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Abstract. A subsemigroup T of a semigroup S is completely isolated provided that S = T or
S\T is a semigroup. We investigate the collection of semigroups that are unions of chains of pair-
wise disjoint, completely isolated subsemigroups, {Sα}. For a particular class W of semigroups
S in this collection, we show that the Green’s equivalence classes L and R of S are exactly the
pairwise disjoint unions of the corresponding equivalence classes for each of the subsemigroups,
Sα. In addition, for several properties, we show that if each of the completely isolated subsemi-
groups, Sα, has property P , then S also has property P . Furthermore, we demonstrate that W
is closed with respect to taking subgroups, homomorphic images, and forming inflations and
invariants. We also show that each finite member of W can be represented as a homomorphic
image of a subsemigroup T of a finite inverse semigroup, where T is also a member of W.

1 Introduction

In 1957, in [7], Tamura notes that if A is a totally ordered set indexing a collection of arbitrary
semigroups, {Sα : α ∈ A}, and if we let S = ∪α∈ASα , then we can define an associative
operation ∗ on S by

x ∗ y =


xy if x, y ∈ Sα
x if x ∈ Sα, y ∈ Sβ and α > β

y if x ∈ Sα, y ∈ Sβ and β > α

(1.1)

In [4], Ljapin attributes some of the earliest study of isolation of subsemigroups to P.G.
Kontorovich, who used the term isolated ideals, and defines a subsemigroup T of the semigroup
S to be completely isolated provided xy ∈ T implies x ∈ T and y ∈ T for all x, y ∈ S. In all
subsequent works, however, semigroups with that property are typically referred to as convex [5]
and the following alternative definition of completely isolated subsemigroup is used. (For the
purpose of this article, we also adopt this more common definition.)

Definition 1.1. Let S be a semigroup with subsemigroup T . We say T is completely isolated
provided xy ∈ T implies x ∈ T or y ∈ T , for all x, y ∈ S.

Using the well-known result that T is completely isolated if and only if T = S or S\T is a
semigroup, we see that Tamura’s definition (1) guarantees that each Sα is completely isolated.
In [6], Redei calls S breakable if every non-empty subset is a subsemigroup. Recall that a
semigroup S is called a left zero semigroup if there exists some x ∈ S such that xy = x for all
y ∈ S. Right zero semigroups are defined analogously. Redei proves the following.

Theorem 1.2. A semigroup S is breakable if and only if S = ∪α∈ASα, where

(i) A is a totally ordered set,

(ii) the Sα are pairwise disjoint,

(iii) each Sα is either a left zero semigroup or right zero semigroup, and

(iv) if a ∈ Sα and b ∈ Sβ with α < β, then ab = b.
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Here again, each Sα is completely isolated. Interest in such subsemigroups continues in
recent research. Recall, for N = {1, 2, 3, . . . , n}, we use Tn to denote the semigroup of all
transformations on N , that is the collection of all permutations on N under composition of
functions.

Definition 1.3. For a ∈ Tn, we use (Tn, ∗a) to denote the variant of Tn induced by a, that is the
semigroup Tn with the sandwich operation ∗a defined by β ∗a γ = βaγ, for all β, γ ∈ Tn.

Arguments by Mazorchuk and Tsyaputa in [5] provide a seven-part classification of all com-
pletely isolated subsemigroups of Tn.

Definition 1.4. A semigroup S is inverse if for every x ∈ S, there exists a unique y ∈ S such that
x = xyx and y = yxy.

Adopting the notation introduced by Tsyaputa in [8], we use ISn to denote the inverse sym-
metric semigroup of all injective partial transformations on N = {1, . . . , n}. Further results for
ISn have been obtained by Tsyaputa [8] as follows: Recall that a semigroup element, e, is an
idempotent provided e2 = e. Fix an idempotent α ∈ ISn and let A = dom(α). Let CA denote
the set of all elements from ISn that map A onto A and are arbitrarily defined on N\A, that is,
CA = {β ∈ ISn : β(A) = A}.
Theorem 1.5. The only completely isolated subsemigroups of (ISn, ∗n) are (ISn, ∗n), CA, and
(ISn, ∗n)\CA.

