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Abstract In this paper we introduce the growth rate of χ2 defined by modulus function and
study general properties of these spaces and also establish some inclusion results and duals
among them..

1 Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single sequences,
respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of positive
integers. Then, w2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [3]. Later on, they were
investigated by Hardy [4], Moricz [8], Moricz and Rhoades [9], Basarir and Solankan [1], Tri-
pathy [15], Turkmenoglu [16], Tripathy [40], Tripathy and Dutta([45],[56]), Tripathy and Sarma
([48],[50],[52]) and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn <∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − L|tmn = 1for someL ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|

tmn <∞
}
,

Cbp (t) := Cp (t)
⋂
Mu (t) and C0bp (t) = C0p (t)

⋂
Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and p −
limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for all m,n ∈
N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the setsMu, Cp, C0p,Lu, Cbp and
C0bp, respectively. Now, we may summarize the knowledge given in some document related to
the double sequence spaces. Gökhan and Colak [18,19] have proved thatMu (t) and Cp (t) , Cbp (t)
are complete paranormed spaces of double sequences and calculated the α−, β−, γ− duals of
the spaces Mu (t) and Cbp (t) . Quite recently, Zelter [20] has essentially studied both the the-
ory of topological double sequence spaces and the theory of summability of double sequences.
Mursaleen and Edely [21] and Tripathy [15] have recently introduced the notion of statistical
convergence and statistically Cauchy for double sequences independently and proved a relation
between statistical convergent and strongly Cesàro summable double sequences. Mursaleen [22]
and Mursaleen and Edely [23] have defined the almost strong regularity of matrices for double
sequences and applied these matrices to establish a core theorem and introduced the M−core for
double sequences and determined those four dimensional matrices transforming every bounded
double sequences x = (xjk) into one whose core is a subset of theM−core of x.Altay and Basar
[24] have defined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of double sequences consisting
of all double series whose sequence of partial sums are in the spacesMu,Mu (t) , Cp, Cbp, Cr and
Lu, respectively, and also examined some properties of those sequence spaces and determined
the α− duals of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of
double series. Basar and Sever [25] have introduced the Banach space Lq of double sequences
corresponding to the well-known space `q of single sequences and examined some properties
of the space Lq. Subramanian and Misra [26] have studied the space χ2

M (p, q, u) of double se-
quences and proved some inclusion relations.
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Spaces are strongly summable sequences were discussed by Kuttner [28], Maddox [29], and
others. The class of sequences which are strongly Cesàro summable with respect to a modulus
was introduced by Maddox [7] as an extension of the definition of strongly Cesàro summable
sequences. Connor [30] further extended this definition and introduced the notion of strong A−
summability with respect to a modulus where A = (an,k) is a nonnegative regular matrix and
established some connections between strong A− summability, strong A− summability with re-
spect to a modulus, and A− statistical convergence. In [31] the notion of convergence of double
sequences was presented by A. Pringsheim. Also, in [32]-[33], and [34] the four dimensional
matrix transformation (Ax)k,` =

∑∞
m=1

∑∞
n=1 a

mn
k` xmn was studied extensively by Robison and

Hamilton.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and 0 < p < 1, we

have
(a+ b)p ≤ ap + bp (1.1)

The double series
∑∞
m,n=1 xmn is called convergent if and only if the double sequence (smn) is

convergent, where smn =
∑m,n
i,j=1,1 xij(m,n ∈ N) .

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n
< ∞. The vector

space of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is called
double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai sequences
will be denoted by χ2. Let φ = {all finite sequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence is defined
by x[m,n] =

∑m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the double sequence whose only

non zero term is a 1
(i+j)! in the (i, j)

th place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (=mn) is a Schauder basis
for X . Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable; locally
convex topology under which the coordinate mappings x = (xk) → (xmn)(m,n ∈ N) are also
continuous.

Orlicz[11] used the idea of Orlicz function to construct the space
(
LM
)
. Lindenstrauss and

Tzafriri [6] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz
sequence space `M contains a subspace isomorphic to `p (1 ≤ p <∞) . Subsequently, different
classes of sequence spaces were defined by Parashar and Choudhary [12], Mursaleen et al., Bek-
tas and Altin [2], Tripathy et al. [43], Rao and Subramanian [13], and many others. The Orlicz
sequence spaces are the special cases of Orlicz spaces studied in [5].

