A Study On Semi-projective Covers, Semi-projective Modules and Formal Triangular Matrix Rings

Berke Kaleboğaz and Derya Keskin Tütüncü

Dedicated to Patrick Smith and John Clark on the occasion of their 70th birthdays.

Communicated by Ayman Badawi

MSC 2010 Classifications: 16D40, 16D80.

Keywords and phrases: semi-projective module, (semi-)perfect ring.

We would like to express our special thanks to Prof.Dr. Pedro A. Guil Asensio and Prof.Dr. Ashish Srivastava for their valuable comments on this paper. We also thank them and Prof.Dr. Huanyn Chen providing us the M.Sc. Thesis [4] and Xiangrui Li for translating some Chinese statements in 4.1.1, 4.1.3 and 4.1.4 in English in [4].

Abstract. We show that a ring \(R \) is right perfect if and only if every right \(R \)-module has a semi-projective cover. We characterize (semi)hereditary and semisimple rings via semi-projective modules. Finally we investigate the relative projectivity of modules over a formal triangular matrix ring \(T = \begin{bmatrix} A & 0 \\ M & B \end{bmatrix} \). We also prove that if a right \(T \)-module \((X \oplus Y)_T \) is lifting, then \((X/YM)_A \) and \(Y_B \) are lifting.

1 Introduction

In what follows \(R \) will always denote an associative ring with identity and modules will always be taken as unitary right \(R \)-modules. A module \(M \) has a projective cover \(P \), if there is an epimorphism \(f : P \to M \) such that \(P \) is projective and \(\text{Ker} f \) is small in \(P \). A ring \(R \) is called right perfect if every right \(R \)-module has a projective cover. Perfect rings were characterized by H. Bass in [1]. In 1967, Wu and Jans introduced the quasi-projective cover as follows in [23]: The module \(P \) is called a quasi-projective cover of a module \(M \) if, there exists an epimorphism \(f : P \to M \) such that (1) \(P \) is quasi-projective (2) \(\text{Ker} f \) is small in \(P \) (3) if \(0 \neq B \subseteq \text{Ker} f \), then \(P/B \) is not quasi-projective. Note that as projective covers, quasi-projective covers of a module need not exist. For example, the \(\mathbb{Z} \)-module \(M = \bigoplus \mathbb{Z}/p^k \mathbb{Z} \) does not have a quasi-projective cover (see [6, Example 4]). Also, it is not known whether quasi-projective cover of a module (if it exists) is unique up to isomorphism. Wu and Jans proved in [23, Proposition 2.6] that when the projective cover \(f : P \to M \) exists, then the quasi-projective cover of \(M \) exists and is unique. This quasi-projective cover is given by the induced map \(f' : P/T \to M \), where \(T \) is the largest fully invariant submodule of \(P \) contained in \(\text{Ker} f \).

In 1970; K.R. Fuller and D.A. Hill [5, Theorem 4.1], J. Golan [7, Theorem 3.1] and A. Koehler [19, Corollary 1.2] proved that (the condition (3) is not needed) a ring \(R \) is right perfect if every right \(R \)-module has a quasi-projective cover and they also investigated semiperfect rings via quasi-projective covers of finitely generated modules. After that, in 1983, T.G. Faticoni studied quasi-projective covers in [6] and in 1996, W. Xue defined the locally projective cover (without the condition (3)) and proved that a ring \(R \) is right perfect if and only if every right \(R \)-module has a locally projective cover in [25, Theorem 3.10]; he also investigated semiperfect rings via locally projective covers.

In this paper firstly we define semi-projective covers and investigate right perfect rings. Let \(M \) be a module. \(M \) is called semi-projective if, for all endomorphisms \(\alpha \) and \(\beta \) of \(M \) with \(\beta(M) \subseteq \alpha(M) \) there exists an endomorphism \(\gamma \) of \(M \) such that \(\beta = \alpha \gamma \) (see, [2], [18], [21] and [22]). An \(R \)-module \(M \) is called direct projective if for every direct summand \(K \) of \(M \) every epimorphism from \(M \) to \(K \) splits. Note that we have the following hierarchy:

\[
\text{projective} \Rightarrow \text{quasi-projective} \Rightarrow \text{semi-projective} \Rightarrow \text{direct projective}.
\]

We say that a module \(P \) is a semi-projective cover of any module \(M \) if, there exists an epimorphism \(f : P \to M \) such that \(P \) is semi-projective and \(\text{Ker} f \) is small in \(P \). According to our definition, there may be a nonzero submodule \(B \) of \(P \) contained in \(\text{Ker} f \) with \(P/B \) semi-projective, where \(f : P \to M \) is a semi-projective cover. Then \(P/B \) is another semi-projective
cover of \(M \). Clearly \(P/B \) and \(P \) are not isomorphic to each other. Therefore semi-projective covers may not be unique up to isomorphism in the sense of our definition. Clearly, every (quasi-)projective cover is a semi-projective cover. On the other hand, since the \(Z \)-module \(\overline{Q} \) is semi-projective (see, for example, [18, Corollary 2.6]), \(\overline{Q}/\overline{B} \) is a semi-projective cover of itself and of the \(Z \)-module \(Q/\overline{Z} \). In this paper we obtain that a ring \(R \) is right perfect if and only if every right \(R \)-module has a semi-projective cover and \(R \) is semiperfect if and only if every finitely generated right (left) \(R \)-module has a semi-projective cover. We also observe that a ring \(R \) is semisimple if and only if every (finitely generated) right \(R \)-module is semi-projective. As a last work, we study lifting modules and the relative projectivity of modules over a formal triangular matrix ring \(T = \begin{bmatrix} A & 0 \\ M & B \end{bmatrix} \). We prove that if a right \(T \)-module \((X \oplus Y)_T \) is lifting, then \((X/\overline{Y}M)_A \) and \(Y_B \) are lifting. We also prove that if a right \(T \)-module \((X \oplus Y)_T \) is quasi-projective, then \((X/\overline{Y}M)_A \) and \(Y_B \) are quasi-projective and if a right \(T \)-module \((X \oplus Y)_T \) has a quasi-projective cover, then \((X/\overline{Y}M)_A \) and \(Y_B \) have semi-projective covers.

