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Abstract Energy risk management requires an efficient prediction of CO2 future prices. We
apply a neural network calibrated stochastic model to predict day ahead future prices suitable for
risk management with a given time horizon (e.g. 10 business days). The model is training neural
perceptron layers to learn the weights of historical time series points within a past horizon equal
to the the memory depth (e.g. previous 10 business days). With this weights, the parameters of
the stochastic model are optimized, and the day ahead carbon future price is computed.
Iterating these steps, we obtain price forecasts, which demonstrate the learning efficiency of our
method, which essentially corresponds to a stochastic process with time-dependent parameters,
the dynamics of the parameters being themselves learned continuously by the neural network.
The back propagation in training the previous weights is limited by the memory depth. The latter
is the analogue of the maximal time lag of an autoregressive processes.

1 Introduction

The issue of correctly pricing forward contracts is important for all market participants in the
energy trading sector. Presently, embedding CO2 trading into the risk assessment and mitigation
strategies has become standard. Hence CO2 emissions nowadays have emerged as a charac-
teristic new risk factor of the energy production and trading sector. In order to integrate CO2
emissions into the risk-return analysis, an efficient and realistic prediction of their future prices
is crucial. Day ahead prices of CO2 emission allowances can be used for risk management with
a given time horizon (e.g. 10 days).
An efficient stochastic model for energy prices and their derivatives was considered in [1], and for
wind energy a certain class of such stochastic models has been compared in [2] to an alternative
model with less structure but with a learning calibration (via a 2-layer MLP neural network). In
any case, the calibration of the stochastic process is crucial. In the following we will focus on
this problem.
Usually, stochastic model parameters for price processes of traded energy or related energy and
climate resources are calibrated structurally to a given history of the processes by via maximum
likelihood estimation (MLE) and nonlinear regression methods. These methods are however
neglecting the fact that the market making agents do not weight all historical prices equally but
rather put different weights on prices at different points of the historical time series. The weights
are different due to both, different importance given to different structures (e.g. Elliott waves) of
the time series, and memory decaying with the size of the time lag.
For standard nonlinear regression methods based on the Levenberg-Marquardt method [3], [4]
there exists a well-elaborated theory, including proofs of convergence in sufficiently well-behaved
local regions of the parameter space. Nevertheless, in larger regions of the parameter space they
usually fail to detect the correct minimum among several local ones. Therefore, simulated an-
nealing [5] or adaptive lattice algorithms [6] have been proposed as alternatives for global cal-
ibration of nonlinear functions. Apart from that, a common weakness of all the conventional
calibration methods is that, they are applied once for all, rather than dynamically.
As we will see below, learning neural perceptron layers may provide a method to calibrate
stochastic asset models with more realistic and dynamical weights on the historical input data.
Neural networks as mathematical methods have been developed in particular in the context of
pattern recognition (see e.g. [7]). their applications in this context have a wide range including
such different topics like criminal profiling [8], electronic noses for odour detection and classifi-
cation [9], tumor shape analysis [10], and many more.
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In mathematical finance, neural networks of multilayer perceptron (MLP) type have only in
recent years being investigated as a serious alternative to statistical estimation such as MLE in
the context of stochastic processes (see e.g. [11]).
Below we use a neural network calibrated stochastic model to predict day ahead prices for CO2
emission permits. This new synthesis of neural networks and stochastic processes was tested for
prediction of predict financial risk factors in [12] and [13], and for energy and climate related risk
factors in [14]. We demonstrate the neural network calibration method as a serious alternative to
the standard MLE methods.
We proceed as follows. First, we review the stochastic processes and the calibration methods
usually applied in models for energy-related risk factors. Then we review the MLP neural net-
work methodology.
Following the approach of [2] and [14] we combine stochastic process and neural network, cali-
brating the process parameters via MLP-estimation.
As an example, we apply our model to CO2 emission allowances quoted at the Inter-Continental
Exchange (ICE) under the ISIN number XC000A0C4KJ2.