Recalling [11] and [5], an Orlicz function is a function M : [0,∞) → [0,∞) which is con-
tinuous, non-decreasing, and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) → ∞
as x → ∞. If the convexity of Orlicz function M is replaced by subadditivity of M, then this
function is called the modulus function, defined by Nakano [10] and further discussed by Ruckle
[14] and Maddox [7], Tripathy and Chandra [53] and many others.

An modulus function M is said to satisfy the ∆2− condition for small u or at 0 if for each
k ∈ N, there exist Rk > 0 and uk > 0 such that M (ku) ≤ RkM (u) for all u ∈ (0, uk] .
Moreover, an modulus function M is said to satisfy the ∆2− condition if and only if

limu→0+sup
M(2u)
M(u) <∞

Two Modulus functions M1 and M2 are said to be equivalent if there are positive constants
α, β and b such that

M1 (αu) ≤M2 (u) ≤M1 (βu) for all u ∈ [0, b] .

An modulus function M can always be represented in the following integral form

M (u) =
∫ u

0 η (t) dt,

where η, the kernel of M, is right differentiable for t ≥ 0, η (0) = 0, η (t) > 0 for t > 0, η is
non-decreasing and η (t)→∞ as t→∞ whenever M(u)

u ↑ ∞ as u ↑ ∞.
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Consider the kernel η associated with the modulus functionM and let

µ (s) = sup {t : η (t) ≤ s} .

Then µ possesses the same properties as the function η. Suppose now

Φ =
∫ x

0 µ (s) ds.

Then, Φ is an modulus function. The functions M and Φ are called mutually complementary
Orlicz functions.

Now, we give the following well-known results.
Let M and Φ be mutually complementary modulus functions. Then, we have:

(i) For all u, y ≥ 0,
uy ≤M (u) + Φ (y) , (Y oung′s inequality) (1.2)

(ii) For all u ≥ 0,
uη (u) =M (u) + Φ (η (u)) . (1.3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) (1.4)

Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to construct Orlicz sequence space

`M =
{
x ∈ w :

∑∞
k=1 M

(
|xk|
ρ

)
<∞, for someρ > 0

}
,

The space `M with the norm

‖x‖ = inf
{
ρ > 0 :

∑∞
k=1 M

(
|xk|
ρ

)
≤ 1
}
,

becomes a Banach space which is called an Orlicz sequence space. ForM (t) = tp (1 ≤ p <∞) ,
the spaces `M coincide with the classical sequence space `p.
If X is a sequence space, we procure the following definitions:

(i)X
′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| <∞, for each x ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, for each x ∈ X

}
;

(iv)Xγ =
{
a = (amn) : supmn ≥ 1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ <∞, for each x ∈ X
}

;

(v)let X be an FK − space ⊃ φ; then Xf =
{
f(=mn) : f ∈ X ′

}
;

(vi)Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n

<∞, for each x ∈ X
}

;

Xα.Xβ , Xγ are called α − (or Köthe− Toeplitz) dual of X,β − (or generalized−
Köthe− Toeplitz) dual ofX, γ − dual of X, δ − dual ofX respectively.Xα

is found in Gupta and Kamptan [17]. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series need not to be
bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz
[27] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent,null and bounded sclar valued single se-
quences respectively. The difference space bvp of the classical space `p is introduced and studied
in the case 1 ≤ p ≤ ∞ by Başar and Altay in [37] and in the case 0 < p < 1 by Altay and Başar
in [38]. The spaces c (∆) , c0 (∆) , `∞ (∆) and bvp are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp = (
∑∞
k=1 |xk|

p)
1/p

, (1 ≤ p <∞) .
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Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xm,n − xm,n+1)−(xm+1,n − xm+1,n+1) = xm,n−xm,n+1−

xm+1,n + xm+1,n+1 for all m,n ∈ N.