2 Semi-projective Modules and Semi-projective Covers

In this part of the paper, we give some characterizations of semiperfect, perfect, semihereditary, hereditary and semisimple rings using semi-projective modules and semi-projective covers. This characterizations have been completely inspired by the earlier related studies from [1], [5]-[9], [19] and [23]-[25].

The following theorem is an analogue of [8, Theorem 2.2] and the proof follows the same pattern. We give it here for the convenience of the readers.

Theorem 2.1. Let \(M \) be a module and let \(f : P \rightarrow M \) be an epimorphism with \(P \) projective. Then

(i) \(M \) is projective if and only if \(P \oplus M \) is semi-projective.

(ii) \(M \) has a projective cover if and only if \(P \oplus M \) has a semi-projective cover.

Proof. (1) Assume \(M \) is projective. Then clearly \(P \oplus M \) is semi-projective. Conversely assume that \(P \oplus M \) is semi-projective. Then the epimorphism \(f \) splits (see [18, Lemma 2.8]). Thus \(M \) is projective.

(2) The necessity is clear. For the sufficiency we will use the Koehler’s technique in [19, Theorem 1.1]. Consider the right \(R \)-module \(X = P \oplus M \). By hypothesis, there exists an epimorphism \(g : Q \rightarrow X \) such that \(Q \) is semi-projective and \(\text{Ker} g \) is small in \(Q \). Let \(\pi \) be the projection map from \(X \) to \(P \). Since \(P \) is projective, there is a monomorphism \(\alpha : P \rightarrow Q \) such that \(\pi g \alpha = \text{Id}_P \) and \(Q = \text{Im} \pi \oplus \text{Ker}(\pi g) \). Let \(\overline{M} = \text{Ker}(\pi g) \) and \(g_1 = g |_{\overline{M}} \). Then we can assume \(Q = P \oplus \overline{M} \). Note that \(g_1(\overline{M}) = g' \overline{M} = g_1(g^{-1}(M)) = M \) implies that \(g_1 \) is an epimorphism from \(\overline{M} \) to \(M \). Now we will prove that \(\overline{M} \) is the projective cover of \(M \) with the epimorphism \(g_1 \). Since \(\text{Ker} g_1 = \text{Ker} g_1 \), \(\text{Ker} g_1 \) is small in \(\overline{M} \). Since \(P \) is projective, there is a homomorphism \(f' : P \rightarrow \overline{M} \) such that \(g_1 f' = f \), namely the following diagram is commutative:

\[
\begin{array}{ccc}
P & \xrightarrow{f'} & \overline{M} \\
\downarrow{f} & & \downarrow{g_1} \\
M & \rightarrow & 0
\end{array}
\]

Since \(\text{Ker} g_1 \) is small in \(\overline{M} \) and \(f \) is epic, \(f' \) is epic. Therefore by (1), \(\overline{M} \) is projective.

Corollary 2.2. If every (finitely generated) module has a semi-projective cover, then every (finitely generated) module has a projective cover.

Proof. Take into account that every (finitely generated) module is an epimorphic image of a (finitely generated) free, and so projective module.

Corollary 2.3. (i) A ring \(R \) is semiperfect if and only if every finitely generated right (left) \(R \)-module has a semi-projective cover.

(ii) A ring \(R \) is right perfect if and only if every right \(R \)-module has a semi-projective cover.

Now applying the same proof of [8, Theorem 3.1], we get the following, where \(R_n \) is the ring of \(n \times n \) matrices over \(R \):

\[
\begin{array}{c}
P \\
\overline{M} \\
M \rightarrow 0
\end{array}
\]
Theorem 2.4. The following conditions are equivalent for a ring R:

(i) R is semiperfect.
(ii) For all $n \geq 1$, every cyclic right (left) R_n-module has a semi-projective cover.
(iii) There exists an $n > 1$ such that every cyclic right (left) R_n-module has a semi-projective cover.

Golan in [8] proved that a ring R is right hereditary if and only if every submodule of a projective right R-module is quasi-projective if and only if every principal right ideal of $\text{End}(F)$ is quasi-projective for any free right R-module F ([8, Theorem 4.4]) and R is right semihereditary if and only if every finitely generated submodule of a projective right R-module is quasi-projective if and only if every principal right ideal of R_n is quasi-projective, for all $n \geq 1$ ([8, Theorem 4.3]). Combining these facts and Theorems 4 and 5 in [24] we have the following two theorems:

Theorem 2.5. The following conditions are equivalent for a ring R:

(i) R is right hereditary.
(ii) Every submodule of a projective right R-module is semi-projective.
(iii) Every principal right ideal of $\text{End}(F)$ is semi-projective for any free right R-module F.

