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Abstract. The present paper is devoted to a proof of the existence, uniqueness, and contin-
uous dependence upon the data of solution to a hyperbolic gordon equation with purely integral
conditions. The proofs are based by a priori estimate and numerical technique. We present a
numerical approximate solution to a hyperbolic equation with integral conditions. A Laplace
transform method is described for the solution of considered equation. Following Laplace trans-
form of the original problem, an appropriate method of solving differential equations is used
to solve the resultant time-independent modified equation and solution is inverted numerically
back into the time domain. Numerical results are provided to show the accuracy of the proposed
method.

1 Introduction

Various problems arising in heat conduction [28, 29, 40], chemical engineering [30], thermoelasticity[52]
and plasma physics[51] can be modeled by nonlocal initial boundary value problems with inte-
gral condtions. This class of boundary value problems has been investigated in [15− 22, 29] for
hyperbolic paratial differential equations. and are of the form

∂2v (x, t)

∂t2
− ∂2v (x, t)

∂x2 − ∂v (x, t)

∂x
+ av (x, t) = g (x, t) , (x, t) ∈ (0, 1)× (0, T ) , (1.1)

with initial conditions

v (x, 0) = Φ (x) ,
∂v (x, 0)

∂t
= Ψ (x) , 0 < x < 1 (1.2)

and the integral conditions∫ 1

0
v (x, t) dx = E(t),

∫ 1

0
xv (x, t) dx =M(t), 0 < t ≤ T. (1.3)

where f, ϕ and ψ are known functions. T and a are known positive constants.Introducing a new
unknown function

v (x, t) = u(x, t)− w(x, t), (1.4)

where
w(x, t) = E(t) + 6

(
3x2 − 2x

)
. (2M (t)− E(t)) . (1.5)

Problems (1.1) − (1.3) with inhomogeneous integral conditions(1.3), can be equivalently re-
duced to the problem of finding a function u satisfying:

∂2u (x, t)

∂t2
− ∂2u (x, t)

∂x2 − ∂u (x, t)

∂x
+ au (x, t) = f (x, t) , (x, t) ∈ (0, 1)× (0, T ) , (1.6)

u(x, 0) = ϕ (x) ,
∂v (x, 0)

∂t
= ψ (x) , 0 < x < 1, (1.7)

∫ 1

0
u (x, t) dx = 0, 0 < t ≤ T,∫ 1

0
xu (x, t) dx = 0, 0 < t ≤ T, (1.8)

where

f (x, t) = g(x, t)−
(
∂2w (x, t)

∂t2
− ∂2w (x, t)

∂x2 − ∂w (x, t)

∂x
+ aw (x, t)

)
, (1.9)



Numerical solutions of the hyperbolic equation 31
and

ϕ (x) = Φ (x)− w (x, 0) ,

ψ (x) = Ψ (x)− w (x, 0) . (1.10)

Hance, instead of looking for v , we simply look for u. The solution of problem(1.1)− (1.3)will
be obtained by the relations(1.4) , (1.5) .

Several techniques including finite difference, collocation, finite element, inverse scattering,
decomposition and variational iteration using Adomian’s polynomials have been used to handle
such equations [2, 18, 22]. We apply the Laplace transforme method (LTM) to solve hyperbolic
equations. Numerical results show the compte reliability of the proposed technique.

2 Preliminaries

We introduce the appropriate function spaces that will be used in the rest of the note. Let H be
a Hilbert space with a norm ‖·‖H .

Let L2(0, 1) be the standard function space.

Definition 2.1. (i) Denote by L2(0, T ;H) the set of all measurable abstract functions u (., t) from
(0, T ) into H equiped with the norm

‖u‖L2(0,T ;H) =

(∫ T

0
‖u (., t)‖2

H dt

)1/2

<∞. (2.1)

(ii) Let C(0, T ;H) be the set of all continuous functions u(·, t) : (0, T )→ H with

‖u‖C(0,T ;H) = max
0≤t≤T

‖u (., t)‖H <∞. (2.2)

We denote by C0 (0, 1) the vector space of continuous functions with compact support in
(0, 1). Since such functions are Lebesgue integrable with respect to dx, we can define onC0(0, 1)
the bilinear form given by

((u,w)) =

∫ 1

0
=mx u · =mx wdx, m ≥ 1, (2.3)

where

=mx u =

∫ x

0

(x− ξ)m−1

(m− 1)!
u (ξ, t) dξ; for m ≥ 1. (2.4)

The bilinear form (2.3) is considered as a scalar product on C0 (0, 1) for which C0 (0, 1) is not
complete.

