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Abstract For an arbitrary infinite additive group G and for an uncountable compact Haus-
dorff topological group H with card(H) = card(Hℵ0) = card(HG), H-valued measurable G-
processes are constructed on the group HG and some set-theoretical characteristics of their var-
ious F∗(HG)-invariant extensions are calculated, where F∗(HG) denotes a group of transfor-
mations of HG generated by the eventually neutral sequences and all permutations of G. More
precisely, an orthogonal family of F∗(HG)-invariant extensions of the left-invariant probability
Haar-Baire measure on HG is constructed such that topological weights of metric spaces asso-
ciated with such extensions are maximal. In addition, for such a family of measures in HG, the
F∗(HG)-invariant measure extension problem is studied.

1 Introduction

Let (Ω,F , p) be a probability space and G be an infinite additive group. Further, let H be an
uncountable compact Hausdorff topological group and B(H) the Borel σ-algebra generated by
open subsets of H .

The minimal σ-algebra of subsets of H under which all continuous real-valued functions on
H are measurable is called the Baire σ-algebra of subsets of H and is denoted by B0(H). It is
obvious that B0(H) ⊆ B(H).

Let λ be a left-invariant probability Haar measure on H . Its restriction to the class B0(H) is
called a left-invariant probability Haar-Baire measure on H .

Definition 1.1. Let S be a σ-algebra of subsets of H . A stochastic process X = (Xg)g∈G :
Ω → HG is called H-valued (F , SG)-measurable G-process on (Ω,F , p) if a joint probability
distribution

F
(X)
(g1,··· ,gn)(B1, · · · , Bn) = p({ω : Xg1(ω) ∈ B1, · · · , Xgn(ω) ∈ Bn})

with (g1, · · · , gn) ∈ Gn and Bk ∈ S(1 ≤ k ≤ n, n ∈ N), does not change when shifted simul-
taneously in groups G and H(G), where H(G) denotes a group of eventually neutral sequences
defined by

H(G) = {(hg)g∈G : card{g : hg 6= e} < ω}.

In other words, the following equality

F
(X)
(g1,··· ,gn)(B1, · · · , Bn) = F

(X)
(g1+h,··· ,gn+h)(h1B1, · · · , hnBn))

holds for arbitrary h ∈ G and hk ∈ H(1 ≤ k ≤ n).

Remark 1.2. Notice that the notion of H-valued (F , SG)-measurable G-process is a generaliza-
tion of the notion of a G-process introduced in [8].
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Example 1.3. Let H be a compact Hausdorff topological group and λ be a left-invariant prob-
ability Haar measure on H . Then the family of all coordinate projections (Prg)g∈G defined on
a probability space (HG, B0(HG), λG) is H-valued (B0(HG), B0(HG)) measurable G-process,
where λG denotes the G-power of the λ.

Remark 1.4. It can be shown that λG is a left-invariant probability Haar-Baire measure on HG;
in other words, the measure λG is the restriction of the left-invariant probability Haar measure
(defined on the compact Hausdorff topological group HG) to the Baire sigma algebra B0(HG).

For g ∈ G, let Ug : HG → HG be defined by Ug((hf )f∈G) = (hf+g)f∈G. We denote by
F(HG) a group of transformations of HG generated by the groups H(G) and {Ug : g ∈ G}. A
group of transformations of HG generated by the group H(G) and the group of all permutations
of HG is denoted by F∗(HG), where under permutation of HG we understand a transformation
T : HG → HG defined by T ((hg)g∈G) = (hf(g))g∈G, where f : G → G is a usual permutation
of the set G. It is obvious that F(HG) ⊆ F∗(HG).

For an infinite additive groupG and a compact Hausdorff topological groupH with card(H) =
card(Hℵ0) = card(HG), we plan to construct a maximal(in the sense of cardinality) family of or-
thogonal F∗(HG) -invariant extensions of the left-invariant probability Haar-Baire measure λG
on HG such that topological weights of metric spaces associated with such extensions are max-
imal. In addition, for such a family of measures in HG, we plan to study the F∗(HG)-invariant
measure extension problem.

2 Some auxiliary notions and facts

Lemma 2.1. Let G be an infinite additive group. Let µ be a left-invariant probability measure
on a group H . Then the G-power µG of the measure µ is F∗(HG)-invariant probability measure
on HG.