Theorem 2.6. The following conditions are equivalent for a ring R:

(i) R is right semihereditary.
(ii) Every finitely generated submodule of a (finitely generated) projective right R-module is semi-projective.
(iii) Every finitely generated (principal) right ideal of R_n is semi-projective for all $n \geq 1$.

Submodules of semi-projective modules need not be semi-projective as the following example shows.

Example 2.7. Let M be the semi-projective \mathbb{Z}-module $\mathbb{Z}/p^3\mathbb{Z} \oplus \mathbb{Z}/p^3\mathbb{Z}$, where p is any prime integer. Let N be the submodule $p\mathbb{Z}/p^3\mathbb{Z} \oplus \mathbb{Z}/p^3\mathbb{Z}$. Since the epimorphism $f : \mathbb{Z}/p^3\mathbb{Z} \rightarrow p\mathbb{Z}/p^3\mathbb{Z}$ defined by $f(x + p^3\mathbb{Z}) = px + p^3\mathbb{Z}$ does not split, N is not semi-projective.

Using Theorems 2.5 and 2.6, we can give the following theorem which is an analogue of [8, Theorem 5.1].

Theorem 2.8. Let R be a ring. If every (finitely generated) submodule of a semi-projective right R-module is semi-projective, then every factor ring of R is right (semi)hereditary.

The arguments in [9, Proposition 2.2, Theorem C, Corollary 2.4, Lemma 2.5, Corollary 2.6 and Theorem D] may be adapted to obtain the following useful results.

Proposition 2.9. Let R be a ring. If every submodule of a semi-projective right R-module is semi-projective and H is a right T-nilpotent two-sided ideal of R, then $H^2 = 0$.

Recall that the singular submodule $Z(M)$ of a module M is given by $Z(M) = \{m \in M \mid \text{ann}_R(m) \text{ is an essential right ideal of } R\}$. M is called singular if $Z(M) = M$ and nonsingular if $Z(M) = 0$.

Theorem 2.10. If R is right perfect and every submodule of a semi-projective right R-module is semi-projective, then every singular right R-module is injective.

Corollary 2.11. If R is right perfect and every submodule of a semi-projective right R-modules is semi-projective, then $Z(M)$ is a direct summand of M for every right R-module M.

Lemma 2.12. Let R be a left perfect ring. Assume that every finitely generated submodule of a semi-projective right R-module is semi-projective. If e and f are idempotents of R with eR and fR indecomposables, and eRf and fRe nonzero, then $eR \cong fR$ and in fact this isomorphism is given by left multiplication by any nonzero element of eRf or fRe.

Corollary 2.13. Let R be a left perfect ring. Assume that every finitely generated submodule of a semi-projective right R-module is semi-projective and e is an idempotent of R with eR indecomposable. Then eRe is a division ring.
Theorem 2.14. If R is left perfect and every finitely generated submodule of a semi-projective right R-module is semi-projective, then R has a decomposition $R = S \oplus J(R)$ over \mathbb{Z}, where S is a semisimple subring of R containing 1.

Finally, using the same proof of Theorem 7 in [24], we can give the following result which generalizes Theorem 7 in [24].

Theorem 2.15. If R is a ring over which submodules of Σ-semi-projective modules are direct-projective, then every factor ring of R is right hereditary.

Theorem 2.16. The following conditions are equivalent for a ring R:

(i) R is semisimple.

(ii) Every (finitely generated) right R-module is semi-projective.

(iii) Every 2-generated right R-module is semi-projective.

(iv) The direct sum of two semi-projective right R-modules is semi-projective.

(v) The direct sum of two quasi-projective right R-modules is semi-projective.

(vi) For all $n \geq 1$, every cyclic right R_n-module is semi-projective.

(vii) There exists some $n > 1$ such that every cyclic right R_n-module is semi-projective.

Proof. By [24, Theorem 9].

3 Some study of modules over formal triangular matrix rings

This section is devoted to the study of modules over formal triangular matrix rings and the results focus on relative projectivity and lifting properties of modules. This part has been partly inspired by the earlier related studies of modules over formal triangular matrix rings in [3] and [10]-[17].

Given a formal triangular matrix $T = \begin{bmatrix} A & 0 \\
M & B \end{bmatrix}$ it is well known that ([10]) the category Mod_T and a category Ω of triples (X, Y, f) are equivalent where $X \in \text{Mod}_A$, $Y \in \text{Mod}_B$ and $f : Y \otimes M \to X$ is a homomorphism in Mod_A. If (X, Y, f) and (U, V, g) are two objects in Ω, then the morphisms from (X, Y, f) to (U, V, g) in Ω are pairs (φ_1, φ_2) where $\varphi_1 : X \to U$ is an A-homomorphism, $\varphi_2 : Y \to V$ is a B-homomorphism satisfying the condition $\varphi_1 f = g(\varphi_2 \otimes 1_M)$. The right T-module corresponding to the triple (X, Y, f) is the additive group $X \oplus Y$ with the right action given by

$$(x, y) \begin{bmatrix} a & 0 \\
m & b \end{bmatrix} = (xa + f(y \otimes m), yb).$$

