Pseudo AGP-injective rings

Zhu Zhanmin

Communicated by Ayman Badawi

MSC 2010 Classifications: 16D50, 16E50.

Keywords and phrases: PAGP-injective ring; Von Neumann regular ring; strongly regular ring; \(\pi \)-regular ring.

Abstract. A ring \(R \) is called right Pseudo AGP-injective or right PAGP-injective for short, if for any \(a \in R \) there exists a positive integer \(n \) and a left ideal \(X_a \) such that \(\text{lr}(a^n) = Ra^n \oplus X_a \). In this Article, we investigate properties of right PAGP-injective rings satisfying some additional conditions.

1 Introduction

Throughout this paper, \(R \) denotes an associative ring with identity \(1 \). The left and right annihilators of a subset \(X \) of \(R \) will be denoted as \(l(X) \) and \(r(X) \), respectively. We write \(J = J(R) \) and \(Z_r \), respectively for the Jacobson radical of \(R \) and the right singular ideal of \(R \). For regular rings we mean von Neumann regular rings.

At first, we recall that a ring \(R \) is called \textit{right P-injective} [1] if, for any \(a \in R \) , any right \(R \)-homomorphism from \(aR \) to \(R \) extends to an endomorphism of \(R \), this is equivalent to say that \(\text{lr}(a) = Ra \) for every \(a \in R \). We recall also that a ring \(R \) is called \textit{right GP-injective} if, for any \(0 \neq a \in R \) there exists a positive integer \(n \) such that \(a^n \neq 0 \) and any right \(R \)-homomorphism from \(a^nR \) to \(R \) extends to an endomorphism of \(R \), this is equivalent to say that for any \(0 \neq a \in R \), there exists a positive integer \(n \) such that \(a^n \neq 0 \) and \(\text{lr}(a^n) = Ra^n \). \(P \)-injective rings and \(GP \)-injective rings have been studied by many authors such as [1, 2, 3, 4, 5]. In paper [6], Stanley S. Page and Yiqiang Zhou generalized the concepts of \(P \)-injective rings and \(GP \)-injective rings to \(AP \)-injective rings and \(AGP \)-injective rings respectively. Following Page and Zhou, a ring \(R \) is called right \(AP \)-injective, if for any \(a \in R \) there exists a \(a \) left ideal \(X_a \) such that \(\text{lr}(a) = Ra \oplus X_a \), and a ring \(R \) is called right \(AGP \)-injective, if for any \(0 \neq a \in R \) there exist a positive integer \(n \) and a left ideal \(X_a \) such that \(a^n \neq 0 \) and \(\text{lr}(a^n) = Ra^n \oplus X_a \). In this paper, we generalize the concept of right \(AGP \)-injective rings to right Pseudo \(AGP \)-injective rings (or right \(PAGP \)-injective rings for short), some interesting properties of \(PAGP \)-injective rings are obtained.

We start with the following Definition.

Definition 1. Let \(R \) be a ring and \(M \) be a right \(R \)-module with \(S = \text{End}(M_R) \). Then \(M_R \) is called \textit{Pseudo GP-injective} or \textit{PGP-injective} for short if, for any \(a \in R \) there exists a positive integer \(n \) such that \(\text{lr}_R(a^n) = Ma^n \). \(M_R \) is called \textit{Pseudo AGP-injective} or \textit{PAGP-injective} for short if, for any \(a \in R \) there exist a positive integer \(n \) and a \(S \)-submodule \(X_a \) such that \(\text{lr}_R(a^n) = Ma^n \oplus X_a \) as left \(S \)-modules. \(R \) is called right \textit{Pseudo GP-injective} or \textit{PGP-injective} for short if \(R_R \) is \(GP \)-injective. \(R \) is called right \textit{Pseudo AGP-injective} or \textit{PAGP-injective} for short if \(R_R \) is \(PAGP \)-injective.