Definition 2.2. Denote by Bm2 (0, 1) , the completion of C0 (0, 1) for the scalar product (2.3),
which is denoted (., .)Bm

2 (0,1) , introduced in [6]. By the norm of function u from Bm2 (0, 1) ,
m ≥ 1, we understand the nonnegative number :

‖u‖
Bm

2
(0,1)

=

(∫ 1

0
(=mx u)

2
dx

)1/2

= ‖=mx u‖ ; for m ≥ 1. (2.5)

Lemma 2.3. For all m ∈ N∗, the following inequality holds:

‖u‖2
Bm

2 (0,1) ≤
1
2
‖u‖2

Bm−1
2 (0,1) . (2.6)

Proof. See [6].

Corollary 2.4. For all m ∈ N∗, we have the elementary inequality

‖u‖2
Bm

2 (0,1) ≤
(

1
2

)m
‖u‖2

L2(0,1) . (2.7)

Definition 2.5. We denote by L2(0, T ;Bm2 (0, 1)) the space of functions which are square inte-
grable in the Bochner sense, with the scalar product

(u,w)L2(0,T ;Bm
2 (0,1)) =

∫ T

0
(u (., t) , w (., t))Bm

2 (0,1) dt. (2.8)

Since the space Bm2 (0, 1) is a Hilbert space, it can be shown that L2(0, T ;Bm2 (0, 1)) is a Hilbert
space as well. The set of all continuous abstract functions in [0, T ] equipped with the norm

sup
0≤t≤T

‖u (., t)‖Bm
2 (0,1)

is denoted C(0, T ;Bm2 (0, 1)).
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Corollary 2.6. For every u ∈ L2 (0, 1) , from which we deduce the continuity of the imbedding
L2 (0, 1) −→ Bm2 (0, 1), for m ≥ 1.

Lemma 2.7. (Gronwall Lemma) Let f1 (t) , f2 (t) ≥ 0 be two integrable functions on [0, T ] ,
f2 (t) is nondecreasing. If

f1 (τ) ≤ f2 (τ) + c

∫ τ

0
f1 (t) dt, ∀τ ∈ [0, T ] , (2.9)

where c ∈ R+, then
f1 (t) ≤ f2 (t) exp (ct) , ∀t ∈ [0, T ] . (2.10)

Proof. The proof is the same as that of Lemma 1.3.19 in [17].

3 Uniqueness and continuous dependence of the solution

Theorem 3.1. If u (x, t) is a solution of problem(1.6) − (1.8) and f ∈ C ((0, 1)× [0, T ]) , then
we have a priori estimates:

‖u (., τ)‖2
L2(0,1)

≤ c1

(∫ τ

0
‖f (., t)‖2

B1
2(0,1)

dt+ ‖ϕ‖2
L2(0,1) + ‖ψ‖

2
B1

2(0,1)

)
,∥∥∥∥∂u (., τ)∂t

∥∥∥∥2

B1
2(Ω)

≤ c2

(∫ τ

0
‖f (., t)‖2

B1
2(0,1)

dt+ ‖ϕ‖2
L2(0,1) + ‖ψ‖

2
B1

2(0,1)

)
(3.1)

where c1 = exp (T ) , c2 = (a+ 2) exp (T ) and 0 ≤ τ ≤ T.