Then we write $(X \oplus Y)_T$ for this right T-module. Furthermore, if $(\varphi_1, \varphi_2) : (X, Y, f) \to (U, V, g)$ is a map in Ω, the associated T-homomorphism $\varphi : (X \oplus Y)_T \to (U \oplus V)_T$ is given by $\varphi(x, y) = (\varphi_1(x), \varphi_2(y))$ for any $x \in X$ and $y \in Y$. It is clear that φ is injective (resp. surjective) if and only if $\varphi_1 : X \to U$, $\varphi_2 : Y \to V$ are injective (resp. surjective). It is convenient to view such triples as T-modules and the morphisms between them as T-homomorphisms. Here we should note that the T-module T_f corresponds to $(A \oplus M, B)_f$, where f is the A-homomorphism $B \to M \to A \oplus M$ given by $f(b \otimes m) = (0, bm)$.

Let $(X, Y, f) \in \text{Obj}(\Omega)$ and $(X \oplus Y)_T$ be the associated right T-module. Under the right T-action on $X \oplus Y$ we have $\begin{bmatrix} 0 & 0 \\ M & 0 \end{bmatrix} = (f(Y \otimes M), 0)$. In general the submodule $f(Y \otimes M)$ of X_A is denoted by YM. Now consider $Y' \leq Y_B$ and let $j_2 : Y' \to Y$ denote the inclusion map. Then $\begin{bmatrix} 0 & 0 \\ M & 0 \end{bmatrix} = (f(j_2 \otimes 1_M)(Y' \otimes M), 0)$. In general, the submodule $f(j_2 \otimes 1_M)(Y' \otimes M)$ of X_A is denoted by $Y'M$. Let $X' \leq X_A$ satisfy $Y'M \subseteq X'$. Writing f' for $f(j_2 \otimes 1_M)$ and denoting the inclusion $X' \to X$ by j_1 we see that $(X', Y')_f \in \text{Obj}(\Omega)$ and $(j_1, j_2) : (X', Y')_f \to (X, Y)_f$ is a map in Ω realizing $(X' \oplus Y')_T$ as a T-submodule of $(X \oplus Y)_T$. Therefore when we take a submodule $(X' \oplus Y')_T$ of $(X \oplus Y)_T$ we have $X' \leq X_A$, $Y' \leq Y_B$, $f(j_2 \otimes 1_M)(Y' \otimes M) \subseteq X'$. The map $f' : Y' \otimes M \to X'$ is completely determined; it has to be $f(j_2 \otimes 1_M)$. Let X'' (resp. Y'') be a quotient of X_A (resp. Y_B) with $\eta_1 : X \to X''$
(resp. \(\eta_2 : Y \rightarrow Y'' \)) the canonical maps. Let \(\text{Ker} \eta_1 = X' \) and \(\text{Ker} \eta_2 = Y' \). Assume that \(Y'M \subseteq X' \). Let \(j_1 : X' \rightarrow X, \ j_2 : Y' \rightarrow Y \) be the inclusion maps. Clearly we have the \(A \)-homomorphism \(f'' : Y'' \otimes M \rightarrow X'' \) rendering the following diagram commutative

\[
\begin{array}{ccccccccc}
Y'' \otimes M & \xrightarrow{j_2 \otimes 1_M} & Y \otimes M & \xrightarrow{(f' \otimes 1_M) \circ \eta_2} & Y'' \otimes M & \rightarrow & 0 \\
\downarrow f' & & \downarrow f & & \downarrow f'' & & \\
X' & \xrightarrow{j_1} & X & \xrightarrow{\eta_1 \otimes 1_M} & X'' & \rightarrow & 0
\end{array}
\]

In this diagram \(f' = f(j_2 \otimes 1_M) \) and the rows are exact. Also it is clear that \((\eta_1, \eta_2) : (X, Y)_f \rightarrow (X'', Y'')_{f''} \) is a map in \(\Omega \) realizing \((X'' \oplus Y'')_T \) as a quotient of \((X \oplus Y)_T \). The kernel of the associated \(T \)-homomorphism \(\eta_j : (X \oplus Y)_T \rightarrow (X'' \oplus Y'')_T \) is precisely \((X' \oplus Y')_T \). Now when we deal with a quotient \((X'' \oplus Y''')_T \) of \((X \oplus Y)_T \) the \(A \)-homomorphism \(f'' : Y'' \otimes M \rightarrow X'' \) is completely determined. The above backgrounds were taken from [11] and [13]. For more details on formal triangular matrix rings we refer to [11]-[17].

As an easy observation we can give the following:

Proposition 3.1. \((X' \oplus Y')_T \) is a direct summand of \((X \oplus Y)_T \) if and only if \(X_A = X' \oplus X'' \), \(Y_B = Y' \oplus Y'' \) with \(f(j_2' \otimes 1_M) = f', f(Y' \otimes M) \subseteq Y' \) and \(f(j_2'' \otimes 1_M) = f'', f(Y'' \otimes M) \subseteq Y'' \) where \(j_2' : X' \rightarrow Y, j_2'' : Y'' \rightarrow Y \) are the inclusion maps.

