1 and M2 have C11.

Theorem 2.13. [30, Theorem 7] Let R be a ring, r a left exact preradical for the category of
right R-modules, and M a right R-module such that r(M) has a unique closure in M . Then M
is a C11-module if and only if M = M1 ⊕M2 is a direct sum of C11-modules M1 and M2 such
that r(M1) is essential in M1 and r(M2) = 0.
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Note that Theorem 2.9 is a corollary of Theorem 2.13 since the socle is a left exact preradical
and nonsingular modules are UC.

Theorem 2.14. [30, Theorem 10] Let M = M1 ⊕ M2 be a C11-module such that for every
direct summand K of M with K ∩M2 = 0, K ⊕M2 is a direct summand of M . Then M1 is a
C11-module.

In the rest of this section, we focus on the transference of the C11 condition from a given
ring or module to various ring or module extensions. To this end, our following results show
that if R is a right C11-ring (i.e., RR is a C11-module), then the ring of column and row finite
matrices of size Γ over R, the ring of m-by-m upper triangular matrices over R, and any right
essential overring T of R (i.e., T is an essential extension of R as an R-module) are all right
C11-rings. For a module M , we obtain that all essential extensions of M satisfying C11 are
essential extensions of C11-modules constructed from M and certain subsets of idempotents of
End(E(M)). Moreover, we show that if M is a C11-module, then the rational hull of M is a
C11-module.

Theorem 2.15. [17, Theorem 3.1] Let R be a right C11-ring. Then

(i) the ring of column and row finite matrices of size Γ over R is a right C11-ring;

(ii) End(FR) is a right C11-ring, where FR is a free right R-module.

Corollary 2.16. [17, Corollary 3.3] Let R be a ring. Then R is a right C11-ring if and only if
Tm(R) is a right C11-ring.

Theorem 2.17. [17, Theorem 3.5] If R is a right C11-ring and T is a right essential overring of
R, then T is a right C11-ring and T has C11 as a right R-module.

Corollary 2.18. [17, Corollary 3.6], [31, Corollary 3.8] If R is a right C11-ring, then Matn(R)
is a right C11-ring, for each positive integer n.

Proposition 2.19. [17, Proposition 3.9] Let K ⊆ {f = f2 ∈ End(E(MR))} such that for
each X ≤ MR there exists k ∈ K such that kE(MR) is a complement of X in E(MR). Let
〈K〉 denote the subring of End(E(MR)) generated by K. Then 〈K〉MR is a C11 submodule of
E(MR) which contains MR.

Proposition 2.20. [17, Proposition 3.11] Assume that MR ≤ NR ≤ E(MR). If NR is C11-
module, then there exists K ⊆ {f = f2 ∈ End(E(MR))} such that for each X ≤ MR there
exists k ∈ K such that kE(MR) is a complement of X in E(MR) and 〈K〉M is C11 submodule
of NR which contains MR.

Corollary 2.21. [17, Corollary 3.14] Let K be a right R-module. If K has C11, then so does the
rational hull, Ẽ(K), of K.

In Osofsky [25, 26], the author poses the open question: If E(RR) has a ring multiplication
which extends its right R-module scalar multiplication, must E(RR) be right self-injective. Our
next result shows that if RR has C11 and E(RR) has such a compatible ring structure, then
E(RR)E(RR) at least satisfies C11.

Corollary 2.22. [17, Corollary 3.7] LetR be a rightC11-ring. IfE(RR) has a ring multiplication
which extends its right R-module scalar multiplication, then E(RR) is a right C11-ring.

Finally we provide necessary and sufficient conditions to make a generalized triangular ma-
trix ring and a trivial extension have the C11 property in our following two results.

Theorem 2.23. [17, Theorem 3.2] For rings S and R, assume that SMR is an (S,R)-bimodule.

Let T =

[
S M

0 R

]
be the corresponding generalized triangular matrix ring. Then T is a right

C11-ring if and only if the following conditions hold.

(i) R is a right C11-ring,

(ii) For any XS ≤ SS and NR ≤ MR such that XM ⊆ N there exists e = e2 ∈ S such that
eMR is a complement of NR in MR and eS ∩X = 0; and if YS is a complement of XS in
SS such that eS  Y , then YM * eM .