The concepts of \(PGP \)-injective modules and \(PAGP \)-injective modules are explained by the following theorem.

Theorem 2. Let \(M \) be a right \(R \)-module with \(S = \text{End}(M_R) \). Then

(1) \(M \) is \textit{PGP-injective} if and only if for any \(a \in R \) there exists a positive integer \(n \) such that every homomorphism from \(a^nR \) to \(M \) extends to a homomorphism of \(R \) to \(M \).

(2) \(M \) is \textit{PAGP-injective} if and only if, for any \(a \in R \) there exists a positive integer \(n \) such that \(\text{Hom}_R(R, M) \) is a direct summand of \(\text{Hom}_R(a^nR, M) \) as \(S \)-modules.

Proof. (1) is obvious. (2) by [6, Lemma 1.2(3)].

Clearly, The following implications hold:

right \(P \)-injective \(\Rightarrow \) right \(GP \)-injective \(\Rightarrow \) right \(AGP \)-injective \(\Rightarrow \) right \(PAGP \)-injective.
right P-injective \Rightarrow right AP-injective \Rightarrow right AGP-injective \Rightarrow right $PAGP$-injective.

But right AGP-injective (even if for right AP-injective) \Rightarrow right GP-injective \Rightarrow right P-injective by [6, Examples 1.5] and [4, Example 1].

right AGP-injective (even if for right GP-injective) \Rightarrow right AP-injective \Rightarrow right P-injective (even if right GP-injective) by [4, Proposition 2] and [6, Examples 1.5].

We don’t know whether right $PAGP$-injective rings (even if for right AP-injective rings) are PGP-injective, but we have that right PGP-injective rings (and hence right $PAGP$-injective rings) need not be right AGP-injective by the following Example 3, and right PGP-injective right AP-injective rings need not be right GP-injective by the following Example 4.

Example 3. A finite commutative ring which is PGP-injective but not AGP-injective.

Let $R = Z_2 \vartriangleleft 2Z_8$ be the trivial extension of Z_2 and the Z_2-module $2Z_8$. For $a = (\bar{n}, \bar{2}) \in R$. If $n = 1, 3, 5, 7$, then a is invertible in R, thus $lr(a) = Ra$. If $n = 0, 2, 4, 6$, then $a^2 = 0$, and so $lr(a^2) = Ra^3$. Therefore R is PGP-injective and hence $PAGP$-injective. For $b = (\bar{0}, \bar{2})$, we have $b^2 = 0$, $lr(b) = 2Z_8 \vartriangleleft 2Z_8$ and $Rb = (0) \vartriangleleft 2Z_8$. Clearly, Rb is not a direct summand of $lr(b)$. Hence R is not AGP-injective.

Example 4. A finite commutative ring which is AP-injective and PGP-injective, but not GP-injective.

Let $R = Z_4 \vartriangleleft (Z_4 \oplus Z_4)$. For any $a = (\bar{n}, \bar{r}, \bar{m}) \in R$, if $n = 1$, then a is invertible, thus $lr(a) = Ra$. If $n = 0, 2$, then $a^2 = 0$, and so $lr(a^2) = Ra^2$. Hence R is PGP-injective, moreover, by [6, Examples 1.5(2)], R is a finite commutative ring which is AP-injective. Let $b = (\bar{1}, \bar{0}, \bar{0})$. Then $b^2 = 0$ and $lr(b) = (0) \vartriangleleft (Z_4 \oplus Z_4) \neq (0) \vartriangleleft (Z_4 \oplus (0)) = Rb$. Therefore, R is not GP-injective.

Following [6], let A, B are two left ideals of a ring R, then we write $A \mid B$ to indicate that A is a direct summand of B.

Lemma 5. Let R be a ring, $a \in R$ with $ra = 0$. Then for any positive integer i, $aR \mid a^{-1}R$ if and only if $a^{-1}R \mid aR$.