2 Stochastic processes for energy risk factors

The price of CO2 emission allowances constitutes a typical energy related risk factor. In this
section we review the general setting for the stochastic processes underlying to energy prices,
related risk factors, and further derivatives.
We consider a stochastic asset modeled over an semimartingale independent increment RCLL
(cadlag) process I in R, having the Levy-Kintchine representation

I(t) = γ(t) +M(t) +

∫ t

0

∫
|z|<1

zÑ(ds, dz) +

∫ t

0

∫
|z|≥1

zN(ds, dz), (2.1)

where γ is of finite variation on finite intervals, M is a local continuous martingale with finite
quadratic variation C, N(·) is a random jump measure and Ñ(·) := N(·) − E[N(·)] is the
compensated random jump measure.
In the special case when I is stationary, the compensator factorizes,

E[N(dt, dz)] = dt`(dz) . (2.2)

Here I is a Levy process with Levy measure `(·) and characteristic triplet (γ,C, `(·)).
Given I , a CAR(n) process X in Rn is defined as

dXq = Xq+1 dt, q = 1, . . . , n− 1

dXn = −

 n∑
q=1

αq(t)Xq

 dt+ σ(t)dI(t) , (2.3)

which can be written in compact matrix form as

dX = A(t)Xdt+ σ(t)endI(t) , (2.4)

with n× n matrix

A(t) :=



0 1 0 · · · 0
0 0 1 · · · 0
...

...
... ·

...
0 0 · · · · · · 1

−α1(t) −α2(t) · · · · · · −αn(t)

 . (2.5)

The CAR(n) case above is a special case of a more general CARMA(n,m) process, which can
be defined generally similar as in [15]. There it was introduced for the case of I being a second-
order Levy processes with E[L(1)2] <∞.
Finally, the asset process S in R is modeled on the basis of the first component X1 of the CAR
process. It is modeled through a real-valued function G(x1, x2) with x1 = g(t) given as as a
deterministic function of time, and x2 = f(X(t)) as a function of the given CAR(n) process X .
The function g(t) is supposed to capture all known deterministic features such as trend, season-
alities, etc. Its parameters can be fitted to the historical data via a least square regression.
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The function f(X) is a deterministic transformation of the stochastic process X . In practice,
martingale asset processes S are often related to a fundamental stochastic process X via

dS = SβdX , β ∈ [0, 1] (2.6)

Here the inverse of the solution S = f(X) is determined (modulo integration constant) as

d(f−1(y)) =
dy

y−β
. (2.7)

The two most important special cases are β = 0, i.e. f(X) = X . and β = 1, i.e. f(x) = eX .
The initial condition X(0) = 0 implies f(0) = 0 in the former case, and f(0) = 1 in the latter.
The choice of G should be such that the stochastic part of the process adds to the deterministic
part in a natural way. Hence for β = 0, f(X) = X , we choose G(x1, x2) = x1 + x2, yielding

S(t,X(t)) = g(t) + f(X(t)) , (2.8)

and for β = 1, f(X) = eX , we choose G(x1, x2) = x1 · x2, yielding

S(t,X(t)) = g(t)eX(t) = e
∫ t

0 µ(s)ds+X(t) , (2.9)

with µ(t) := d
dt ln g(t).

Summing up, S is given as

S(t,X(t)) = C (g(t), f(X1)) (2.10)

dXq = Xq+1 dt, q = 1, . . . , n− 1 (2.11)

dXn = −

 n∑
q=1

αq(t)Xq

 dt+ σ(t)dI(t) . (2.12)

Discretization of the CAR(n) process X with dti := ti+1 − ti reads

Xq+1(ti) =
Xq(ti+1)−Xq(ti)

dti
, q = 1, . . . , n− 1, (2.13)

Xn(ti+1) −

( 1
dti
− αq(ti)

)
Xn(ti)−

n−1∑
q=1

αq(ti)Xq(ti)

 dti = σ(ti)εi , (2.14)

where εi is a random number distributed according to the pdf of dI(ti). According to (2.14) the
coefficients functions αq(t), q = 1, . . . , n, can determined by regression. For time-independent
constants αq, the regression becomes linear. Recursion of (2.13), inserting into (2.14), and re-
solving for X1 then shows that the discretized CAR(n) process is in fact an AR(n) process,

X1(tn+1) =
n∑
q=1

γq X1(tq) (2.15)

with parameters γq depending linearly on the original reversion coefficients αq.
In the special case where X is CAR(1), it is a mean reverting Ornstein-Uhlenbeck (OU) process

dX = −α(t)Xdt+ σ(t)dI(t) . (2.16)