2 Definitions and Preliminaries

2.1 Definition

A modulus function was introduced by Nakano [10]. We recall that a modulus f is a function
from [0,∞)→ [0,∞) , such that
(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|) , it follows from here
that f is continuous on [0,∞) .

2.2 Definition

Let A =
(
amnk,`

)
denote a four dimensional summability method that maps the complex double

sequences x into the double sequence Ax where the k, `− th term to Ax is as follows:

(Ax)k` =
∑∞
m=1

∑∞
n=1 a

mn
k` xmn

such transformation is said to be nonnegative if amnk` is nonnegative.
The notion of regularity for two dimensional matrix transformations was presented by Silver-

man [35] and Toeplitz [36]. Following Silverman and Toeplitz, Robison and Hamilton presented
the following four dimensional analogue of regularity for double sequences in which they both
added an adiditional assumption of boundedness. This assumption was made because a double
sequence which is P− convergent is not necessarily bounded.

2.3 Definition

A sequence t is called a growth gai sequence of modulus, for a set X of sequences if xmn =

o (tmn)⇔ f
(
(m+ n)!

∣∣∣xmntmn

∣∣∣)1/m+n
→ 0 as m, n→∞.

2.4 Definition

A sequence t is called a growth analytic sequence of modulus, for a set X of sequences if

xmn = O (tmn)⇔ f
(∣∣∣xmntmn

∣∣∣)1/m+n
<∞ ∀m,n.

3 Main Results

3.1 Theorem

If χ2 has a growth sequence of modulus then χ2
fπ has a growth sequence of modulus

Proof: Let χ2
fπ be a growth sequence of modulus. Then f

(
(m+ n)!

∣∣∣xmntmn

∣∣∣)1/m+n
→ 0 as m, n→

∞. Let x ∈ χ2
fπ. Then

{
xmn
πmn

}
∈ χ2

f .We have f
(
(m+ n)!

∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
≤ f ((m+ n)! |xmn|)1/m+n ≤

|πmntmn| → 0 as m, n→∞, which means that
f ((m+ n)! |xmn|)1/m+n ≤ |πmntmn| → 0 as m, n → ∞. Thus {πmntmn} is a growth se-
quence for χ2

fπ. In other words, χ2
fπ has the growth sequence πt.

3.2 Theorem

Let χ2
f be a BK metric space. Then the rate space χ2

fπ has a growth sequence of modulus.

Proof: Let x ∈ χ2
fπ. Then

{
xmn
πmn

}
∈ χ2

f .
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Put Pmn (x) = xmn
πmn
∀x ∈ χ2

fπ. Then Pmn is a continuous functional on χ2
fπ. Hence |Pmn| → 0

as m,n→∞.

Also for every positive integer m,n, we have f
(
(m+ n)!

∣∣∣xmnπmn

∣∣∣)1/m+n
= |Pmn (x)| ≤

|Pmn (x)πmn| f ((m+ n)! |xmn|)1/m+n → 0 as m, n → ∞. Hence xmn = o (Pmnπmn) .
Thus {Pmnπmn} is a growth sequence for χ2

fπ.

3.3 Theorem(
χ2
π

)α
= Λ2

1/π

Proof: Let x ∈ Λ2
1/π. Then there exists M > 0 with |πmnxmn| ≤ Mm+n ∀m,n ≥ 1. Choose

ε > 0 such that εM < 1.
If y ∈ χ2

π, we have
(
(m+ n)!

∣∣∣ ymnπmn

∣∣∣) ≤ εm+n ∀m,n ≥ m0n0 depending on ε.

Therefore
∑
|xmnymn| ≤

∑ (Mε)m+n

(m+n)! <∞, Hence

Λ
2
1/π ⊂

(
χ2
π

)α
(3.1)

On the other hand, let x ∈
(
χ2
π

)α
. Assume that x /∈ Λ2

1/π. Then there exists an increasing
sequence {pmnqmn} of positive integers such that
|πpmnqmnxpmnqmn | > (m+ n)! (m+ n)

2(pmn+qmn) ∀m,n > m0n0. Take Take y = {ymn} by

ymn =

{
πmn

(m+n)!(m+n)2(pmn+qmn) , for (p, q) = (pm, qn)

0, for (p, q 6= pmqn)
(3.2)

Then {ymn} ∈ χ2
π, but

∑
|xmnymn| =∞, a contradiction. This contradiction shows that(

χ2
π

)α ⊂ Λ
2
1/π (3.3)

From (3.1) and (3.3) it follows that
(
χ2
π

)α
= Λ2

1/π.