Proposition 2.24. [17, Proposition 3.4] Assume R is a ring, M is an ideal of R and S = S(R,M)
(i.e., the trivial extension of M by R). If RM is faithful and RR is a C11-module, then SS is a
C11-module.
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3 PI-extending Modules

Observe that the invariance of certain submodules with respect to some subset of endomorphisms
of a module is useful and often related to the extending property. Recall from [21] a submodule
X of M is projection invariant if for each e = e2 ∈ End(MR), eX ⊆ X . This motivates us to
think of extending condition for projection invariant submodules. So we define:

Definition 3.1. A module M is PI-extending if each projection invariant submodule of M is
essential in a direct summand of M .

Obviously extending modules are PI-extending. The next result provides a characterization
of a PI-extending module in terms of lifting homomorphisms and also shows that C11 modules
are PI-extending.

Proposition 3.2. [18, Corollary 3.2] Let M be a module. The following conditions are equiva-
lent.

1. M is PI-extending;

2. Each projection invariant submodule X of M has a complement which is a direct summand
of M ;

3. For each projection invariant submodule X of M , there exists e = e2 ∈ End(E(M)) such
that X ≤ess e(E(M)) and e(M) ≤M ;

4. For each projection invariant submodule X of M , there exists a closed submodule K of
M and a complement L of K in M such that X ≤ess K and every homomorphism f :
L⊕K →M can be lifted to an endomorphism g : M →M .

Proposition 3.3. [18, Proposition 3.8]

(i) Let M be an indecomposable module. Then the following conditions are equivalent.

1. M is uniform,
2. M is extending,
3. M is PI-extending.

(ii) Let M be a module such that End(MR) is Abelian and X ≤ M implies that X =∑
i∈I

hi(M), where each hi ∈ End(MR). Then M is extending if and only if M is PI-

extending. In particular, if M = R is Abelian, then RR is extending if and only if RR is
PI-extending.

(iii) Let M be a distributive module. Then M is extending if and only if M is PI-extending.

From [18, Proposition 3.7], we have that for a module M : C11 ⇒ PI − extending ⇒
FI − extending. The next two results show that the PI-extending condition behaves like the
C11-condition in terms of direct sums and Goldie torsion submodule, respectively.

Theorem 3.4. [18, Corollary 4.11] Let M =
⊕
j∈J

Mj . If each Mj is a PI-extending module,

then M is a PI-extending module.

Theorem 3.5. [18, Corollary 4.15] M is PI-extending if and only if M =M1⊕M2 where each
Mi is PI-extending and M1 = Z2(M).

Our next result provides a characterization of the PI-extending Abelian groups.

Theorem 3.6. [18, Theorem 4.18] Let M be an Abelian group. Then M is PI-extending if and
only if M = D ⊕ T ⊕ F , where D is a divisible group, T is a direct sum of seperable p-groups,
and F is a torsion free group such that each of its projection invariant pure subgroups is a direct
summand.

Note that an indecomposable module is PI-extending if and only if it is uniform. Using
Theorem 3.3, Example 2.9 provides a PI-extending module M which has a direct summand D
such that D is not PI-extending. On the other hand, DR is an essential extension of a direct sum
of uniform modules which is PI-extending by Theorem 3.3. Hence the class of PI-extending
modules is not closed under direct summands and essential extensions. However, the following
results focus on some special cases such that being PI-extending is inherited by direct sum-
mands.
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Proposition 3.7. [18, Corollary 4.14] Let K be a projection invariant submodule of M (resp.,
K E M ) such that K is essentially closed in M . Then M is PI-extending if and only if
M = K ⊕N where K and N are PI-extending (resp., FI-extending).

Proposition 3.8. [18, Corollary 4.15] M is PI-extending (resp., FI-extending) if and only if
M =M1 ⊕M2 where each Mi is PI-extending (resp., FI-extending) and M1 = Z2(M).

Proposition 3.9. [18, Corollary 4.16] Assume thatM is polyform andK is a projection invariant
submodule of M . Then M is PI-extending if and only if M = M1 ⊕M2, where each Mi is
PI-extending and K ≤ess M .

We conclude this section with the following fact which shows that if a module has PI-
extending property so too does its rational hull.

Theorem 3.10. [19, Corollary 2.7] Let M be a module. If M satisfies any of the following
conditions, then so does Ẽ(M)
(1) extending; (2) PI-extending; (3) FI-extending.

4 FI-Extending Modules

An important aspect of the extending condition is that it provides a means to "essentially split-
off" certain types of submodules (i.e., the certain types of submodules are essential in direct
summands). Since many of the most important types of submodules (e.g., Soc(M), J(M),
Z(M), Z2(M), etc.) are fully invariant, it seems that one may be able to obtain many of the
benefits of the extending condition by targeting only the fully invariant submodules with the
extending condition as in the definition of the FI-extending condition. Further support for this
"targeting" comes from the realization that all preradicals, as well as, all submodules of the form
MX where M is a right R-module and X is a right ideal of R are fully invariant. Moreover, the
fully invariant submodules of RR are exactly the ideals of R.