Proof. By using Fubini theorem, one can easily prove that the measure µG is H(G)-invariant.
Let X ⊆ HG be a cylindrical set having a form

X = Bg1 × · · · ×Bgn ×HG\{g1,··· ,gn}, (2.1)

where Bgk ∈ dom(µ) for 1 ≤ k ≤ n(as usual,dom(µ) denotes the domain of the measure µ). It
is obvious that for each permutation f of the group HG we have µG(f(X)) = µG(X). Since the
class of sets having the form (2.1) constitutes an algebra A(HG) which generates the σ-algebra
(dom(µ))G, by using Charatheodory measure extension theorem we deduce that µG is invariant
with respect to the group of all permutations of HG. Now, following definition of the group
F∗(HG) we claim that the measure µG is F∗(HG)-invariant.

Lemma 2.2. Let G be an infinite additive group. Let (λk)k∈N be an orthogonal family of left
invariant extensions of the left-invariant probability Haar measure λ defined in a compact Haus-
dorff topological group H such that L = dom(λk) for each k ∈ N. Let (αk)k∈N be a sequence
of positive real numbers such that

∑
k∈N αk = 1. Let λGk be the G-power of the measure λk

for k ∈ N and µ =
∑
k∈N αkλ

G
k . Then the family of coordinate projections X = (Prg)g∈G

defined on a probability space (HG, LG, µ) is H-valued (LG, LG)-measurable G-process and
the measure µ is F∗(HG)-invariant extension of the G-power of the left invariant probability
Haar-Baire measure λG.

Proof. Step 1. Let us show that the family of coordinate projections X = (Prg)g∈G defined
on a probability space (HG, LG, µ) is H-valued (LG, LG)-measurable G-process. Indeed, for
n ∈ N , (g1, · · · , gn) ∈ Gn, Bk ∈ L(1 ≤ k ≤ n),h ∈ G and hk ∈ H(1 ≤ k ≤ n), we have

F
(X)
(g1,··· ,gn)(B1, · · · , Bn) = µ({(ωg)g∈G : (ωg)g∈G ∈ HG & (ωg1 , · · · , ωgn) ∈

n∏
k=1

Bk}) =

(
∑
k∈N

αkλ
G
k )({(ωg)g∈G : (ωg)g∈G ∈ HG & (ωg1 , · · · , ωgn) ∈

n∏
k=1

Bk}) =

∑
k∈N

αkλ
G
k ({(ωg)g∈G : (ωg)g∈G ∈ HG & (ωg1 , · · · , ωgn) ∈

n∏
k=1

Bk}) =

∑
k∈N

αkλ
G
k ({(ωg)g∈G : (ωg)g∈G ∈ HG & (ωg1+h, · · · , ωgn+h) ∈

n∏
k=1

hkBk}) =
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(
∑
k∈N

αkλ
G
k )({(ωg)g∈G : (ωg)g∈G ∈ HG & (ωg1+h, · · · , ωgn+h) ∈

n∏
k=1

hkBk}) =

µ({(ωg)g∈G : (ωg)g∈G ∈ HG & (ωg1+h, · · · , ωgn+h) ∈
n∏
k=1

hkBk}) =

F
(X)
(g1+h,··· ,gn+h)(h1B1, · · · , hnBn).

Step 2. Let us show that the measure µ is F∗(HG)-invariant extension of the left invariant
probability Haar-Baire measure λG. Indeed, following Lemma 2.1, we have that λGk is F∗(HG)-
invariant probability measure defined on the measurable space (HG, LG) for each k ∈ N. The
latter relation implies that the analogous property has the measure µ =

∑
k∈N αkλ

G
k . Since

B(H) ⊆ dom(λk) = L and λk is a left invariant extension of the λ, we deduce that λGk is an
extension of λG for each k ∈ N. Now it is obvious that µ also is an extension of λG.

Let (E,G, S, µ) be an invariant measurable space with invariant (possibly infinite) measure.
An element X ∈ S is called µ-almost G-invariant if the condition

(∀g)(g ∈ G→ µ(g(X)4X) = 0)

is fulfilled.
Let (E,G, S, µ) be a space with an invariant measure and X be a µ-almost G-invariant subset

of this space. Following [3], the function

µX : S → R
+

defined by the formula
(∀Z)(Z ∈ S → µX(Z) = µ(X ∩ Z))

is called a component of the measure µ associated with the set X .
Analogously, the component µX of the measure µ is an elementary component of µ if, for

arbitrary Z ∈ S with µ(Z) > 0, there exists a sequence (gk)k∈N of elements of the group G such
that

µ(X \
⋃
k∈N

gk(Z)) = 0.