Building on these concepts, and with the operation ∗ defined in (1), we offer definitions of
a few new terms. We begin by noting that if α > β, the product x ∗ y will always result in an
element in Sα.

Definition 1.6. The semigroup Sα dominates semigroup Sβ provided Sα ∗ Sβ = Sα, if α > β.
We refer to the collection {Sα} of such semigroups as a dominant chain of completely isolated
semigroups. Furthermore, if (S, ∗) is a union of pairwise disjoint semigroups and ∗ satisfies (1),
we refer to (S, ∗) as a dominant chain of completely isolated semigroups. The Sα are referred to
as links of the chain.

We let D denote the class of all semigroups that are dominant chains of completely isolated
semigroups.

We now relax the definition of the product of elements in distinct subsemigroups in (1) to pro-
vide a weaker form of dominance. Notice that in the following definition, each Sα is completely
isolated.

Definition 1.7. Let {Sα} be a collection of pairwise disjoint subsemigroups of some semigroup
(S, ∗) such that S = ∪α∈ASα. Suppose further that ∗ satisfies the property that Sα ∗ Sβ ⊆ Sα if
α > β. Then S is called a weakly dominant chain of subsemigroups.

We let W denote the class of all semigroups that are weakly dominant chains of semigroups.
Obviously, D ⊆W. The construction described in Proposition 14 demonstrates that the inclusion
is actually proper.

With these definitions in hand, we now describe the intent of this paper: We wish to investi-
gate the relationship between the structure and properties of any member of W and those of each
of the completely isolated subsemigroups Sα in the corresponding chain. (Note: Henceforth, we
will drop the reference to the indexing set A when its presence is not required.)

2 Uniqueness of Representation

Definition 2.1. Suppose that S = ∪α∈ASα and S ∈ D, such that each Sα /∈ D. Then we say that
the chain {Sα} is D-irreducible. Similarly, if S = ∪α∈ASα and S ∈W, such that each Sα /∈W,
we say that the chain {Sα} is W-irreducible.

Theorem 2.2. If S is a W-irreducible member of W that can be written both as the union of
{Sα : α ∈ A} and as the union of {Tβ : β ∈ B}, then there exists a bijection, ϕ, between the
indexing sets A and B such that Sα = Tϕ(α) for each α ∈ A.

Proof. Let β ∈ B, and consider Tβ = Tβ ∩ S = Tβ ∩ (∪α∈ASα) = ∪α∈A (Tβ ∩ Sα). Since each
Tβ is W-irreducible, for exactly one α ∈ A, Tβ ∩ Sα is nonempty. It follows that Tβ = Tβ ∩ Sα
or Tβ = Sα, for some α ∈ A. Repeating this argument for each Sα establishes a bijection from
B to A and completes the proof.

Henceforth, we assume semigroups selected from W are W-irreducible.
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3 Green’s Relations

We begin by reviewing two of Green’s relations for semigroups, namely L and R.

Definition 3.1. Given a semigroup S and x, y ∈ S, we say x and y are L-related if they generate
the same principal left ideal (that is, S1x = Sx ∪ {x} = S1y = Sy ∪ {y}), in which case we
write xLy. Similarly, if x and y generate the same principal right ideal, (i.e., xS1 = xS ∪ {x} =
yS1 = yS ∪ {y}), then x and y are said to be R-related, and we write xRy.

Suppose that S = ∪α∈ASα ∈ W, and let a ∈ S. Consider the principal left ideal S1a =
Sa ∪ {a}. If a ∈ Sα for some α ∈ A , then S1a = (Sa ∪ {a}) ∪ (∪β∈A{Sβ : β > α}), since
{a} ⊆ Sα and Sα weakly dominates Sβ for β < α. In general, it follows then that if aLb, for
some a, b ∈ S, then a and b are contained in the same Sα. Furthermore, S1a = S1b if and only if
Sαa ∪ {a} = Sβb ∪ {b}, that is, S1a = S1b if and only if aLαb. This proves the following result
for Green’s L-relation. (A parallel argument verifies the result for Green’s R-relation.)