3.4 Theorem[
Λ2
fπ

]β
=
[
Λ2
fπ

]α
=
[
Λ2
fπ

]γ
= η2

Mπ,

where η2
M =

⋂
N∈N−{1}

{
x = xmn :

∑
m,n

(
f

(
| xmn
πmntmn

|Nm+n

ρ

))
<∞

}
.

Proof (1) First we show that η2
fπ ⊂

[
Λ2
fπ

]β
.

Let x ∈ η2
fπ and y ∈ Λ2

fπ. Then we can find a positive integer N such that
(
|ymn|1/m+n

)
<

max
(

1, supm,n≥1

(
|ymn|1/m+n

))
< N, for all m,n.

Hence we may write∣∣∣∑m,n xmnymn

∣∣∣ ≤∑m,n |xmnymn| ≤
∑
mn

(
f
(
|xmnymn|

ρ

))
≤
∑
m,n

(
f

(
| xmn
πmntmn

|Nm+n

ρ

))
.

Since x ∈ η2
fπ. the series on the right side of the above inequality is convergent, whence

x ∈
[
Λ2
fπ

]β
. Hence η2

fπ ⊂
[
Λ2
fπ

]β
.

Now we show that
[
Λ2
fπ

]β
⊂ η2

fπ.

For this, let x ∈
[
Λ2
fπ

]β
, and suppose that x /∈ Λ2

fπ. Then there exists a positive integer

N > 1 such that
∑
m,n

(
f

(
| xmn
πmntmn

|Nm+n

ρ

))
=∞.

If we define ymn = (Nm+n/πmntmn)Sgn (xmn) m,n = 1, 2, · · · , then y ∈ Λ2
fπ.

But, since
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∣∣∣∑m,n xmnymn

∣∣∣ = ∑
mn

(
f
(
|xmnymn|

ρ

))
=
∑
m,n

(
f

(
|xmn|(Nm+n/πmntmn)

ρ

))
= ∞, we

get x /∈
[
Λ2
fπ

]β
, which contradicts to the assumption x ∈

[
Λ2
fπ

]β
. Therefore x ∈ η2

fπ. There-

fore
[
Λ2
fπ

]β
= η2

fπ.

(ii)and (iii) can be shown in a similar way of (i). Therefore we omit it.

3.5 Theorem

Let f be an modulus function which satisfies the ∆2−condition and if χ2
fπ is a growth sequence

then χ2
π ⊂ χ2

fπ

Proof Let
x ∈ χ2

π. (3.4)

Then
(
((m+ n)! |xmn/πmntmn|)1/m+n

)
≤ ε for sufficiently large m,n and every ε > 0.

But then by taking ρ ≥ 1/2,(
f
(
((m+n)!|xmn/πmntmn|)1/m+n

ρ

))
≤
(
f
(
ε
ρ

))
(because M is non-decreasing)

≤ (f (2ε))

⇒
(
f
(
(|xmn/πmntmn|)1/m+n

ρ

))pmn
≤ Kf (ε) (by the ∆2− condition, for some k > 0)

≤ ε (by defining f (ε) < ε/K)(
f

(
(|xmn/πmntmn|)1/m+n

ρ

))pmn
→ 0asm, n→∞. (3.5)

Hence
x ∈ χ2

fπ. (3.6)

From (3.4) and (3.6) we get χ2
π ⊂ χ2

fπ.

3.6 Theorem

If χ2
fπ is a growth sequence then η2

fπ ⊂
[
χ2
fπ

]β ⊂
6= Λ2

π

ProofCase1:First we show that η2
fπ ⊂

[
χ2
fπ

]β
.

We know that χ2
fπ ⊂ Λ2

fπ.[
Λ2
fπ

]β
⊂ [χfπ]

β
. But

[
Λ2
fπ

]β
= η2

fπ, by Theorem 3.4.