Another motivation for the FI-extending condition is that the class of FI-extending modules
is closed under direct sums. However, it is an open question whether this class is closed under
direct summands, see [7, p.1414]

In this section, we also consider the class of strongly FI-extending modules. This proper
subclass of the class of FI-extending modules includes all polyform (hence nonsingular) FI-
extending modules, it is closed under direct summands, and the strongly FI-extending condition
is a Morita-invariant. Moreover every semiprime ring has a strongly FI-extending hull [12]

Proposition 4.1. [18, Corollary 3.2] Let M be a module. The following conditions are equiva-
lent.

1. M is FI-extending;

2. Each X EM has a complement which is a direct summand of M ;

3. For each X E M , there exists e = e2 ∈ End(E(M)) such that X ≤ess e(E(M)) and
e(M) ≤M ;

4. For each X E M , there exists a closed submodule K of M and a complement L of K in
M such that X ≤ess K and every homomorphism f : L ⊕ K → M can be lifted to an
endomorphism G : M →M .

Proposition 4.2. [7, Proposition 1.2] Let M be a module and X a fully invariant submodule of
M . If M is FI-extending, then X is FI-extending.

Theorem 4.3. [5, Lemma 1.1], [7, Theorem 1.3] LetM =
⊕
i∈I

Xi. If eachXi is an FI-extending

module, then M is an FI-extending module.

As mentioned above, the closure of the FI-extending class of modules under direct sum-
mands is an open question; however this question has an affirmative answer for FI-extending
Abelian groups.

Proposition 4.4. [5, Theorem 3.2] Every direct summand of a group with the FI-extending
property enjoys the FI-extending property.

Proposition 4.5. [7, Proposition 1.10] Let H = End(MR), e = e2 ∈ H , and A E M such that
A ≤ess eM . Then
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(i) (1− e)H(eM) ⊆ Z(M);

(ii) eM + Z(M) EM ;

(iii) If Z2(M) = fM for some f = f2, then eM + Z2(M) = (e + f − fe)M E M and
e+ f − fe ∈ S`(H);

(iv) If Z(M) ⊆ eM , then eM E M . Moreover, if A ≤ess X , then X ⊆ eM . In particular,
Z2(M) ⊆ eM .

Lemma 4.6. [5, Lemma 1.2] If the module M = B ⊕ C has the FI-extending property and B
is a fully invariant direct summand, then both B and C have the FI-extending property.

Our next result generalizes [5, Proposition 3.1] and [7, Propositin 1.11]

Theorem 4.7. [18, Corollary 4.15] M is FI-extending if and only if M =M1⊕M2 where each
Mi is FI-extending and M1 = Z2(M).

For Abelian groups our next two results characterize the FI-extending torsion group and the
torsion-free groups of finite rank.

Theorem 4.8. [5, Theorem 2.3] A torsion group has the FI-extending property if and only if it
is a direct sum of a divisible group and separable p-groups.

Theorem 4.9. [5, Theorem 4.1] A torsion-free group whose quasiendomorphism ring is left or
right Artinian has the FI-extending property if and only if it is a finite direct sum of irreducible
groups.

Proposition 4.10. [10, Proposition 1.5] Let M be a polyform module, then the following con-
ditions are equivalent:

(i) M is FI-extending.

(ii) M is strongly FI-extending.

(iii) Every fully invariant essentially closed submodule of M is a direct summand.

Theorem 4.11. [10, Theorem 2.4] Every direct summand of a strongly FI-extending module is
strongly FI-extending.

Unfortunately, the class of strongly FI-extending modules is not closed under direct sums as
is indicated in the next example.

Example 4.12. [10, Example 3.1] Let R = (

[
Z2 Z2

0 0

]
,Z) denote the Dorroh extension of[

Z2 Z2

0 0

]
by Z. This ring has Z(RR) 6= 0, Z(RR) = 0, R is strongly right bounded and right

FI-extending, but R is neither right extending nor quasi-Baer, nor left FI-extending. Through
calculation it can be shown that every proper direct summand is strongly FI-extending, but R is
not right FI-extending. For more details see [10, pp. 1846-1847].

The next two results provide conditions for a direct sum of modules to be strongly FI-
extending.

Theorem 4.13. [10, Theorem 3.2] Let M =
⊕
i∈I

Ni and let Ni EM for all i. Then M is strongly

FI-extending if and only if Ni is strongly FI-extending for all i ∈ I .