Theorem 3.2. If S = ∪α∈ASα ∈ W, then aLb if and only if aLαb for some α ∈ A, and aRb if
and only if aRαb for some α ∈ A.

Corollary 3.3. If S = ∪α∈ASα ∈W, then L = ∪α∈ALα , then and R = ∪α∈ARα.

4 Shared Properties

A natural point of interest is whether a member S = ∪α∈ASα of D or W shares any particular
property with all of its links. Consider the following.

Definition 4.1. Let S = ∪α∈ASα ∈ D. We say a semigroup property P is a contagious chain
property provided: If every chain link, Sα, has property P , then S also has property P . If S
has property P implies every link, Sα, also has property P we say that P is a hereditary chain
property. If S = ∪α∈ASα ∈W. We say a semigroup property P is weakly contagious provided:
If every chain link Sα, then S also has property P . Finally, if a chain S ∈ W has property P
implies that every link of S has property P , we say P is a weakly hereditary chain property..

For example, because of the symmetry of the definition of ∗ in (1), clearly if S = ∪α∈ASα ∈
D, then S is commutative if and only if each Sα is commutative. Therefore, commutativity is
both a contagious and a hereditary chain property. However, the following result demonstrates
a technique for creating a noncommutative semigroup that is the union of a weakly dominant
chain of two isomorphic commutative semigroups.

Proposition 4.2. Suppose that S1 and S2 are isomorphic disjoint commutative semigroups. Let
ϕ : S1 → S2 be an isomorphism, and let S = S1 ∪ S2. Define ∗ on S as follows.

x ∗ y =


ϕ(x)y if x ∈ S1, y ∈ S2

ϕ−1(x)y if x ∈ S2, y ∈ S1

xy if x, y ∈ Si for i = 1, 2
(4.1)

Then (S, ∗) is a noncommutative semigroup.

Proof. The demonstration that the operation defined in (2) is associative requires a case-by-case
argument. For the sake of brevity, we demonstrate only one such case: Let x1, x1

′ ∈ S1 and x2 ∈
S2. Consider the product (x1∗x2)∗x1

′. Since ϕ−1 is a homomorphism, and since ϕ(x1), x2 ∈ S2,
we have (x1 ∗ x2) ∗ x1

′ = (ϕ(x1)x2) ∗ x1
′ = ϕ−1((ϕ(x1)x2))x1

′ = (ϕ−1(ϕ(x1))ϕ−1(x2))x1
′

= (x1ϕ
−1(x2))x1

′ ∈ S1. Similarly, x1 ∗ (x2 ∗ x1
′) = x1 ∗ (ϕ−1(x2)x1

′) = x1(ϕ−1(x2)x1
′) ∈ S1

Hence, (x1 ∗ x2) ∗ x1
′ = x1 ∗ (x2 ∗ x1

′). Notice that x1 ∗ x2 = ϕ(x1)x2 ∈ S2, while x2 ∗ x1 =
ϕ−1(x2)x1 ∈ S1. This result, together with the fact that S1 and S2 are disjoint, gives us the
noncommutativity of (S, ∗).

Thus, noncommutativity is not weakly hereditary and commutativity is not weakly conta-
gious.

We note that considerable research has been conducted in the area of the decomposition of
semigroups by semilattices of subsemigroups. Recall that a commutative semigroup (S, ∗) is a
semilattice provided every element is idempotent. (The reader is referred to works of Clifford
and Preston [2] and Howie [3] for details.). Since chains are a special case of semilattices, the
following result is known, but is stated for completeness.
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Proposition 4.3. Let S = ∪α∈ASα ∈W. Then the following statements hold.

(i) S is regular if and only if each Sα is regular

(ii) S is completely regular if and only if each Sα is completely regular

(iii) S is inverse if and only if each Sα is inverse

We now demonstrate the impact of comparability of elements in chains by recalling the fol-
lowing definition.

Definition 4.4. Let S be an inverse semigroup with semilattice E of idempotents. Then S is
E-unitary if, for all e ∈ E and x ∈ S, ex ∈ E ⇒ x ∈ E.

Theorem 4.5. Suppose that S = ∪α∈ASα ∈ W. Then S is E-unitary if and only if each Sα is
E-unitary.