Proof \Rightarrow. Suppose $a^{-1}R = a'R \oplus K$ for some right ideal K. Then for any $r \in R$, we have $a^{-1}r = a^{-1}(ar') = a^{-1}(ar' + k) = a^{-1}r' + ak$, where $r' \in R, k \in K$, and so $a'R = a^{-1}R + aK$. Now if $x \in a^{-1}R \cap aK$, let $x^{-1}r = ak, r \in R, k \in K$. Then $a^{-1}r = 0$, and so $a^{-1}r - k = 0$ because $a(r-k) = 0$. Hence $a^{-1}r' + ak = 0$, this implies that $x = 0$, and whence $a^{-1}R \cap aK = 0$. Therefore, $a'R = a^{-1}R + aK$.

\Leftarrow. If $a^{-1}R \mid aR$, let $a'R = a^{-1}R \oplus N$ and write $N' = \{a^{-1}r : ar \in N\}$. Then for any $a^{-1}r \in a^{-1}R$, there exist a $r' \in R$ and an $n \in N$ such that $a^{-1}r = a^{-1}(r' + n)$. Hence $a^{-1}r = a^{-1}r' + a^{-1}(r - ar')$. Since $a^{-1}(r - ar') = a^{-1}r - a^{-1}r' = n \in N$, $a^{-1}r - a^{-1}r' \in N'$, and then $a^{-1}R = a^{-1}R + N'$. If $x \in a^{-1}R \cap N'$, let $x = a^{-1}r_1 + a^{-1}r_2$, where $r_1, r_2 \in R, dr_2 \in N$. Then $a^{-1}r_1 = a^{-1}r_2 \in a^{-1}R \cap N = 0$, which shows that $x = a^{-1}r_1 = 0$, and so $a^{-1}R \cap N = 0$. Hence $a^{-1}R = a^{-1}R \oplus N$.

Recall that a module M_R is said to satisfy the generalized C_2-condition (or GC_2 for short) [7] if for any $N \leq M$ with $N \cong M$, N is a direct summand of M. The ring R is called right GC_2 if R_R is GC_2.

Theorem 6. If R is a right PAGP-injective ring, then

(1) R is right GC_2.

(2) R is a classical quotient ring.

Proof (1) Let I be a right ideal of R with $I \cong R_R$. Then $I = aR$ for some $a \in R$ with $ra = 0$. Since R is right $PAGP$-injective, there exist a positive integer n and a left ideal X_{a^n} such that $lr(a^n) = Ra^n \oplus X_{a^n}$ (1)

By Lemma 5, $aR \mid R \Rightarrow a^{-1}R \mid a^{-1}R$. Thus, to prove $aR \mid R$, we need only to prove that $a^{-1}R \mid R$. Since $r(a^n) = 0$, by (1), we have $R = Ra^n \oplus X_{a^n}$. Let $1 = ba^n + x$, where $b \in R, x \in X_{a^n}$. Then $a^x = a^x ba^n + a^x x$, this follows that $a^x - a^x ba^n = a^x x \in Ra^n \cap X_{a^n} = 0$, and thus $a^x = a^x ba^n$. Let $e = a^x$. Then $e^2 = e$ and $a^{-1}R = eR$, as required.

(2) Let $I(a) = r(a) = 0$. Then $lr(a^k) = r(a^k) = 0$ for every positive integer k. By the right $PAGP$-injectivity of R, $lr(a^n) = Ra^n \oplus X_{a^n}$ holds for some positive integer n and some left ideal
Let \(R \) be a ring and \(a \in R \).

Lemma 10. The following are equivalent for a ring \(R \).

(1) \(R \) is regular.
(2) \(N(R) = \{a \in R \mid a^2 = 0\} \) is regular and \(R \) is right generalized \(\pi \)-regular.

Proof

First of all, for any \(a \in R \), by the right \(PAGP \)-injectivity of \(R \), there exist a positive integer \(n \) and a left ideal \(X_{a^n} \) such that \(\text{Ir}(a^n) = Ra^n \oplus X_{a^n} \).