Theorem 4.14. [10, Theorem 3.3] Let M =
⊕
i∈I

Mi, where Mi
∼= Mj , and Mi is strongly

FI-extending for all i, j ∈ I . Then M is strongly FI-extending.

The following result and corollary show that the strongly FI-extending property is a Morita
invariant.

Theorem 4.15. [10, Theorem 4.2] Let R be a right strongly FI-extending ring. Then for any
projective generator P in Mod−R, End(PR) is a right strongly FI-extending.

Corollary 4.16. [10, Corollary 4.3] The right strongly FI-extending property is a Morita invari-
ant.



528 G.F. Birkenmeier, A. Tercan and R. Yaşar

The remaining results are on right (and/or left) FI-extending rings. Recall a module is com-
plement bounded if every nonzero complement contains a nonzero fully invariant submodule.

Theorem 4.17. [7, Theorem 4.7] Consider the following conditions on a ring R.

a) RR is FI-extending;

b) RR is FI-extending;

c) R is quasi-Baer;

d) every ideal is right (left) essential in a direct summand;

e) every ideal which is right (left) essentially closed is a direct summand;

f) RR is quasi-extending;

g) RR is extending;

h) R is Baer.

The following statements hold true for R:

(i) If R is semiprime, then a) through f) are equivalent.

(ii) If R is semiprime and RR is complement bounded, then a) through g) are equivalent.

(iii) If RR is nonsingular and complement bounded, then a) through h) are equivalent.

Proposition 4.18. [7, Proposition 2.3] If R is right FI-extending, then Matn(R) is right FI-
extending, for all positive integers n.

Theorem 4.19. [6, Theorem 1.16] Let S and R be rings, M an (S,R)-bimodule, and T =[
S M

0 R

]
the 2 × 2 generalized triangular matrix ring. Then TT is FI-extending if and only if

all of the following conditions hold.

(i) `S(M) = eS, where e ∈ S`(S), and eSS is FI-extending;

(ii) For SNR ≤SMR, there is f = f2 ∈ S such that NR ≤ess fMR;

(iii) RR is FI-extending.

For other characterizations of generalized triangular matrix rings which are FI-extending,
strongly FI-extending, or quasi-Baer see [16].

From Theorem 4.17, one can see that the next result on group algebras applies to (strongly)
FI-extending rings.

Theorem 4.20. [9, Proposition 1.7] Let R = F [G] be a semiprime group algebra over a field F .
Then R is quasi-Baer if and only if each annihilator ideal is finitely generated.

Corollary 4.21. Let R = F [G] be a semiprime group algebra where G is Abelian. Then R is
extending if and only if each annihilator ideal is finitely generated.

In a series of papers [11], [14], [12], and [13] a theory of ring and module hulls is developed.
In [12, Theorem 3.3], it is shown that every semiprime ring has a (strongly) FI-extending hull.
In [13], this result is extended to finitely generated projective modules over a semiprime ring.
In [14] and [12] applications are made to C∗-algebras. Some further results on the FI-extending
condition appear in [37].

Finally we mention that many of the basic results in this paper have been generalized to mod-
ules satisfying the C-extending condition in [18]. Also from [17, Corollary 3.14] and [19, Corol-
lary 2.8], we have that if a module M satisfies any of the conditions: extending, G-extending,
C11, PI-extending, FI-extending, then so does its rational hull.

OPEN QUESTIONS AND PROBLEMS

1. Find necessary and sufficient conditions to characterize (finite) direct sums of G-extending
or strongly FI-extending modules, respectively.

2. Find necessary and sufficient conditions to characterize when direct summands of G-extending,
C11, PI-extending, or FI-extending modules are G-extending, C11, PI-extending, or FI-
extending, respectively.



A Survey of some generalized extending conditions 529

3. Characterize when a generalized extending module (i.e., a module which is G-extending,
C11, PI-extending, FI-extending, or strongly FI-extending) is a (finite) direct sum of
uniform modules.

4. When does a module have a generalized extending hull?

5. How do generalized extending modules behave with respect to the tensor product or Hom
functors?

6. Investigate how generalized extending conditions interact with torsion theory.

7. Characterize the rings such that every (cyclic, finitely generated, singular, etc.) module is a
generalized extending module for some fixed generalized extending condition.

8. Characterize when R[x] is a generalized extending ring.

9. Determine necessary and/or sufficient conditions when the homomorphic image of a mod-
ule is generalized extending.

10. Determine necessary and/or sufficient conditions when a submodule is generalized extend-
ing.
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