Therefore
η2
fπ ⊂ χ2

fπ. (3.7)

case2: Now we show that
[
χ2
fπ

]β ⊂
6= Λ2

π.

Let y = {ymn} be an arbitrary point in
(
χ2
fπ

)β
. If y is not in Λ2

π, then for each natural
number q, we can find an index mqnq such that(

f

(
((mq+nq)!|ymqnq/πmqnq tmqnq |)1/mq+nq

ρ

))
> q, (1, 2, 3, · · · )

Define x = {xmn} by
(
f
(
(xmnπmntmn

ρ

))
= 1

(m+n)!qm+n for (m,n) = (mq, nq) for some

q ∈ N; and
(
f
(
xmnπmntmn

ρ

))
= 0 otherwise.

Then x is in χ2
fπ, but for infinitely mn,(

f

(
|ymnxmn|

ρ

))pmn
> 1. (3.8)
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Consider the sequence z = {zmn} , where
(
f
(

2!z11/π11t11
ρ

))
=
(
f
(

2!x11/π11t11
ρ

))
− s with

s =
∑(

f
(
(m+n)!xmn

ρ

))
; and(

f
(
(m+n)!zmn/πmntmn

ρ

))
=
(
f
(
(m+n)!xmn/πmntmn

ρ

))
(m,n = 1, 2, 3, · · · )

Then z is a point of χ2
fπ. Also

∑(
f
(
(m+n)!zmn/πmntmn

ρ

))
= 0. Hence z is in χ2

fπ.

But, by the equation (3.8),
∑(

M
(
zmnymn

ρ

))
does not converge.

⇒
∑
xmnymn diverges.

Thus the sequence y would not be in
(
χ2
fπ

)β
. This contradiction proves that

(
χ2
fπ

)β ⊂ Λ
2
π. (3.9)

If we now choose f = id,where id is the identity and (1 + n)!y1n/π1nt1n = (1 + n)!x1n/π1nt1n =
1 and (m+ n)!ymn/πmntmn = (m+ n)!xmn/πmntmn = 0 (m > 1) for all n, then obviously
x ∈ χ2

fπ and y ∈ Λ2
π, but

∑∞
m,n=1 xmnymn =∞, hence

y /∈
(
χ2
fπ

)β
. (3.10)

From (3.9) and (3.10) we are granted (
χ2
fπ

)β ⊂6= Λ
2
π. (3.11)

Hence (3.7)and (3.11)we are granted η2
fπ ⊂

[
χ2
fπ

]β ⊂
6= Λ2

π.

3.7 Proposition

χ2
fπ ⊂ Γ2

fπ

Proof: Let x ∈ χ2
fπ.

Then we have
(
(m+ n)!

∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
→ 0asm, n→∞.

Here, we get
∣∣∣ xmn
πmntmn

∣∣∣1/m+n
→ 0asm, n→∞. Thus we have x ∈ Γ2

fπ and so χ2
fπ ⊂ Γ2

fπ.

3.8 Theorem

If Γ2
fπ is a growth sequence then η2

fπ ⊂
[
Γ2
fπ

]β ⊂
6= Λ2

π

ProofCase1:First we show that η2
fπ ⊂

[
Γ2
fπ

]β
.

We know that Γ2
fπ ⊂ Λ2

fπ.[
Λ2
fπ

]β
⊂ [Γfπ]

β
. But

[
Λ2
fπ

]β
= η2

fπ, by Theorem 3.4.

Therefore
η2
fπ ⊂ Γ

2
fπ. (3.12)

case2: Now we show that
[
Γ2
fπ

]β ⊂
6= Λ2

π.