Proof. Taking the scalar product in B1
2 (0, 1) of both sides of equation(1.6) with ∂u

∂t , and inte-
grating over (0, τ) , we have∫ τ

0

(
∂2u (., t)

∂t2
,
∂u (., t)

∂t

)
B1

2(Ω)

dt−
∫ τ

0

(
∂2u (., t)

∂x2 ,
∂u (., t)

∂t

)
B1

2(Ω)

dt−

∫ τ

0

(
∂u (., t)

∂x
,
∂u (., t)

∂t

)
B1

2(Ω)

dt+ a

∫ τ

0

(
u (., t) ,

∂u (., t)

∂t

)
B1

2(Ω)

dt =

∫ τ

0

(
f (., t) ,

∂u (., t)

∂t

)
B1

2(Ω)

dt. (3.2)

Integrating by parts of the left-hand sid of (3.2) we obtain

1
2
‖u (., τ)‖2

L2(Ω) +
1
2

∥∥∥∥∂u (., τ)∂t

∥∥∥∥2

B1
2(Ω)

− 1
2
‖ϕ‖2

L2(Ω) −

‖ψ‖2
B1

2(Ω) +
a

2
‖u (., τ)‖2

B1
2(Ω) −

a

2
‖ϕ‖2

B1
2(Ω) =∫ τ

0

∫ 1

0
u (x, t)=1

x

∂u (x, t)

∂t
dxdt+

∫ τ

0

(
f (., t) ,

∂u (., t)

∂t

)
B1

2(Ω)

dt, (3.3)

By the Chauchy inequality, the first and second right-hand side of (3.2) is bounded by

1
2

∫ τ

0
‖u (., t)‖2

L1
2(Ω) dt+

1
2

∫ τ

0

∥∥∥∥∂u (., t)∂t

∥∥∥∥2

B1
2(Ω)

dt,

1
2

∫ τ

0
‖f (., t)‖2

B1
2(Ω) dt+

1
2

∫ τ

0

∥∥∥∥∂u (., t)∂t

∥∥∥∥2

B1
2(Ω)

dt. (3.4)

Substitution of (3.4) into (3.3) , yields

(a+ 2) ‖u (., τ)‖2
L2(Ω) +

∥∥∥∥∂u (., τ)∂t

∥∥∥∥2

B1
2(Ω)

≤
∫ τ

0
‖u (., t)‖2

L1
2(Ω) dt+

∫ τ

0
‖f (., t)‖2

B1
2(Ω) dt+

2
∫ τ

0

∥∥∥∥∂u (., t)∂t

∥∥∥∥2

B1
2(Ω)

dt+ (a+ 2) ‖ϕ‖2
L2(Ω) + ‖ψ‖

2
B1

2(Ω) .

By Gronwall Lemma, we have a priori estimates(3.1).
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Corollary 3.2. If problem (1.6)− (1.8) has a solution, then this solution is unique and depends
continously on (f, ϕ, ψ) .

4 Existence of the Solution

Laplace transform is an efficient method for solving many differential equations and partial dif-
ferential equations,The main difficulty with Laplace transform method is in inverting the Laplace
domain solution into the real domain. In this section we shall apply the Laplace transform tech-
nique to find solutions of hyperbolic partial differential equations.

Suppose that u (x, t) is defined and is of exponential order for t ≥ 0 i.e. there exists A, γ > 0
and t0 > 0 such that |u (x, t)| ≤ A exp (γt) for t ≥ t0. Than the Laplace transform U (x, s),
exists and is given by

U (x, s) = {u (x, t) ; t −→ s} =
∫ ∞

0
u (x, t) exp (−st) dt, (4.1)

where s is positive reel parameter. Taking the Laplace transforms on both sides of (1.6) , we
have

−d
2U (x, s)

dx2 +
dU (x, s)

dx
+
(
a+ s2)U (x, s) = F (x, s) + sϕ (x) + ψ (x) , (4.2)

where F (x, s) = {f (x, t) ; t −→ s} . Similarly, we have

∫ 1

0
U (x, s) dx = 0,∫ 1

0
xU (x, s) dx = 0, (4.3)

Thus, considered equation is reduced in boundary value problem governed by second order
inhomogeneous ordinary differential equation. We obtain a general solution of (4.2) as

U (x, s) =

 − 2
1+
√

1+4(a+s2)

∫ x
0 [F (τ, s) + sϕ (τ) + ψ (τ) ]×

sinh
(

1+
√

1+4(a+s2)

2 [x− τ ]
)
dτ


+C1 (s) exp

(
−

1 +
√

1 + 4 (a+ s2)