Such an OU process is known to have the unique strong solution

X(t) = X0e
∫ t

0 α(s)ds +

∫ t

0
σ(u)e

∫ u
0 αdsdI(t) . (2.17)

The OU process driven by Brownian motion was applied in [16] for yield modeling with dynam-
ically controlled time-dependent volatility.
For β = 1, the asset process then follows as

S(t) = e
∫ t

0 (µ(s)ds+X(t)

= e
∫ t

0 (µ(s)−α(s)X(s))ds+
∫ t

0 σ(t)dI(t) . (2.18)
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The general Ito-formula for semimartingales, can be applied to S = f(X), in order to yield an
explicit form of the dynamics of S(t).
Specializing to the case of a standard Brownian motion dI = dW , µ(t) = µy and σ(t) = σy
constant, the yield y := lnS follows the SDE

dy = µydt+ σydW (2.19)

µy := µ− σ2

2
(2.20)

σy := σ (2.21)

while

dS = µSdt+ σSdW. (2.22)

The solution of the SDE (2.19) now reads

y(t) = y(0) + µyt+ σy

∫ t

0
dW

= y(0) +
(
µ− σ2

2

)
t+ σ

∫ t

0
dW . (2.23)

Here
∫ t

0 dW is time-integrated white noise, normally distributed with∫ t

0
dW ∼ N(0,

√
t). (2.24)

Hence for simulation purpose, we may replace it by a dynamically scaled standard normal ran-
dom variable ε, ∫ t

0
dW

d
=
√
tε . (2.25)

With S0 := ey(0), the solution of the SDE (2.22) may be written as

S(t) = ey(t)

d
= S0e

(
µ−σ2

2

)
t+σ
√
tε

, (2.26)

and its expected value is

E[S(t)] = E[ey(t)+
1
2σ

2t]

= S(0)eµt . (2.27)

Setting ε := k, the kσ bound of (2.19) is obtained

ykσ(t) = y(0) +
(
µ− σ2

2

)
t+ kσ

√
t , (2.28)

which yields a corresponding bound for the log-normal process

Skσ(t) = S(0)e
(
µ−σ2

2

)
t+kσ

√
t

= Smed(t)e
kσ
√
t . (2.29)

The case k = 0 yields the median curve

Smed(t) = S(0)e
(
µ−σ2

2

)
t

, (2.30)

which is related to the forward (expected) price

F (t) := E[S(t)]

by

F (t) = Smed(t)e
1
2σ

2t . (2.31)

Therefore, corresponding bounds for the forward price are given as

Fkσ(t) = Smed(t)e
1
2σ

2t+kσ
√
t

= F (t)ekσ
√
t . (2.32)
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3 MLE parameter calibration

The discretization of Ito-processes at ti−1 requires to consider on the forward time interval
[ti−1, ti], the difference

dti := ti − ti−1 , (3.1)

the finite difference of the log-normal random variable

dSi := Si − Si−1 , (3.2)

the return

dSi
Si−1

:=
Si
Si−1

− 1 , (3.3)

and the finite difference of the corresponding normal random variable

dyi := ln
Si
Si−1

. (3.4)

Correspondingly, the (dti-weighted) estimators are

µ̂ :=
1∑n

i=1 dti

n∑
i=1

dti

[
1
dti

dSi
Si−1

]

=
1∑n

i=1 dti

n∑
i=1

dSi
Si−1

(3.5)

µ̂y :=
1∑n

i=1 dti

n∑
i=1

dyi (3.6)

σ̂2 :=
1∑n

i=1 dti

n∑
i=1

dti

[
1
dti

(
dSi
Si−1

)2
]

=
1∑n

i=1 dti

n∑
i=1

(
dSi
Si−1

)2

(3.7)