Let y = {ymn} be an arbitrary point in
(

Γ2
fπ

)β
. If y is not in Λ2

π, then for each natural
number q, we can find an index mqnq such that(

f

(
(|ymqnq/πmqnq tmqnq |)1/mq+nq

ρ

))
> q, (1, 2, 3, · · · )

Define x = {xmn} by
(
f
(
(xmnπmntmn

ρ

))
= 1

qm+n for (m,n) = (mq, nq) for some q ∈ N;

and
(
f
(
xmnπmntmn

ρ

))
= 0 otherwise.
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Then x is in Γ2
fπ, but for infinitely mn,(

f

(
|ymnxmn|

ρ

))pmn
> 1. (3.13)

Consider the sequence z = {zmn} , where
(
f
(
z11/π11t11

ρ

))
=
(
f
(
x11/π11t11

ρ

))
− s with s =∑(

f
(
(m+n)!xmn

ρ

))
; and(

f
(
zmn/πmntmn

ρ

))
=
(
f
(
xmn/πmntmn

ρ

))
(m,n = 1, 2, 3, · · · )

Then z is a point of Γ2
fπ. Also

∑(
f
(
zmn/πmntmn

ρ

))
= 0. Hence z is in Γ2

fπ.

But, by the equation (3.13),
∑(

f
(
zmnymn

ρ

))
does not converge.

⇒
∑
xmnymn diverges.

Thus the sequence y would not be in
(

Γ2
fMπ

)β
. This contradiction proves that

(
Γ

2
Mπ

)β ⊂ Λ
2
π. (3.14)

If we now choose M = id, where id is the identity and y1n/π1nt1n = x1n/π1nt1n = 1 and
ymn/πmntmn = xmn/πmntmn = 0 (m > 1) for all n, then obviously x ∈ Γ2

Mπ and y ∈ Λ2
π, but∑∞

m,n=1 xmnymn =∞, hence

y /∈
(
Γ

2
Mπ

)β
. (3.15)

From (3.14) and (3.15) we are granted

(
Γ

2
Mπ

)β ⊂6= Λ
2
π. (3.16)

Hence (3.12)and (3.16)we are granted η2
Mπ ⊂

[
Γ2
Mπ

]β ⊂6= Λ2
π.

3.9 Proposition

The β− dual space of χ2
fπ is Λ2

fπ

Proof: First, we observe that χ2
fπ ⊂ Γ2

fπ, by Proposition 3.7. Theorefore
(

Γ2
fπ

)β
⊂
(
χ2
fπ

)β
.

But
(

Γ2
fπ

)β ⊂
6= Λ2

fπ, by Proposition 3.8. Hence

Λ
2
fπ ⊂

(
χ2
fπ

)β
(3.17)

Next we show that
(
χ2
fπ

)β
⊂ Λ2

fπ. Let y = (ymn) ∈
(
χ2
fπ

)β
.Consider f (x) =

∑∞
m=1

∑∞
n=1 xmnymn

with x = (xmn) ∈ χ2
fπ

x = [(=mn −=mn+1)− (=m+1n −=m+1n+1)]

=



0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.

.

.

0, 0, ...πmntmn(m+n)! ,
−πmntmn
(m+n)! , ... 0

0, 0, ...0, 0, ... 0


−



0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.

.

.

0, 0, ...πmntmn(m+n)! ,
−πmntmn
(m+n)! , ... 0

0, 0, ...0, 0, ... 0


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{(
(m+ n)!

∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
}

=



0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.

.

.

0, 0, ...πmntmn(m+n)! ,
−πmntmn
(m+n)! , ... 0

0, 0, ...−πmntmn(m+n)! , πmntmn
(m+n)! , ... 0

0, 0, ...0, 0, ... 0



. Hence con-

verges to zero.

Therefore [(=mn −=mn+1)− (=m+1n −=m+1n+1)] ∈ χ2
fπ.

Hence d ((=mn −=mn+1)− (=m+1n −=m+1n+1) , 0) = 1. But

|ymn| ≤ ‖f‖ d ((=mn −=mn+1)− (=m+1n −=m+1n+1) , 0) ≤ ‖f‖ · 1 <∞ for each m,n. Thus
(ymn) is a double growth rate of an bounded sequence and hence an growth rate of an analytic

sequence. In other words y ∈ Λ2
fπ. But y = (ymn) is arbitrary in

(
χ2
fπ

)β
. Therefore

(
χ2
fπ

)β ⊂ Λ
2
fπ (3.18)

From (3.17) and (3.18) we get
(
χ2
fπ

)β
= Λ2

fπ.