(1) Since \(R \) is right \(PP \), \(a^2 R \) is projective, and so there exists \(e^2 = e \in R \) such that \(\text{r}(a^n) = e R \).

Thus we have \(R(1 - e) = (1)(eR) = \text{Ir}(a^n) = Ra^n \oplus X_{a^n} \).

Let \(1 - e = ba^n + x \), where \(b \in R \) and \(x \in X_{a^n} \).

Then \(a^n = a^n(1 - e) = a^n ba^n + a^n x \), this follows that \(a^n = a^n ba^n \). Therefore \(R \) is \(\pi \)-regular.

(2) Let \(I \) be a right ideal of \(R \) such that \(\text{r}(a^n) \oplus I \) is essential in \(R \). Then we have \(\text{Ir}(a^n) + I = \text{Ir}(a^n) \cap I = R \) and \(\text{Ir}(a^n) \cap I = \text{Ir}(a^n) + I = 0 \) because \(R \) is right \(IN \) and right nonsingular.

Therefore, \(R = \text{Ir}(a^n) \oplus I = Ra^n \oplus X_{a^n} \oplus I \).

Write \(1 = ra^n + x \), where \(r \in R \), \(x \in X_{a^n} \oplus I \). Then \(a^n = a^n ra^n \). This implies that \(R \) is \(\pi \)-regular.

Corollary 7. Let \(R \) be a right \(PAGP \)-injective ring. Then

(1) \(Z_\pi \subseteq J(R) \).
(2) If \(R \) is right finite dimensional, then it is semilocal.

Theorem 8. Let \(R \) be a right \(PAGP \)-injective ring. Then

(1) If \(R \) is right \(PP \) (in particular, if \(R \) is a Baer ring), then \(R \) is \(\pi \)-regular.
(2) If \(R \) is a right nonsingular and right \(IN \)-ring, then \(R \) is \(\pi \)-regular.

Proof

First of all, for any \(a \in R \), by the right \(PAGP \)-injectivity of \(R \), there exist a positive integer \(n \) and a left ideal \(X_{a^n} \) such that \(\text{Ir}(a^n) = Ra^n \oplus X_{a^n} \).

(1) Since \(R \) is right \(PP \), \(a^2 R \) is projective, and so there exists \(e^2 = e \in R \) such that \(\text{r}(a^n) = e R \).

Thus we have \(R(1 - e) = (1)(eR) = \text{Ir}(a^n) = Ra^n \oplus X_{a^n} \).

Let \(1 - e = ba^n + x \), where \(b \in R \) and \(x \in X_{a^n} \).

Then \(a^n = a^n(1 - e) = a^n ba^n + a^n x \), this follows that \(a^n = a^n ba^n \). Therefore \(R \) is \(\pi \)-regular.

(2) Let \(I \) be a right ideal of \(R \) such that \(\text{r}(a^n) \oplus I \) is essential in \(R \). Then we have \(\text{Ir}(a^n) + I = \text{Ir}(a^n) \cap I = R \) and \(\text{Ir}(a^n) \cap I = \text{Ir}(a^n) + I = 0 \) because \(R \) is right \(IN \) and right nonsingular.

Thus, \(R = \text{Ir}(a^n) \oplus I = Ra^n \oplus X_{a^n} \oplus I \).

Write \(1 = ra^n + x \), where \(r \in R \), \(x \in X_{a^n} \oplus I \). Then \(a^n = a^n ra^n \). This implies that \(R \) is \(\pi \)-regular.

Corollary 9. Let \(R \) be a semiprime, right \(PAGP \)-injective right \(IN \)-ring. If each essential right ideal of \(R \) is an ideal, then \(R \) is a \(\pi \)-regular ring.