A G-invariant measure µ is nonelementary if it does not have any elementary component.
Also note that the function %µ, defined by

(∀X)(∀Y )(X ∈ S & Y ∈ S → %µ(X,Y ) = µ(X4Y )),

is a quasimetric defined on the class dom(µ) = S of all µ-measurable subsets of the base space
E;

The pair (dom(µ), ρµ) is called a metric space associated with the measure µ.
The measure µ is called separable (nonseparable) if the topological weight a(µ) of the metric

space (dom(µ), ρµ) associated with the measure µ satisfies the condition

a(µ) < ℵ1 (a(µ) ≥ ℵ1),

where ℵ1 denotes the first uncountable cardinal number.

Lemma 2.3. ([7, Theorem 11.7, p. 175]) Let H be an uncountable locally compact σ-compact
topological group with card(Hℵ0) = card(H). Let λ be the Haar measure defined on the topo-
logical group H . Then there exists a maximal (in the sense of cardinality) orthogonal family
(λt)t∈T ofH-invariant non-elementary extensions of the Haar measure with card(T ) = 22card(H)

such that :
1) (∀i)(∀j)(i ∈ T & j ∈ T → dom(λi) = dom(λj));
2) (∀i)(i ∈ T → α(λi) is maximal & α(λi) = 2card(H)).

Definition 2.4. Let (G, ·) be an arbitrary uncountable group and X its subset. We say that X is
G-absolutely negligible (in G) if, for any σ-finite G-invariant (respectively, G-quasi-invariant)
measure µ on G, there exists a G-invariant (respectively, G-quasi-invariant) measure µ

′
on G

extending µ and satisfying the relation µ
′
(X) = 0.
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Example 2.5. Definition 2.4 implies at once that if X is a G-absolutely negligible set in G and
X does not belong to the domain of an initial measure µ, then µ is strictly extendible by using
this X . The said above immediately leads to the following method of extending µ. Denote
by ω the first infinite cardinal and suppose that a given group G admits a countable covering
{Xn : n < ω} such that all sets Xn(n < ω) are G-absolutely negligible in G. If our measure µ
is not identically equal to zero, then there exists at least one n < ω for which the set Xn does
not belong to (dom)(µ). Consequently, our µ can be strictly extended with the aid of Xn. It
is natural to ask what uncountable groups (G, ·) admit a countable covering consisting of G-
absolutely negligible sets. In this direction result of A.B. Kharazishvili (see, [4, Theorem 1, p.
259]) is an object of some interest, where absolutely negligible sets in uncountable groups are
considered in connection with the measure extension problem (for σ-finite invariant or quasi-
invariant measures) and it is proved that, for any uncountable solvable 1 group (G, ·), there exists
a countable covering of G consisting of G-absolutely negligible sets.

Example 2.6. LetH be an uncountable compact Hausdorff topological group with card(Hℵ0) 6=
card(H). We know that if H is uncountable then it’s every subset H

′
with card(H

′
) < card(H)

is H-absolutely negligible. Indeed, since cardinality of the factor group H/H
′

is uncountable,
each H-invariant (respectively, H-quasi-invariant) measure λ

′
on H extending Haar measure

λ on H with H
′ ∈ dom(λ

′
) must satisfy the relation λ

′
(H

′
) = 0. In other case, we will

get the contradiction with the σ-finiteness of λ
′
. On the other hand, we know that if α is an

infinite cardinal number such that αℵ0 > α, then, under Generalized Continuum Hypothesis,
ℵ0 is cofinal with α(see, [7], Lemma 11.1, p. 162). Since card(Hℵ0) 6= card(H), we deduce
that card(Hℵ0) > card(H) and hence, ℵ0 is cofinal with H . The latter relation means that
H is presented as a union of increasing subsets (Hn)n∈N of H with card(Hn) < card(H) for
n ∈ N . So, under General Continuum Hypothesis, the group H can be presented as the union of
a countable family of H-absolutely negligible subsets (Hn)n∈N of H whose every element has
cardinality less than the cardinality of the group H .