Any module \(N \) is called lifting if for any submodule \(H \) of \(N \), there exists a decomposition \(N = N_1 \oplus N_2 \) such that \(N_1 \subseteq H \) and \(N_2 \cap H \) is small in \(N_2 \). Now we will give a characterization of lifting modules over the ring \(T \):

Theorem 3.2. If the right \(T \)-module \((X \oplus Y)_T \) determined by \((X, Y)_f \) is lifting, then \((X/Y)M_A \) and \(Y_B \) are lifting.

Proof. Assume that \((X \oplus Y)_T \) is lifting. Let \(Y' \subseteq Y_B \). Consider the submodule \((X \oplus Y')_T \) of \((X \oplus Y)_T \) and the \(A \)-homomorphism \(f' = f(j_2' \otimes 1_M) \) such that \(j_2' : Y' \rightarrow Y \) is the inclusion map. Since \((X \oplus Y)_T \) is lifting, there exists a decomposition \((X \oplus Y)_T = (H' \oplus K')_T \oplus (H'' \oplus K'')_T \) such that \((H' \oplus K')_T \subseteq (X \oplus Y')_T \). Let \((H' \oplus K')_T \cap (X \oplus Y')_T = (H'' \oplus (K'' \oplus Y'))_T \subseteq (H'' \oplus K'_T) \). Assume that \((H' \oplus K''_T) = (H' \oplus K'_T) \) and \((H'' \oplus K''_T) \) associate with the objects \((H'', K'')_T \) and \((H'', K''_T) \) in \(\Omega \) such that \(f' = f(j_2' \otimes 1_M), f'' = f(j_2'' \otimes 1_M) \), where \(j_2' : K' \rightarrow Y \) and \(j_2'' : K'' \rightarrow Y \) are the inclusion maps and \(f(K' \otimes M) \subseteq H' \) and \(f(K'' \otimes M) \subseteq H'' \). Now we have that \(X = H' \oplus H'', Y = K' \oplus K'', K' \subseteq Y' \). By [11, Proposition 1.3], \(K'' \cap Y' \subseteq K'' \) and \(H'' = f(K''_T) \). Thus \(Y_B \) is lifting.

Now let \(X/Y \) be an \(A \)-submodule of \(X/YM \). Then \((X' \oplus Y)_T \) is a submodule of \((X \oplus Y)_T \). Then there is a decomposition \((X \oplus Y)_T = (L_1 \oplus K_1)_T \oplus (L_2 \oplus K_2)_T \) such that \((L_1 \oplus K_1)_T \subseteq (X' \oplus Y)_T \). Let \((L_1 \oplus K_1)_T \cap (X' \oplus Y)_T = (L_1 \cap X') \) \(K_1 \cap K_2 \). Then \(X = L_1 \oplus L_2 \) and \(Y = K_1 \). By [11, Proposition 1.3], \(K_2 = 0 \) and \(L_2 \cap X' \subseteq L_2 \). Then \(X/Y = L_1/YM \oplus L_2/YM)/YM \). Now \(X/Y) = Y)/YM \). Thus \((X/Y)_T \) is lifting.

Now we can give a part of a well-known fact in the following:

Corollary 3.3. If \(T \) is a generalized uniserial ring with \(J(T)^2 = 0 \), then \(B \) is a generalized uniserial ring with \(J(B)^2 = 0 \).

Proof. By Theorem 3.2 and [20, Corollary 2.5].

Example 3.4. Let \(R \) be a ring and \(M \) a right \(R \)-module. Let \(T = \begin{bmatrix} R & 0 \\ M & \mathbb{Z} \end{bmatrix} \). Consider the right \(T \)-module \(V_T = (M \oplus \mathbb{Z})_T \) associated to the triple \((M, \mathbb{Z})_f \) where \(f : \mathbb{Z} \otimes M \rightarrow M \) defined by \(n \otimes m \mapsto nm \) for all \(n \in \mathbb{Z} \) and \(m \in M \). Since \(\mathbb{Z} \) is not lifting, \(V_T \) is not lifting.

Let \(V_T = (X \oplus Y)_T \) be a right \(T \)-module corresponds to \((X, Y)_f \) in \(\Omega \). Then we can define the following \(B \)-homomorphism:

\[
\bar{f} : Y \rightarrow \text{Hom}(M, X) \text{ given by } \bar{f}(y)(m) = f(y \otimes m) \text{ for } y \in Y, m \in M.
\]

If the right \(T \)-module \(V_T = (X \oplus Y)_T \) corresponds to \((X, Y)_f \) in \(\Omega \) and \((X' \oplus Y')_T \) is a submodule of \((X \oplus Y)_T \) with the homomorphism \(\bar{f}' = f(j_2' \otimes 1_M) \) such that \(j_2' : X' \rightarrow Y \) is
the inclusion map and \(Y' \subseteq X' \), then we will have the \(B \)-homomorphism:
\[
\tilde{f}_{Y'} : Y' \to \text{Hom}(M, X')
\]
given by \(\tilde{f}_{Y'}(y')(m) = f(y' \otimes m) \) for \(y' \in Y', m \in M \).

Haghigh and Varadarajan give the complete description of the projective right \(T \)-modules in [11, Theorem 3.1]. Also in [12] Haghigh and in [3] Chen and Zang investigate the relatively injectivity of right \(T \)-modules. Now we investigate the relatively projectivity of right \(T \)-modules in the following two theorems.