Proof

By Theorem 8(2), we need only to prove \(R \) is nonsingular. Indeed, if \(a \in R \) such that \(\text{r}(a) \) is essential in \(R \), then \(\text{r}(a) \) is an ideal of \(R \) by hypotheses, hence \(\text{Ir}(a) \) is also an ideal. Since \((\text{Ir}(a) \cap \text{r}(a))^2 \subseteq (\text{Ir}(a) \cap \text{r}(a)) = 0 \) and \(R \) is semiprime, \(\text{Ir}(a) \cap \text{r}(a) = 0 \), and so \(a \in \text{Ir}(a) = 0 \) for \(\text{r}(a) \) is essential in \(R \). As required.

We call an element \(x \in R \) right generalized \(\pi \)-regular if there exists a positive integer \(n \) such that \(x^n = x y x^n \) for some \(y \in R \). \(R \) is called right generalized \(\pi \)-regular if every element in \(R \) is right generalized \(\pi \)-regular.

The results of Lemma 10 and Lemma 11 are similar to [3, Lemma 2.1] and [3, Theorem 2.2] respectively, and they are included here for the completeness.

Lemma 10. Let \(R \) be a ring and \(a \in R \). If \(a^n - ar a^n \) is regular for some positive integer \(n \) and \(r \in R \), then there exists \(y \in R \) such that \(a^n = ay a^n \), whence \(R \) is right generalized \(\pi \)-regular.

Proof

Let \(d = a^n - ar a^n \). Since \(d \) is regular, \(d = du d \) for some \(u \in R \). Hence

\[
a^n = d + ar a^n = (a^n - ar a^n)u(a^n - ar a^n) + ar a^n = a^n - ra^n u(1 - ar) a^n + ar a^n = ay a^n.
\]

where \(y = (a^{n-1} - ra^n u)(1 - ar) + r \).

Lemma 11. The following are equivalent for a ring \(R \).

(1) \(R \) is regular.
(2) \(N(R) = \{a \in R \mid a^2 = 0\} \) is regular and \(R \) is right generalized \(\pi \)-regular.
Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) Let \(a \in R\). Since \(R\) is right generalized \(\pi\)-regular, there exist a positive integer \(n\) and an element \(r\) in \(R\) such that \(a^n = ara^n\). Next we shall show that \(a\) is regular. In fact, if \(n = 1\), we are done. Let \(n > 1\). Put \(d = a^{n-1} - ara^{n-1}\). Then \(da = 0\), and so \(d^2 = d(ara^{n-1}) = 0\). Since \(N(R) = \{a \in R \mid a^2 = 0\}\) is regular, \(d\) is regular. Hence \(a^{n-1} = a\gamma yer_{a^{n-1}}\) for some \(y_1 \in R\) by Lemma 10. If \(n - 1 > 1\), then there exists \(y_2 \in R\) such that \(a^{n-2} = a\gamma yer_{a^{n-2}}\) by the preceding proof. Continues in this way, we will get \(b \in R\) such that \(a = aba\), i.e., \(a\) is regular.

Next we give a new characterization of regular rings.

Theorem 12 The following are equivalent for a ring \(R\):

(1) \(R\) is regular.

(2) Every principally right ideal of \(R\) is PGP-injective and \(N(R) = \{a \in R \mid a^2 = 0\}\) is regular.

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (1) Let \(a \in R\). Write \(M = aR\). Since \(M\) is PGP-injective, there exists a positive integer \(n\) such that \(I_M(e^{(a)} = M^{(a)}\), so \(a^n = aba^n\) for some \(b \in R\). Hence, \(R\) is right generalized \(\pi\)-regular. Therefore, \(R\) is regular by Lemma 11.

Recall that a ring \(R\) is called strongly regular if for every \(a \in R\), there exists \(b \in R\) such that \(a = a^2b\); \(R\) is called reduced if it has no nonzero nilpotent elements. Clearly, a ring \(R\) is reduced if and only if \(r(a^k) = r(a)\) for any \(a \in R\) and any positive integer \(k\); a reduced ring is AGP-injective if and only if it is PAGP-injective.