2
x

)

+C2 (s) exp

(
1 +

√
1 + 4 (a+ s2)

2
x

)
, (4.4)

where C1and C2 are arbitrary functions of s. Substitution of (4.4) into (4.3) , we have

C1 (s)

∫ 1

0
exp

(
−

1 +
√

1 + 4 (a+ s2)

2
x

)
dx+ C2 (s)

∫ 1

0
exp

(
1 +

√
1 + 4 (a+ s2)

2
x

)
dx

=
2

1 +
√

1 + 4 (a+ s2)

∫ 1

0

[
[F (τ, s) + sϕ (τ) + ψ (τ)]

∫ 1

τ

sinh

(
1 +

√
1 + 4 (a+ s2)

2
[x− τ ]

)
dx

]
dτ,

C1 (s)

∫ 1

0
x exp

(
−

1 +
√

1 + 4 (a+ s2)

2
x

)
dx+

C2 (s)

∫ 1

0
x exp

(
1 +

√
1 + 4 (a+ s2)

2
x

)
dx =

2
1 +

√
1 + 4 (a+ s2)

×

∫ 1

0

 [F (τ, s) + sϕ (τ) + ψ (τ)]×∫ 1
τ
x sinh

(
1+
√

1+4(a+s2)

2 [x− τ ]
)
dx

 dτ, (4.5)

where (
C1 (s)

C2 (s)

)
=

(
a11 (s) a12 (s)

a21 (s) a22 (s)

)−1

×

(
b1 (s)

b2 (s)

)
, (4.6)
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and

a11 (s) =

∫ 1

0
exp

(
−

1 +
√

1 + 4 (a+ s2)

2
x

)
dx,

a12 (s) =

∫ 1

0
exp

(
1 +

√
1 + 4 (a+ s2)

2
x

)
dx,

a21 (s) =

∫ 1

0
x exp

(
−

1 +
√

1 + 4 (a+ s2)

2
x

)
dx,

a22 (s) =

∫ 1

0
x exp

(
1 +

√
1 + 4 (a+ s2)

2
x

)
dx,

b1 (s) =
2

1 +
√

1 + 4 (a+ s2)

∫ 1

0

 [F (τ, s) + sϕ (τ) + ψ (τ)]×∫ 1
τ

sinh
(

1+
√

1+4(a+s2)

2 [x− τ ]
)
dx

 dτ,

b2 (s) =
2

1 +
√

1 + 4 (a+ s2)

∫ 1

0

 [F (τ, s) + sϕ (τ) + ψ (τ)]×∫ 1
τ
x sinh

(
1+
√

1+4(a+s2)

2 [x− τ ]
)
dx

 dτ (4.7)

It is possible to evaluate the integrals in (4.4) and (4.7) exactly. In general, one may have
to resort to numerical integration in order to compute them, however. For example, the Gauss’s
formula (25.4.30) given in Abramowitz and stegun [1] may be employed to calculate these
integrals numerically, we have∫ 1

0
exp

(
±

1 +
√

1 + 4 (a+ s2)

2
x

)
dx

' 1
2

N

i=1
wi exp

(
±

1 +
√

1 + 4 (a+ s2)

4
[xi + 1]

)
,

∫ 1

0
x exp

(
±

1 +
√

1 + 4 (a+ s2)

2
x

)
dx

' 1
2

N

i=1
wi

(
1
2
[xi + 1]

)
exp

(
±

1 +
√

1 + 4 (a+ s2)

4
[xi + 1]

)
,

∫ x

0
[F (τ, s) + sϕ (τ) + ψ (τ) ] sinh

(
1 +

√
1 + 4 (a+ s2)

2
[x− τ ]

)
dτ

' x

2
N

i=1
wi

[
F
(x

2
[xi + 1] ; s

)
+ sϕ

(x
2
[xi + 1]

)
+ ψ

(x
2
[xi + 1]

)]
×

× sinh

(
1 +

√
1 + 4 (a+ s2)

2

[
x− x

2
[xi + 1]

])
,

∫ 1

0

[
[F (τ, s) + sϕ (τ) + ψ (τ)]