Theorem 3.5. Let \(V_1 \) and \(V_2 \) be two right \(T \)-modules with \((X_1, V_1)_{f_1}, (X_2, V_2)_{f_2}\) the corresponding triples. If \(X_2 \) is \(X_1 \)-projective in \(\text{Mod-A} \) and \(f_{1_y}^{'} \mid V_1 \) is an isomorphism for every submodule \((X_1' \oplus Y_1')_y \) of \(V_1 \), then \(V_2 \) is \(V_1 \)-projective in \(\text{Mod-T} \).

Proof. Take a quotient \(V_1'' = (X_1'', Y_1'')_{f_1}' \) of \(V_1 \). Then \(X_1'' = X_1 / X_1', Y_1'' = Y_1 / Y_1', \eta_1 : X_1 \to X_1'' \) and \(\eta_2 : Y_1 \to Y_1'' \) are the natural epimorphisms, \((X_1'', Y_1'')_{f_1}' \) is a submodule of \(V_1 \) with the homomorphism \(f_1' = f_1(j_2' \otimes 1_M) \) (\(j_2' : Y_1' \to Y \) is the inclusion map) and \(f_1'' : Y_1'' \otimes M \to X_1'' \) is the \(A \)-homomorphism which makes the following diagram commutative:

\[
\begin{array}{ccc}
Y_1'' \otimes M & \xrightarrow{f_1''} & Y_1' \otimes M \\
| & \downarrow{\eta_2 \otimes 1_M} & | \\
X_1' & \xrightarrow{j_2'} & X_1 \\
\end{array}
\]

where \(j_2' : X_1' \to X_1 \) is the inclusion map. Now the corresponding natural \(T \)-homomorphism \(\eta \) from \(V_1 \) to \(V_1'' \) is the map \((\eta_1, \eta_2)\). Let \(\sigma : V_2 \to V_1'' \) be any \(T \)-homomorphism. Then \(\sigma \) corresponds to the pair \((\sigma_1, \sigma_2)\) such that \(\sigma_1 : X_2 \to X_1'' \) is an \(A \)-homomorphism, \(\sigma_2 : Y_2 \to Y_1'' \) is a \(B \)-homomorphism and \(\sigma_2 f_2 = f_1''(\sigma_2 \otimes 1_M) \) and \(\sigma_1(x_2, y_2) = (\sigma_1(x_2), \sigma_2(y_2)) \). Since \(X_2 \) is \(X_1 \)-projective, there exists an \(A \)-homomorphism \(\sigma_T: X_2 \to X_1 \) such that \(\eta_1 \sigma_T = \sigma_1 \). Now we want to define a \(B \)-homomorphism \(\sigma_T : Y_2 \to Y_1 \) such that the pair \((\sigma_T, \sigma_T)\) lifts \(\sigma \) with the corresponding \(T \)-homomorphism \(\sigma \). Take any element \(y_2 \in Y_2 \). Then we can define a homomorphism \(\theta : M \to X_1 \) with \(\theta(m) = \sigma_T f_2(y_2 \otimes m) \). Since \(\tilde{f}_1 \) is an isomorphism, there exists a unique \(y_1 \in Y_1 \) such that \(\tilde{f}_1(y_1) = \theta \). Now let \(\tilde{\sigma_T}(y_2) = y_1 \). Clearly \(\tilde{\sigma_T} \) is a \(B \)-homomorphism. Let \(y_2 \in Y_2 \) and \(m \in M \). Then \(f_1(\tilde{\sigma_T} \otimes 1_M)(y_2 \otimes m) = f_1'(\tilde{\sigma_T}(y_2) \otimes m) = f_1(y_1 \otimes m) = \tilde{f}_1(y_1)(m) = \sigma_T f_2(y_2 \otimes m) \), where \(\tilde{\sigma_T}(y_2) = y_1 \) and \(\tilde{f}_1(y_1) = \theta \).

Therefore \(f_1(\tilde{\sigma_T} \otimes 1_M) = \tilde{\sigma_T} f_2 \). Thus \((\tilde{\sigma_T}, \tilde{\sigma_T}) : (X_2, Y_2)_{f_1} \to (X_1, Y_1)_{f_1} \) is a morphism in \(\Omega \) which corresponds to a \(T \)-homomorphism \(\sigma_T : V_2 \to V_1 \), namely \(\tilde{T}(x_2, y_2) = (\tilde{T}(x_2), \tilde{T}(y_2)) \).

Now we should see that \(\tilde{T} \sigma_T = \sigma_T \). It is enough to show that \(\tilde{T} \sigma_T = \sigma_T \). Let \(y_2 \in Y_2 \). Since \(\sigma_1 f_2 = f_1''(\sigma_2 \otimes 1_M) \), for all \(m \in M \), \((\sigma_1 f_2(y_2 \otimes m) = \sigma_1(f_2(y_2 \otimes m)) = f_1''(\sigma_2(y_2) \otimes m) = f_1(y_1 \otimes m) = \tilde{f}_1(y_1)(m) = \tilde{T}(y_2)(m) = \tilde{T}(y_2)(m) \), where \(\tilde{T}(y_2) = y_1 \) and \(\tilde{T}(y_1) = \theta \).