Theorem 13 The following statements are equivalent for a ring \(R\):

(1) \(R\) is a strongly regular ring.

(2) \(R\) is a reduced right AGP-injective ring.

(3) \(R\) is a reduced right PAGP-injective ring.

(4) \(R\) is a reduced and right generalized \(\pi\)-regular ring.

Proof. (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). Let \(a \in R\). Since \(R\) is right PAGP-injective, there exist a positive integer \(n\) and a left ideal \(X_{a^n}\) such that \(\mathfrak{I}(a^{2n}) = Ra^{2n} \oplus X_{a^n}^n\). Since \(R\) is reduced, \(r(a^{2n}) = r(a)\), and so \(a \in \mathfrak{I}(a) = \mathfrak{I}(a^{2n}) = Ra^{2n} \oplus X_{a^n}^n\). Let \(a = ba^n + x, b \in R, x \in X_{a^n}\). Then \(a^{2n} - a^{2n-1}ba^{2n} = a^{2n-1} \in Ra^{2n} \cap X_{a^n} = 0, i.e., a^{2n} = a(a^{2n-2}b)a^{2n}\). And (4) follows.

(4) ⇒ (1). Assume (4), then by Lemma 11, \(R\) is regular. Let \(a \in R\). Then \(a = aba\) for some \(b \in R\). Since \((a - a^2b)^2 = a^2 - a^3b - a^2ba + a^2ba^2 = a^2 - a^3b - a^2 + a^2ab = 0\) and \(R\) is reduced, \(a - a^2b = 0, i.e., a = b^2\). Therefore, \(R\) is strongly regular.

Theorem 14 If \(R\) is a semiprime right PAGP-injective ring, then the center of \(R\) is a regular ring.

Proof. Let \(a \in C(R)\). Since \(R\) is right PAGP-injective, there exist a positive integer \(n\) and a left ideal \(X_{a^n}\) such that \(\mathfrak{I}(a^{2n}) = Ra^{2n} \oplus X_{a^n}\). If \(a^{2n}r = 0\), then \((Ra^{2n-1}r)^2 = 0\), and so \(a^{2n-1}r = 0\) as \(R\) is semiprime. Continues in this way, we get \(ar = 0\), this follows that \(r(a) = r(a^n)\). Hence, \(a \in \mathfrak{I}(a) = \mathfrak{I}(a^{2n}) = Ra^{2n} \oplus X_{a^n}\). Let \(a = ba^n + x, b \in R, x \in X_{a^n}\). Then \(a^{2n} = a^{2n-1}ba^{2n} + a^{2n-1}x\), and thus \(a^{2n} - a^{2n-1}ba^{2n} = a^{2n-1} \in Ra^{2n} \cap X_{a^n} = 0, i.e., a^{2n} = a(a^{2n-2}b)a^{2n}\). Hence, \(a = a^{2n}b = a^{2n}a^{2n-2}b\). Let \(c = a^{2n-2}b\). Then \(a = ac\). Now we claim that \(c \in C(R)\). In fact, for any \(x \in R\), we have \(a^2(xc - cx) = x(a^{2n-2}b - a^{2n-2}bx) = xa^{2n} - b - x - ax - 0 = xc - cx \in R(a^2) = xc - cx \in r(a) \Rightarrow 0 = (a(xc - cx) = a^{2n-1}(xc - cx) = a^{2n-1}a^{2n-1}b) = x - b - x \in r(a^{2n-1}) = x - b - x \in r(a^{2n-1}) \Rightarrow 0 = a^{2n-2}(xc - cx) = xa^{2n-2} - a^{2n-2}b = xc - cx \Rightarrow xc = cx\), so \(c \in C(R)\), and therefore \(C(R)\) is strongly regular.

References

Author information

Zhu Zhanmin, Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P.R.China.
E-mail: zhanmin_zhu@hotmail.com

Received: May 14, 2013.

Accepted: October 12, 2013.