Example 2.7. LetH be a compact Hausdorff topological group of rotations of the plane R2 about
its origin. Since each uncountable additive group (including H) is solvable, by Example 2.5 we
deduce that the group H can be presented as the union of a countable family of H-absolutely
negligible subsets (Hn)n∈N of H .

3 Main Results

Theorem 3.1. Let G be an infinite additive group and H be an uncountable compact Hausdorff
topological group with card(H) = card(Hℵ0) = card(HG). Let λ be the Haar measure defined
on the topological group H . Then there exists an orthogonal family of probability measures
(ψt)t∈T on HG such that:

(i) (∀i)(∀j)(i ∈ T & j ∈ T → dom(ψi) = dom(ψj));
(ii) ψt is an F∗(HG)-invariant non-elementary extension of the left-invariant probability

Haar-Baire measure λG for each t ∈ T ;
(iii) card(T ) = 22card(HG)

;
(iv) (∀i)(i ∈ T → α(ψi) = 2card(H

G)).

Proof. Let (λt)t∈T be a maximal (in the sense of cardinality) orthogonal family of H-invariant
non-elementary extensions of the Haar measure with card(T ) = 22card(H)

defined by Lemma
2.3. We put ψt = λGt for each t ∈ T . Now it is obvious the conditions (i)-(iv) hold true for the
family of probability measures (ψt)t∈T .

Corollary 3.2. Let G be an infinite additive group and H be an uncountable compact Hausdorff
topological group with card(Hℵ0) = card(H). Further, let (ψt)t∈T be a family of probability
measures onHG defined by Theorem 3.1. Then the family of all coordinate projections (Prg)g∈G
defined on a probability space (HG, dom(ψt), ψt) is H-valued (dom(ψt), dom(ψt))- measurable
G-process for each t ∈ T .

1A group (G, ·) is called solvable, if we have some composition series for this group:

{e} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = G,

where e denotes the neutral element of G, each Gm is a normal subgroup of Gm+1 and all factor groups Gm+1/Gm are
commutative.
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Theorem 3.3. Let G be an infinite additive group and H be an uncountable compact Hausdorff
topological group with card(H) = card(Hℵ0) = card(HG). Suppose that the group H can be
presented as the union of a countable family of H-absolutely negligible subsets (Xn)n∈N of H .
Further, let (ψt)t∈T be a family of probability measures on HG defined by Theorem 3.1. Then
there exists a family (ψt)t∈T of probability measures on HG such that:

(i) (∀i)(∀j)(i ∈ T & j ∈ T → dom(ψi) = dom(ψj));
(ii) ψt is an F∗(HG)-invariant extension of the measure ψt for each t ∈ T ;
(iii) ψt is an F∗(HG)-invariant non-elementary extension of the left-invariant probability

Haar-Baire measure λG for each t ∈ T ;
(iv) the family of all coordinate projections (Prg)g∈G defined on a probability space

(HG, dom(ψt), ψt) is H-valued (dom(ψt), dom(ψt))- measurable G-process for each t ∈ T .

Proof. Let (λt)t∈T be the family of the left invariant extensions of the Haar measure which
comes from Lemma 2.3. Suppose that t0 ∈ T . For the family of H-absolutely negligible subsets
(Xn)n∈N of H , there is an index n0 ∈ N such that Xn0 /∈ dom(λt0). Indeed, if we assume
the contrary, then we will get that Xn ∈ dom(λt0) for each n ∈ N. Since Xn is H-absolutely
negligible subset of H for each n ∈ N, we get λt0(Xn) = 0 for each n ∈ N, which implies
that λt0(H) ≤

∑
n∈N λt0(Xn) = 0. The latter relation is the contradiction. Since dom(λt1) =

dom(λt2) for each t1, t2 ∈ T , we deduce that Xn0 /∈ dom(λt) for each t ∈ T . Now for each
X ∈ dom(λt) and countable H-configurations2 X1, X2 of the set Xn0 , we put λt((X \ X1) ∪
X2) = λt(X). We set ψt = λ

G

t for each t ∈ T . Now it is obvious to see that the conditions
(i)-(iv) hold true for the family of probability measures (ψt)t∈T .
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2A subset X ⊆ H is called a countable H-configuration of Y ⊆ H if there is a countable family of elements (hk)k∈N

of H such that X ⊆ ∪k∈NhkY .


