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Abstract. FS-closure and FS-interior operators both induce fuzzy sequential topologies on
the underlying set. Do the composition of FS-closure and that of FS-interior operators provide
any topological structure? If so, is there any relation among the topologies induced by the com-
position and that induced by the participants to the composition? We consider these questions in
this article and also study relative FS-closure operators and FS-connectors.

1 Introduction

In 1968 C. L. Chang [6] introduced the concept of fuzzy topology after the initiation of fuzzy
sets by L. A. Zadeh [18]. Towards the development of fuzzy set theory, fuzzy closure operators
and fuzzy interior operators have been studied by Mashour and Ghanim [10], G. Gerla [8],
Bandler and Kohout [1], R. Belohlavek [2], R. Belohlavek and T. Funiokova [3]. Notions of
fuzzy sequential topological spaces (FSTS) and notions of FS-closure and FS-interior operators
were introduced in [13] and [17] respectively.

Our purpose is to introduce FS-connectors connecting two fuzzy topologies on a set and to
study the composition of FS-closure and that of FS-interior operators.

Section 2 deals with the composition of FS-closure operators, composition of FS-interior
operators and the relation between collections of FS-closure and FS-interior operators. Section
3 deals with the relative FS-closure operators and the functions connecting two fuzzy topologies
on a set, so called FS-connectors. The basic ideas behind the present work have been taken from
the books ([5], [7] [9], [11]) and the articles ([4], [12], [14], [15], [16]).

In this paper, X will denote a non-empty set, I = [0, 1], the closed unit interval in the real
line. Before entering into our work we recall the following definitions and results.

Definition 1.1. [13] A family δ(s) of fuzzy sequential sets on a set X satisfying the properties
(i) Xr

f (s) ∈ δ(s) for r = 0 and 1,
(ii) Af (s), Bf (s) ∈ δ(s)⇒ Af (s) ∧Bf (s) ∈ δ(s) and
(iii) for any family {Afj(s) ∈ δ(s), j ∈ J}, ∨

j∈J
Afj(s) ∈ δ(s)

is called a fuzzy sequential topology (FST) on X and the ordered pair (X , δ(s)) is called fuzzy
sequential topological space (FSTS). The members of δ(s) are called open fuzzy sequential sets
in X . Complement of an open fuzzy sequential set in X is called closed fuzzy sequential set in
X .

Definition 1.2. [13] If (X, δ(s)) is an FSTS, then (X, δn) is a fuzzy topological space (FTS),
where δn={Anf ; Anf (s) = {Anf }n ∈ δ(s)}, n ∈ N. (X, δn), where n ∈ N, is called the nth

component FTS of the FSTS (X, δ(s)).

Proposition 1.3. [13] Let Af (s)={Anf }n be an open (closed) fuzzy sequential set in the FSTS
(X, δ(s)), then for each n ∈ N, Anf is an open (closed) fuzzy set in (X, δn).

Proposition 1.4. [13] If δ be a fuzzy topology (FT ) on a set X , then δN forms an FST on X .

Definition 1.5. [13] Let Af (s) be a fuzzy sequential set (fs-set) in an FSTS (X, δ(s)). The

closure Af (s) and interior
o

Af (s) of Af (s) are defined as

Af (s) = ∧{Cf (s); Af (s) ≤ Cf (s), (Cf (s))c ∈ δ(s)},
o

Af (s) = ∨{Of (s); Of (s) ≤ Af (s), Of (s) ∈ δ(s)}.
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Definition 1.6. [17] An operator Cl : (IX)N → (IX)N is said to be an FS-closure operator on X
if it satisfies the following conditions:
(FSC1) Cl(X0

f (s)) = X0
f (s).

(FSC2) Af (s) ≤ Cl(Af (s)) for all Af (s) ∈ (IX)N.
(FSC3) Cl(Cl(Af (s))) = Cl(Af (s)) for all Af (s) ∈ (IX)N.
(FSC4) Cl(Af (s) ∨Bf (s)) = Cl(Af (s)) ∨Cl(Bf (s)) for all Af (s), Bf (s) ∈ (IX)N.

Definition 1.7. [17] An operator I : (IX)N → (IX)N is said to be an FS-interior operator on X
if it satisfies the following conditions:
(FSI1) I(X1

f (s)) = X1
f (s).

(FSI2) I(Af (s)) ≤ Af (s) for all Af (s) ∈ (IX)N.
(FSI3) I(I(Af (s))) = I(Af (s))) for all Af (s)) ∈ (IX)N.
(FSI4) I(Af (s) ∧Bf (s)) = I(Af (s)) ∧ I(Bf (s)) for all Af (s), Bf (s) ∈ (IX)N.