3.10 Proposition

χ2
fπ has AK

Proof: Let x = (xmn) ∈ χ2
fπ and take the [m,n]th sectional sequence of x.We have d

(
x, x[r,s]

)
=

supmn

{(
(m+ n)!

∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
: m ≥ r, n ≥ s

}
→ 0as [r, s] → ∞. Therefore x[r,s] → x

in χ2
fπ as r, s→∞. Thus χ2

fπ has AK.

3.11 Proposition

χ2
fπ is solid

Proof: Let |xmn| ≤ |ymn| and let y = (ymn) ∈ χ2
fπ. We have(

(m+ n)!
∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
≤
(
(m+ n)!

∣∣∣ ymn
πmntmn

∣∣∣)1/m+n
. But

(
(m+ n)!

∣∣∣ ymn
πmntmn

∣∣∣)1/m+n
∈

χ2
fπ, because y ∈ χ2

fπ. That is
(
(m+ n)!

∣∣∣ ymn
πmntmn

∣∣∣)1/m+n
→ 0⇒

(
(m+ n)!

∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
→

0asm, n→∞. Therefore x = (xmn) ∈ χ2
fπ.

3.12 Proposition

Λ− dual of χ2
fπ is Λ2

fπ

Proof: Let y ∈ Λ− dual of χ2
fπ. Then |xmnymn| ≤ Mm+n for some constant M > 0 and for

each x ∈ χ2
fπ. Therefore |ymn| ≤Mm+n for each m,n by taking

x = =mn =



0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.

.

.

0, 0, ...πmntmn(m+n)! , 0, ... 0
0, 0, ...0, 0, ... 0


.
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This shows that y ∈ Λ2
fπ. Then (

χ2
fπ

)Λ ⊂ Λ
2
fπ (3.19)

On the other hand, let y ∈ Λ2
fπ. Let ε > 0 be given. Then |ymn| < Mm+n for each m,n

and for some constant M > 0. But x ∈ χ2
fπ. Hence

(
(m+ n)!

∣∣∣ xmn
πmntmn

∣∣∣) < εm+n for each m,n

and for each ε > 0. i.e |xmn| < εm+nπmntmn
(m+n)! . Hence

|xmnymn| = |xmn| |ymn| < εm+nπmntmn
(m+n)! Mm+n = (εM)m+nπmntmn

(m+n)!

⇒ y ∈
(
χ2
fπ

)Λ

Λ
2
fπ ⊂

(
χ2
fπ

)Λ
(3.20)

From (3.19) and (3.20) we get
(
χ2
fπ

)Λ

= Λ2
fπ.

3.13 Proposition

Let
(
χ2
fπ

)∗
denote the dual space of χ2

fπ. Then we have
(
χ2
fπ

)∗
= Λ2

fπ.

Proof: We recall that

x = =mn =



0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.

.

.

0, 0, ...πmntmn(m+n)! , 0, ... 0
0, 0, ...0, 0, ... 0


.

with πmntmn
(m+n)! in the (m,n)

th position and zero other wise, with

x = =mn,
{(

(m+ n)!
∣∣∣ xmn
πmntmn

∣∣∣)1/m+n
}
=

01/2, 0, ...0, 0, ... 01/1+n

.

.

.

01/m+1, 0, ...
(
(m+n)!πmntmn
(m+n)!πmntmn

)1/m+n
, 0, ... 01/m+n+1

01/m+2, 0, ...0, 0, ... 01/m+n+2


.

=



0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.

.

.

0, 0, ...11/m+n, 0, ... 0
0, 0, ...0, 0, ... 0


.

which is a double growth rate of χ sequence. Hence=mn ∈ χ2
fπ. Let us take f (x) =

∑∞
m=1

∑∞
n=1 xmnymn

with x ∈ χ2
fπ and f ∈

(
χ2
fπ

)∗
. Take x = (xmn) = =mn ∈ χ2

fπ. Then
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|ymn| ≤ ‖f‖ d (=mn, 0) <∞ for each m,n

Thus (ymn) is a growth rate of bounded sequence and hence double growth rate of an analytic

sequence. In other words y ∈ Λ2
fπ. Therefore

(
χ2
fπ

)∗
= Λ2

fπ.
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