∫ 1

τ

sinh

(
1 +

√
1 + 4 (a+ s2)

2
[x− τ ]

)
dx

]
dτ

' 1
4

N

i=1
wi

[
F

(
1
2
[xi + 1] ; s

)
+ sϕ

(
1
2
[xi + 1]

)
+ ψ

(
1
2
[xi + 1]

)](
1− 1

2
[xi + 1]

)
×

×Ni=1wj sinh

(
1 +

√
1 + 4 (a+ s2)

2

[
1
2

[(
1− 1

2
[xi + 1]

)
xj +

(
1 +

1
2
[xi + 1]

)]
− 1

2
(xi + 1)

])
,

∫ 1

0

[
[F (τ, s) + sϕ (τ) + ψ (τ)]

∫ 1

τ

x sinh

(
1 +

√
1 + 4 (a+ s2)

2
[x− τ ]

)
dx

]
dτ

' 1
4

N

i=1
wi

[
F

(
1
2
[xi + 1] ; s

)
+ sϕ

(
1
2
[xi + 1]

)
+ ψ

(
1
2
[xi + 1]

)](
1− 1

2
[xi + 1]

)
×
(

1
2

[(
1− 1

2
[xi + 1]

)
xj +

(
1 +

1
2
[xi + 1]

)])
.
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×Ni=1wj sinh

1 +
√

1 + 4 (a+ s2)

2

 1
2

[ (
1− 1

2 [xi + 1]
)
xj

+
(
1 + 1

2 [xi + 1]
) ]

− 1
2 (xi + 1)


 (4.8)

where xi and wi are the abscissa and weights, defined as

xi : ith zero of Pn (x) , ωi = 2/
(
1− x2

i

) [
P
′

n (x)
]2
.

Their tabulated values can be found in [1] for different values of N.

Numerical inversion of Laplace transform Sometimes, an analytical inversion of a Laplace
domain solution is difficult to obtain; therefore a numerical inversion method must be used. A
nice comparison of four frequently used numerical Laplace inversion algorithms is given by
Hassan Hassanzadeh, Mehran Pooladi-Darvish [16]. In this work we use the Stehfest’s algo-
rithm [20] that is easy to implement. This numerical technique was first introduced by Graver
[14] and its algorithm then offered by [20].Stehfest’s algorithm approximates the time domain
solution as

u (x, t) ≈
ln 2
t

2m∑
n=1

βnU

(
x;
n ln 2
t

)
, (4.9)

where, m is the positive integer,

βn = (−1)n+m
min(n,m)∑
k=[n+1

2 ]

km (2k)!
(m− k)!k! (k − 1)! (n− k)! (2k − n)!

, (4.10)

and [q] denotes the integer part of the real number q.

5 Numerical Examples

In this section, we report some results of numerical computations using Laplace transform
method proposed in the previous section. These technique are applied to solve the problem
defined by (1.1)− (1.3) for particular functions g,Φ,Ψ, and positive constant a. The method of
solution is easily implemented on the computer, used Matlab 7.9.3 program.

Example 5.1. We take

g (x, t) = 0, 0 < x < 1, 0 < t ≤ T , a = 0,

Φ (x) = x2, 0 < x < 1,

Ψ (x) = 0, 0 < x < 1,

E(t) =
1
3
+ t2, M (t) =

1
4
+
t2

2
,

in this case exact solution given by

v (x, t) = x2 + t2, 0 < x < 1, 0 < t ≤ T .

The method of solution is easily implemented on the computer, numerical results obtained
by N = 8 in (4.8) and m = 5 in (4.9) , then we compared the exact solution with numerical
solution. For t = 0.10, x ∈ [0.10, 0.90] , we calculate u numerically using the proposed method
of solution and compare it with the exact solution in Table 1.

x 0.10 0.30 0.50 0.70 0.90
v exact 0, 009983341 0, 029950025 0, 049916708 0, 069883391 0, 089850075
v numerical 0, 009983208 0, 029958510 0, 049915304 0, 069905961 0, 089857454
error −0, 000013322 0, 000283305 −0, 000028126 0, 000322966 0, 000082157

Table 1
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