Theorem 1.8. [17] If Cl : (IX)N → (IX)N be an FS-closure operator on X , then the operator
ICl : (IX)N → (IX)N defined by

ICl(Af (s)) = X1
f (s)− Cl((Af (s))c) ∀Af (s) ∈ (IX)N,

is an FS-interior operator on X . Again, if I : (IX)N → (IX)N be an FS-interior operator on X ,
then the operator ClI : (IX)N → (IX)N defined by

ClI(Af (s)) = X1
f (s)− I((Af (s))c) ∀Af (s) ∈ (IX)N,

is an FS-closure operator on X .

Theorem 1.9. [17] The map t : CX → IX defined by

t(Cl) = ICl ∀Cl ∈ CX

is a bijection, where CX and IX respectively, denote the collections of all FS-closure operators
and all FS-interior operators on X .

2 Composition of FS-closure and FS-interior operators

Definition 2.1. If C1 , C2 : (IX)N → (IX)N be two FS-closure operators onX , then the mapping
C2 ◦C1 : (IX)N → (IX)N defined by

(C2 ◦C1)(Af (s)) = C2(C1(Af (s))) ∀Af (s) ∈ (IX)N

is called the composition of the FS-closure operators C1 and C2.

It is easy to see that composition of FS-closure operators is associative but it may not be
commutative and it may not be idempotent, as shown by Example 2.2.

Example 2.2. Let us consider the FS-closure operator C1 : (IX)N → (IX)N on X , defined by
C1(Af (s)) = Af (s) ∨Df (s) whenever Af (s) 6= X0

f (s) and C1(X0
f (s)) = X0

f (s), where Df (s)

is a fixed fuzzy sequential set in X . Also consider FS-closure operator C2 : (IX)N → (IX)N on
X , defined by C2(Af (s)) = {Anf ∨ A

n+1
f }∞n=1 ∀Af (s) = {Anf }∞n=1 ∈ (IX)N. Then C2 ◦ C1 6=

C1 ◦C2. and (C2 ◦C1) ◦ (C2 ◦C1) 6= (C2 ◦C1).

Theorem 2.3. If C1 and C2 be two FS-closure operators on X , then C2 ◦ C1 satisfies FSC1,
FSC2 and FSC4. Further, it satisfies FSC3 if the composition is commutative, that is, under
commutative composition, C2 ◦ C1 forms an FS-closure operator.
Proof: Proof is omitted.

Theorem 2.4. Let C1 and C2 be two FS-closure operators on X . Under commutative compo-
sition, δC2◦C1(s) = δC2(s) ∧ δC1(s), where δC2◦C1(s), δC2(s) and δC1(s) respectively denote the
FST’s induced by C2 ◦ C1, C2 and C1.
Proof: Let Af (s) ∈ δC2◦C1(s), then

(C2 ◦ C1)((Af (s))
c) = (Af (s))

c
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Now,

C1((Af (s))
c) = C1((C2 ◦ C1)((Af (s))

c))

= C1((C1 ◦ C2)((Af (s))
c))

= C1(C1(C2((Af (s))
c)))

= C1(C2((Af (s))
c))

= (C1 ◦ C2)((Af (s))
c)

= (Af (s))
c.

Similarly, C2((Af (s))c) = (Af (s))c. Hence Af (s) ∈ δC2(s) ∧ δC1(s).
Again, let Af (s) ∈ δC2(s) ∧ δC1(s), then

C1((Af (s))
c) = (Af (s))

c and C2((Af (s))
c) = (Af (s))

c

Now,

(C2 ◦ C1)((Af (s))
c) = C2(C1((Af (s))

c))

= C2((Af (s))
c)

= (Af (s))
c

Thus Af (s) ∈ δC2◦C1(s) and hence the theorem.

Definition 2.5. If I1 , I2 : (IX)N → (IX)N be two FS-interior operators on X , then the mapping
I2 ◦ I1 : (IX)N → (IX)N defined by

(I2 ◦ I1)(Af (s)) = I2(I1(Af (s))) ∀Af (s) ∈ (IX)N

is called the composition of the FS-interior operators I1 and I2.

It is easy to see that composition of FS-interior operators is associative but it may not be
commutative and it may not be idempotent, as shown by Example 2.6.

Example 2.6. Let us consider the FS-interior operator I1 : (IX)N → (IX)N on X , defined by
I1(Af (s)) = Af (s)∧Df (s) whenever Af (s) 6= X0

f (s) and I1(X1
f (s)) = X1

f (s), where Df (s) is
a fixed fuzzy sequential set in X . Also consider FS-interior operator I2 : (IX)N → (IX)N on X ,
defined by I2(Af (s)) = {Anf ∧ A

n+1
f }∞n=1 ∀Af (s) = {Anf }∞n=1 ∈ (IX)N. Then I2 ◦ I1 6= I1 ◦ I2

and (I2 ◦ I1) ◦ (I2 ◦ I1) 6= (I2 ◦ I1).