Proof. First, suppose that S is E-unitary. We can write E = ∪α∈AEα , where each Eα denotes
the semilattice of idempotents of Sα. The set {Eα} is pairwise disjoint, and, by Proposition 15,
each Sα is an inverse subsemigroup. The result now follows easily, even when the indexing set
is a semilattice. Hence, the property of being E-unitary is weakly hereditary.
Now suppose that each Sα is E-unitary and that e ∈ E = ∪α∈AEα , for some e ∈ E and x ∈ S.
It follows that ex ∈ Eα, for some α ∈ A. Suppose that e ∈ Eβ = Sβ ∩ E and x ∈ Sδ for some
β, δ ∈ A. Because the indexing set A is a chain, and since ex ∈ Eα, it follows that either α = β
or α = δ. If α = δ., then the desired result is immediate. If β = α, then the result follows
directly from the fact that each Sα is E-unitary. Whereupon, the property of being E-unitary is
weakly contagious.

The following example demonstrates that the previous result cannot be improved upon. We
rely on the following construction method offered by Yamada in [9]: Suppose that the indexing
set for {Sα} is the semilattice A = {α, β, γ} defined by the relations: α2 = α, β2 = β, γ2 =
γ, and γ = αβ = βα = αγ = γα = βγ = γβ. If S = ∪α∈ASα, we select one idempotent eδ
from each Sδ and then define an associative binary operation ? on S as follows:

xδ ? yλ =


xδyλ if δ = λ

xδeδ if δ > λ(i.e., δλ = δ and δ 6= λ)

eλyλ if δ < λ(i.e., δλ = λ and δ 6= λ)

eδλ if δ 6= λ, δλ 6= δ, and δλ 6= λ

(4.2)

Proposition 4.6. Suppose that A is the semilattice defined above, and that (S, ?) = ∪α∈ASα is
a semigroup decomposition by A, where the operation ? on S is defined as above. Then (S, ?) is
not E-unitary even if each Sα is E-unitary.

Proof. Select a non-idempotent xα from Sα, and an idempotent eβ from Sβ . Then xα ? eβ =
eαβ = eγ is idempotent in S, but xα is not.

5 Characteristics of Members of W and D

Proposition 5.1. The class W is closed under the formation of homomorphic images.

Proof. Let S = ∪α∈A{Sα} ∈ W and suppose ϕ : S → T is a surmorphism from S onto the
semigroup T . Let Tα = T ∩ ϕ(Sα) for all α. Then T is the disjoint union of the subsemigroups
Tα. Suppose now that x ∈ Tα and y ∈ Tβ , for some α > β. Then x = ϕ(x′) and y = ϕ(y′)
, for some x′ ∈ Sα and y′ ∈ Sβ . Therefore, xy = ϕ(x′)ϕ(y′) = ϕ(x′y′) ∈ T ∩ ϕ(Sα) = Tα
since Sα weakly dominates Sβ . It follows then that Tα weakly dominates Tβ whenever α > β,
whereupon T ∈W.

The following result follows from a straightforward set-theoretic argument, and is stated
without proof.

Proposition 5.2. The class W is closed under the formation of subsemigroups.

Definition 5.3. Suppose that T is a subsemigroup of S. Then S is an inflation of T if there is a
function ϕ : S → T such that
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(i) ϕ(x) = x, for all x ∈ T and

(ii) xy = ϕ(x)ϕ(y), for all x, y ∈ S.

Theorem 5.4. Suppose that S is an inflation of T with function ϕ : S → T satisfying the condi-
tions of the definition above. If T ∈W, then S ∈W.

Proof. If we suppose that T = ∪α∈ATα , then we define Sα = ϕ−1(Tα) for each α ∈ A. Clearly
each Sα is closed and the collection {Sα} is pairwise disjoint. To show that Sα weakly dominates
Sβ if Tα weakly dominates Tβ suppose that x ∈ Sα and y ∈ Sβ . Then xy = ϕ(x)ϕ(y) ∈ Tα ⊆
ϕ−1(Tα) = Sα, since x ∈ Sα = ϕ−1(Tα), and y ∈ Sβ = ϕ−1(Tβ) implies that ϕ(x) ∈ ϕ(Sα) =
Tα and ϕ(y) ∈ ϕ(Sβ) = Tβ .