4 Elements of neural networks

Neural networks have been developed originally in order to understand the cognitive processes.
Nowadays there are a lot of applications of neural networks as a mathematical method in quite
different disciplines.
The term "neural networks" points to the model of a nerve cell, the neuron, and the cognitive
processes carried and driven by the network of interacting neurons. A neuron perceives chemical
and physical excitement from the environment by its dendrites. The neuron is processing this
incoming data and sending the information to other neurons via axons and synapses.
The neuron:
McCulloch and Pitts implemented the biological processes of a nerve cell for the first time in a
mathematical way [17]. Nerve cells have to access and process incoming data in order to evaluate
target information. Therefore the corresponding neural networks are called supervised neural
networks. An unsupervised neural network has no target and is similar to a cluster algorithm.
The data consists of n variables x1, . . . , xn on binary scale. For data processing, the ith variable
xi is weighted with wi, normalized with |wi| ≤ 1.
The multiplication of xi with wi determines the relevance of xi for a target y. The value wi
reflects the correlation between the input variable and the target, the sign indicating the direction
of the influence of the input variable on the target. Weighting the input variables for a target
variable is similar to discriminant analysis. Hence we are able tot understand the mathematical
process, to determine the direction of influence and the relevance.
The critical quantity for the neuron is the weighted sum of input variables

q :=
n∑
i=1

wi · xi = w1 · x1 + ...+ wn · xn . (4.1)
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For a target y with binary scale, a threshold S is needed. Crossing the threshold yields 1 and
falling below the threshold yields 0. Hence the activation function F can be written as

F (q) =

{
1, if x > S

0, if x ≤ S
(4.2)

In comparison to discriminant analysis, for neural networks the threshold S has to be assigned,
depending on properties of the target; it can not be derived from the data in a straightforward
manner. Neural networks usually include no assumption about the data. Rather they are a nu-
merical method.
With the input (4.1) of the activation function, we obtain y = F (q) as

y = 1, if
n∑
i=1

wi · xi > S

y = 0, if
n∑
i=1

wi · xi ≤ S

5 Multi-layer perceptrons

In general a given target may be reached only up to a certain error. Given a certain measure
E(ỹ, y) for the distance between the given target state y and the state ỹ computed by the neural
network, learning of the neural network corresponds to minimization of E(ỹ, y).
The following training algorithm is inspired by Rumelhart, Hinton and Williams [18]. The total
error measure over all states of a given layer is defined as

Etotal(ỹ, y) :=
1
2

N∑
k=1

(ỹk − yk)2 . (5.1)

It will be used below to reset the weights in each layer of the neural network.
For simplicity, we consider now a 2-layer perceptron network, which also will be sufficient below
for our purpose of calibrating the stochastic process (2.19).
The processed state ỹ of the neural network is computed by the following steps.
First the critical parameter for the first layer is computed from n weighted input values as∑n
i=1 wi · xi. We consider a hidden output layer with m neurons. For j = 1, . . . ,m, let gj

be the activation function of the j-th neuron of the hidden layer, with an activation value of hj ,
given as

hj = gj(
n∑
i=1

wi · xi) . (5.2)

Usually for all neurons of a given layer a common activation function g = g1, . . . , gm, e.g. a
sigmoid function, is used.
Next, the output of the previous (hidden) layer becomes the input of the next layer, and the
activation proceeds analogously to the previous layer.
Let f be the activation function of the pre-final (here the second) output layer. Then the pre-final
critical value is

q = f(
m∑
j=1

uj · hj) . (5.3)

Finally, the pre-final critical value q is interpreted by a final activation function F yielding

ỹ = F (q) (5.4)

as a final state value computed from the neural network with the given weights of the input
variables from input and hidden layers.
Now the neural network performs a training step by modifying the weights of all input layers.
The learning mechanism the weights is determined by the target distance measure

E =
1
2

n∑
i=1

(yi − ỹi)2 .
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The weights of both layers are changed according to the steepest descent, i.e.

∆wi :=
∂E

∂wi
(5.5)

∆uj :=
∂E

∂uj
(5.6)

With a learning rate α, which should be adapted to the data, the weights are changed as follows:

wnewi = woldi − α · ∆wi (5.7)

unewj = uoldj − α · ∆uj (5.8)

The necessary number of iterations depends on the requirements posed by the data, the user, and
the discipline.

6 Neural networks related to stochastic models

In this section we apply neural networks to the estimation of the process (2.19).
First we demonstrate a simple combination using a 1-layer perceptron network. In this one layer
neural network the variance σ2 and the mean µ are weighted to predict the target value.