Therefore the \(\tilde{T} \sigma_T = \sigma_T \), which means that \(\tilde{T}(z - \tilde{T}(y_2)) \) is an \(A \)-homomorphism from \(M \) to \(X_1' \). Since \(\tilde{T}_{Y_1} = \tilde{T} = \tilde{T} \) is an isomorphism, there exists an element \(y_1' \in Y' \) such that \(\tilde{T}_{Y_1}'(y_1') = \tilde{T}(z) = \tilde{T}(y_2) \).

Note that in [4, 4.1.1], it is proven that if \(Y_1 \) is \(Y_2 \)-projective and \(f_1 : Y_1 \otimes M \to X_1 \) is an \(A \)-isomorphism, then \(V_1 \) is \(V_2 \)-projective. Therefore we deduce that the converse of Theorem 3.5 may not be true. Namely there exist right \(T \)-modules \(V_1 \) and \(V_2 \) such that \(V_2 \) is \(V_1 \)-projective but \(X_2 \) is not \(X_1 \)-projective.

Example 3.6. Let \(R \) be a ring and \(M \) a right \(R \)-module such that \(zM \) is torsion-free which is not quasi-projective. Again let \(T = \begin{bmatrix} R & 0 \\ M & Z \end{bmatrix} \) and consider the right \(T \)-module \(V_T = (M \oplus Z)_T \) associated to the triple \((M, \mathbb{Z}, f)\) where \(f : \mathbb{Z} \otimes M \to M \) defined by \(n \otimes m \mapsto nm \) for all \(n \in \mathbb{Z} \) and \(m \in M \). Clearly, \(f \) is an \(R \)-isomorphism. Therefore by [4, 4.1.1], \(V_T \) is quasi-projective. On the other hand, \(M \) is not quasi-projective.

Theorem 3.7. Let \(V_1 \) and \(V_2 \) be two right \(T \)-modules with \((X_1, V_1)_{f_1}, (X_2, V_2)_{f_2}\) the corresponding triples. If \(V_2 \) is \(V_1 \)-projective, then \(V_2 \) is \(V_1 \)-projective and \(X_2 / f_2(V_2 \otimes M) \) is \(X_1 / f_1(V_1 \otimes M) \)-projective.
Proof. Let $\eta_1 : Y_1 \rightarrow Y_1/K_1$ be the natural epimorphism and $\alpha_1 : Y_2 \rightarrow Y_1/K_1$ be any B-homomorphism, where $K_1 \leq Y_1$. Then we can construct the quotient $(0 \oplus Y_1/K_1)_T$ of $(X_1 \oplus Y_1)_T$ with the following commutative diagram:

$$
\begin{array}{c}
K_1 \otimes M \xrightarrow{\eta_1 \otimes 1_M} Y_1 \otimes M \xrightarrow{\eta_1 \otimes 1_M} Y_1/K_1 \otimes M \rightarrow 0 \\
X_1 \xrightarrow{f_1} X_1 \xrightarrow{0} 0 \rightarrow 0
\end{array}
$$

Now we can construct those morphisms in Ω:

$$(0, \alpha_1) : (X_2, Y_2)_{f_2} \rightarrow (0, Y_1/K_1)_0$$
and

$$(0, \eta_1) : (X_1, Y_1)_{f_1} \rightarrow (0, Y_1/K_1)_0.$$

Thus we have the T-homomorphisms

$$\alpha : (X_2 \oplus Y_2)_T \rightarrow (0 \oplus Y_1/K_1)_T$$
with $\alpha(x_2, y_2) = (0, \alpha_1(y_2))$

and

$$\eta : (X_1 \oplus Y_1)_T \rightarrow (0 \oplus Y_1/K_1)_T$$
with $\eta(x_1, y_1) = (0, \eta_1(y_1)).$

Note that η is the natural epimorphism from $(X_1 \oplus Y_1)_T$ to its quotient $(0 \oplus Y_1/K_1)_T$. Since V_2 is V_1-projective, there is a T-homomorphism $\beta : V_2 \rightarrow V_1$ such that $\eta \beta = \alpha$. Namely, there exists a B-homomorphism $\beta_1 : Y_2 \rightarrow Y_1$ and an A-homomorphism $\beta_1 : X_2 \rightarrow X_1$ such that $\beta_1 f_2 = f_1 (\beta_2 \otimes 1_M)$ and $\beta(x_2, y_2) = (\beta_1(x_2), \beta_2(y_2))$. Thus $\eta_1 \beta_1 = \alpha_1$. Hence Y_2 is Y_1-projective.

Now consider the following diagram:

$$
\begin{array}{c}
X_2/f_2(Y_2 \otimes M) \\
X_1/f_1(Y_1 \otimes M) \xrightarrow{\mu} X_1/f_1(Y_1 \otimes M) \rightarrow 0 \\
X_1/f_1(Y_1 \otimes M) \xrightarrow{\nu} X_1/f_1(Y_1 \otimes M) \rightarrow 0
\end{array}
$$

where μ is the natural epimorphism, μ is any A-homomorphism and $X_1'/f_1(Y_1 \otimes M)$ is a submodule of $X_1/f_1(Y_1 \otimes M)$. Let γ be the isomorphism from $(X_1/f_1(Y_1 \otimes M))/(X_1'/f_1(Y_1 \otimes M))$ to X_1/X_1', $\pi_1 : X_1 \rightarrow X_1/X_1'$ be the natural epimorphism, $\pi_2 : X_2 \rightarrow X_2/f_2(Y_2 \otimes M)$ be the natural epimorphisms. It is clear that $(X_1' \oplus Y_1)_T$ is a submodule of V_1 with $f_1' = f_1$ and $(X_1'/X_1' \oplus 0)_T$ is a factor module of V_1 with $f_1'' = 0$, namely we have the following commutative diagram:

$$
\begin{array}{c}
Y_1 \otimes M \xrightarrow{1_{Y_1} \otimes 1_M} Y_1 \otimes M \xrightarrow{0} 0 \otimes M \rightarrow 0 \\
X_1' \xrightarrow{j} X_1 \xrightarrow{0} X_1/X_1' \rightarrow 0
\end{array}
$$