We now turn our attention to the characterization of variants (S, ∗α) of a semigroup (S, ∗).

Definition 5.5. For any α ∈ A and a ∈ Sα we define Saγ = (Sγ , ◦) with the operation ◦ defined
by x ◦ y = a for x, y ∈ Sγ . Further, we extend this definition to Sa = ∪γ∈A{Saγ : γ < α} by
xδ ◦ yλ = a for xδ ∈ Sδ and yλ ∈ Sλ.

Clearly, Sa is a semigroup. Furthermore, Sa is D-irreducible since it contains no dominant
chains.

Theorem 5.6. Suppose that (S, ∗) is the disjoint union of a weakly dominant chain of subsemi-
groups {Sγ}. Let a ∈ Sα for some α. Then the variant (S, ∗a) = (∪γ∈A(Sγ , ∗) : γ > α) ∪
(Sα, ∗a) ∪Sa is also in D.

Proof. First, we define an associative operation on ∪γ∈A{(Sγ , ?a) : γ > α} as follows.

xδ ? yλ =


x ∗a y if x, y ∈ (Sγ , ∗a)
x if x ∈ (Sγ , ∗a), y ∈ (Sδ, ∗a) and γ > δ

y if x ∈ (Sγ , ∗a), y ∈ (Sδ, ∗a) and δ > γ

(5.1)

It follows that (∪γ∈A{(Sγ , ∗a) : γ > α}, ?) ∼= (∪γ∈ASγ , ∗a) = (S, ∗a). Consider the following
observations: First, (Sγ , ∗a) ∼= (Sγ , ∗) via the identity map whenever γ > α, since in this case,
x∗a y = x∗a∗y = x∗y. Second, (Sγ , ∗a) ∼= Saγ = (Sγ , ◦) via the identity map whenever γ < α,
since in this case, x ∗a y = x ∗ a ∗ y = a = x ◦ y. It follows that: (Sγ , ∗a) ∼= (∪γ∈A(Sγ , ∗a), ?)
∼= (∪γ∈A{(Sγ , ∗a) : γ > α}) ∪(Sα, ∗a) ∪(∪γ∈A{Saγ : γ < α}) = (∪γ∈A{(Sγ , ∗a) : γ >
α}) ∪ (Sα, ∗a) ∪ Sa. This completes the proof.

6 Finite Semigroups from D

In [1], Ash shows that if S is a finite semigroup with commuting idempotents, then there exists
a finite inverse semigroup I , a subsemigroup T of I , and a surmorphism from T onto S. He
suggests that this result could be viewed as a structure theorem for finite semigroups with com-
muting idempotents. Although the structure of the semigroups in D is known, we now consider
the consequences of applying Ash’s result to any finite semigroup S in D, whose idempotents
commute.

Theorem 6.1. Let the finite semigroup S be the union of a dominant chain {Si : 1 ≤ i ≤ n}.
Suppose that for each i, all idempotents in Si commute. Then there is a finite inverse semigroup
I , a subsemigroup T of I , and a surmorphism ϕ : T → S. Furthermore, T is a disjoint union of
a dominant chain.

Proof. Since idempotents commute in each Si and since {Si : 1 ≤ i ≤ n} is a dominant chain,
it follows that idempotents commute in S. Hence, by Theorem 2 in [1], S is a homomorphic
image of a subsemigroup T of some finite inverse semigroup I . If ϕ is this homomorphism,
then let Ti = ϕ−1(Si) for each i. It follows that T = ∪ni=1Ti . Since members of the set
{Si : 1 ≤ i ≤ n} are pairwise disjoint, it follows that members of the set {Ti : 1 ≤ i ≤ n} are
also disjoint. In order to show that Ti dominates Tj whenever i > j, let xi ∈ Ti and xj ∈ Tj .
Then ϕ(xixj)= ϕ(xi)ϕ(xj) ∈ Si, and we have xixj = xi ∈ ϕ−1(Si) = Ti. Therefore, T is a
disjoint union of a dominant chain.
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