E =
1
2

n∑
i=1

(yi − ỹi)2 (6.1)

With ỹ = µ0u1 + σ0u2 we obtain

E =
1
2

n∑
i=1

(yi − (µ0u1 + σ0u2))
2 (6.2)

∆u1 = −µ0

n∑
i=1

(yi − (µ0u1 + σ0u2)) (6.3)

∆u2 = −σ0

n∑
i=1

(yi − (µ0u1 + σ0u2)) (6.4)

A more complex combination uses a 2-layer neural network, where we compute variance and
mean via weighted input variables. The first estimate of the mean is

µ0 =
1
n

n∑
i=1

wixi ,

and for the variance it is

σ2
0 =

1
n− 1

n∑
i=1

(wixi − µ0)
2 .

The neural network is then trained by adjusting the weights wi of the first layer, and the weights
uj of the second layer, according to the respective sensitivities (5.5) and (5.6) of the error func-
tion (6.1).

7 Parameter calibration via perceptron layers

In this section we demonstrate the dynamical calibration of process parameters for (2.19).
Here, different points of the historical time series, receive different weights, which are learned
dynamically when propagating through the historical training set.
In the first layer µ and σ are determined on the basis of weighted values wiyi of the time series
of y-values.

µ̂y :=
1∑n

i=1 dti

n∑
i=1

widyi (7.1)

σ̂2 :=
1∑n

i=1 dti

n∑
i=1

widti

[
1
dti

(
dSi
Si−1

)2
]

(7.2)
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In the second layer a new value is determined with

ŷi+1 = yi + (u1,iµ̂y + u2,iσ̂)dti (7.3)

corresponding to an yet undetermined risk measure. The ratio

λi :=
u2,i

u1,i
(7.4)

has an econometric interpretation of a time-dependent market price of risk factor.
Including this value in the regression the process for determining µ and σ in the first layer
is repeated. In contrast to normal neural networks the first weights are used according to the
formula for µ and σ2.
In every iteration the weights in the first and second layers are changed according to the steepest
descent.
In our example the memory length is n = 10 business days to the past, which are used to predict
next value. In the next step, the one deals with the weights wi+1 rather than wi.

8 Numerical results for CO2 emission allowances

We test our method with CO2 emission allowances XC000A0C4KJ2 quoted at ICE. We consider
the half a year period from 08.01.2010 to 09.07.2010.
In every prediction step, n = 10 previous values are used to predict the next one. The model
was implemented in Mathematica. In figure 1 the predicted values are shown in comparison to
reality.

Figure 1. Price of CO2 emission allowances XC000A0C4KJ2

Considering a target time horizon of 10 days, good agreement of the predicted values with the
reality is achieved. The results show that the prediction is much less volatile than the reality,
i.e. our prediction is tailored particularly for a risk management oriented towards time scales
the memory length of 10 days or more. By a continuously neurally adapting calibration of the
model-parameters to an up-to-date history (with memory of 10 days) the model learns to capture
the optimal trend according to movements of the past 10 days (the memory horizon). Due to the
memory length of 10 days, day-by-day short term fluctuations are suppressed in the prediction.

9 Conclusion and outlook

In our combined model of neural networks and stochastic processes, the neural transformation
processes adapt in such a manner that, from a continuously updated history of fixed length the
network is continuously learning the process parameters. As compared to traditional calibration,
our neural methods is taking into account the historical process in a more detailed and dynamical
manner. As a result, the parameters of the stochastic process are better calibrated than with tradi-
tional methods. As our example of CO2 allowance prices demonstrates: Even a relatively simple
stochastic process, in combination together with a smart neural network learning continuously
the right parameters, the model yields satisfactory predictions. This demonstrates the efficiency
of our combined stochastic-neural approach.
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The research is to be continued to apply our neural network approach also to more demanding
stochastic processes, as they may be required for estimations of other energy prices, such as gas
or electricity prices. There, the different phases of normal and spiky modes of volatility have
to be taken into account. This can be done on the one hand by regime switching models, on
the other hand by working with more advanced semi-martingale processes including jumps, also
with time-dependent frequency.
Finally, in risk management scenario simulations are a very common method. Note in this con-
text, any such simulation can be built on the basis of the described neurally adapting stochastic
process by simply adding the scenario-specific shifts on top.
Our example applied a 2-layer neural network in order to learn the optimal parameters of the
CO2 future price process. It is a typical and very efficient application of a learning algorithm
(in the sence of statistical learning theory) for adaptive predictions. Forthcoming research will
explore futher such learning algorithms.
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