Now $(\gamma \nu \pi_2, 0) : (X_2, Y_2)_{f_2} \rightarrow (X_1/X_1', 0)_0$ is a T-homomorphism and $(\gamma \nu \pi_1, 0) : (X_1, Y_1)_{f_1} \rightarrow (X_1/X_1', 0)_0$ is a T-epimorphism. Since V_2 is V_1-projective, we have a T-homomorphism with the pair $(\mu_1, \mu_2) : (X_2, Y_2)_{f_2} \rightarrow (X_1, Y_1)_{f_1}$ which makes the following diagram commutative:

$$
\begin{array}{c}
(X_2, Y_2)_{f_2} \\
(X_1/X_1', 0)_0 \xrightarrow{(\gamma \nu \pi_1, 0)} (X_1/X_1', 0)_0 \rightarrow 0
\end{array}
$$

Note that we have the compositions $\mu_1 f_2 = f_1 (\mu_2 \otimes 1_M)$ and $\nu \pi_1 \mu_1 = \mu \pi_2$. Let us define the A-homomorphism $\pi : X_2/f_2(Y_2 \otimes M) \rightarrow X_1/f_1(Y_1 \otimes M)$ by $x_2 + f_2(Y_2 \otimes M) \mapsto \mu_1(x_2) + f_1(Y_1 \otimes M)$. Since $\mu_1 f_2 = f_1 (\mu_2 \otimes 1_M)$, π is well-defined and since $\nu \pi_1 \mu_1 = \mu \pi_2$, $\nu \pi = \mu$. Therefore the following diagram is commutative:
Therefore $X_2/f_2(Y_2 \otimes M)$ is $X_1/f_1(Y_1 \otimes M)$-projective. \hfill \Box

Let V_1 and V_2 be two right T-modules with $(X_1, Y_1)_{f_1}$ and $(X_2, Y_2)_{f_2}$ the corresponding triples, respectively. If V_1 is V_2-projective, the relative projectivity of Y_1 with respect to Y_2 is also proven in [4, 4.1.3] and under the assumption that $f_1(Y_1 \otimes M)$ is a direct summand of X_1, the relative projectivity of $X_1/f_1(Y_1 \otimes M)$ with respect to $X_2/f_2(Y_2 \otimes M)$ is proven in [4, 4.1.4].

Corollary 3.8. If $(X \oplus Y)_T$ is quasi-projective, then $(X/Y M)_A$ and Y_B are quasi-projective.

Example 3.9. Let R be a ring and M be a right R-module. Consider the ring $T = \begin{bmatrix} R & 0 \\ M & Z \end{bmatrix}$.

Let K be a nonzero submodule of \mathbb{Q}_Z with $K \not\subseteq Z$ and $K \not\subseteq \mathbb{Q}_Z$. By [18, Corollary 4.4], $K \oplus Z$ is not semi-projective hence not quasi-projective over \mathbb{Z}. Then by Corollary 3.8, none of the right T-modules in the form $(X \oplus (K \oplus Z))_T$ is quasi-projective, where X is any right R-module.

Corollary 3.10. If $(X \oplus Y)_T$ has a quasi-projective cover, then $(X/Y M)_A$ and Y_B have semi-projective covers.

Proof. Let $\varphi : (U \oplus V)_T \to (X \oplus Y)_T$ be a quasi-projective cover of $(X \oplus Y)_T$. Assume that the objects $(U, V)_g$ and $(X, Y)_f$ in \mathcal{O} determine the right T-modules $(U \oplus V)_T$ and $(X \oplus Y)_T$, respectively. Then there exist homomorphisms $\varphi_1 : U_A \to X_A, \varphi_2 : V_B \to Y_B$ such that $(\varphi_1, \varphi_2) : (U, V)_g \to (X, Y)_f$ is a morphism in \mathcal{O} with $\varphi_1 g = f(\varphi_2 \otimes 1_M)$ and $(\varphi_1(u), \varphi_2(v)) = \varphi(u, v)$. By [3, Theorem 2.4], the epimorphism $\varphi_2 : V_B \to Y_B$ has small kernel and we have the epimorphism $\varphi_1 g : U/V \to X/Y$ with small kernel. Thus $(X/Y M)_A$ and Y_B have semi-projective covers with the epimorphisms $\varphi_1 g$ and φ_2, respectively by Corollary 3.8. \hfill \Box

References

Author information

Berke Kaleboğaz and Derya Keskin Tütüncü, Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
E-mail: bkuru@hacettepe.edu.tr; keskin@hacettepe.edu.tr

Received: February 10, 2014.

Accepted: April 22, 2014.