Theorem 2.7. If I1 and I2 be two FS-interior operators on X , then I2 ◦ I1 satisfies FSI1,
FSI2 and FSI4. Further, it satisfies FSI3 if the composition is commutative, that is, under
commutative composition, I2 ◦ I1 forms an FS-interior operator.
Proof: Proof is omitted.

Theorem 2.8. Let I1 and I2 be two FS-interior operators onX . Under commutative composition,
δI2◦I1(s) = δI2(s)∧δI1(s), where δI2◦I1(s), δI2(s) and δI1(s) respectively denote the FST’s induced
by I2 ◦ I1, I2 and I1.
Proof: The proof is similar to that in case of FS-closure operators.

Theorem 2.9. Under commutative composition, (IX , ◦) and (CX , ◦) both form semigroups with
identity. Further, there exists a semigroup isomorphism between them.
Proof: First part is easy to check. For the second part, define t : CX → IX by

t(Cl) = ICl ∀Cl ∈ CX
From Theorem 1.9, t is a bijection. Also for C1, C2 ∈ CX and Af (s) ∈ (IX)N

(IC1 ◦ IC2)(Af (s)) = IC1(X
1
f (s)− C2((Af (s))

c))

= X1
f (s)− C1(C2((Af (s))

c))

= X1
f (s)− (C1 ◦ C2)((Af (s))

c)

= IC1◦C2(Af (s)).

Therefore

t(C1 ◦ C2) = IC1◦C2

= IC1 ◦ IC2

= t(C1) ◦ t(C2)

Hence t is an isomorphism.
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3 Relative FS-closure Operators and
FS-connectors

Definition 3.1. Let Af (s) be an fs-set in X and Cl : (IX)N → (IX)N be an FS-closure operator
on X . A function (Cl)nAf (s) : IX → IX defined by (Cl)nAf (s)(B) = nth term of Cl(nBAf (s)),
where nBAf (s) is the fs-set in X obtained from Af (s) replacing nth term of it by B, is called
nth relative FS-closure operator of Cl with respect to Af (s).

If Cl : (IX)N → (IX)N be an FS-closure operator on X , then it is obvious that (Cl)n
X0
f (s)

=

(Cl)nf and consequently δ(Cl)n
X0
f
(s)

= δ(Cl)nf , δ(Cl)n
X0
f
(s)

and δ(Cl)nf being the fuzzy topologies in-

duced by (Cl)n
X0
f (s)

and (Cl)nf respectively. It is also true that the nth relative FS-closure operator

(Cl)nAf (s) of an FS-closure operator Cl with respect to an fs-set Af (s) satisfies FSC2, FSC3
and FSC4 but it may not satisfy FSC1 shown by Example 3.2. Hence (Cl)nAf (s) may not be a
fuzzy operator.

Example 3.2. Define a function Cl : (IX)N → (IX)N by

Cl(Bf (s)) = X1
f (s) if Bf (s) 6= X0

f (s),

= X0
f (s) if Bf (s) = X0

f (s)

Then for any fs-set Af (s) in X , having at least two non zero components, (Cl)nAf (s)(0) = 1 for
all n ∈ N.

Theorem 3.3. Let (Cl)nAf (s) : IX → IX be the nth relative FS-closure operator of an FS-closure

operator Cl : (IX)N → (IX)N on X with respect to an fs-set Af (s). Then δ(Cl)n
Af (s)

= {1, B;

B ∈ IX and (Cl)nAf (s)(B
c) = Bc} forms a fuzzy topology on X . Further, the closure in the FTS

(X, δ(Cl)n
Af (s)

) and (Cl)nAf (s) are identical on IX − {0}.
Proof: Proof is omitted.

Definition 3.4. The fuzzy topology δ(Cl)n
Af (s)

= {1,B;B ∈ IX and (Cl)nAf (s)(B
c) = Bc} induced

by the nth relative FS-closure operator (Cl)nAf (s) : IX → IX is called the nth relative fuzzy
topology induced by the FS-closure operator Cl : (IX)N → (IX)N with respect to the fs-set
Af (s).

Theorem 3.5. Let Af (s) = {Anf }∞n=1 be an fs-set in a set X and Cl : (IX)N → (IX)N be an
FS-closure operator on X . Let (Cl)nf , n ∈ N be the nth component of Cl. Then
(1) Cl(Af (s)) ≥ {(Cl)nf (Anf )} and the equality holds if Af (s) is a closed fs-set in (X, δCl(s)).
(2) If Cl(Af (s)) = {(Cl)nf (Anf )} and An is closed in (X, δ(Cl)nf ) for each n ∈ N, then Af (s) is
closed in (X, δCl(s)).
(3) Cl(Af (s)) = {(Cl)nAf (s)(A

n
f )}.

Proof: Proof is omitted.

In an FSTS (X, δ(s)) if Af (s) = {Anf }∞n=1 is closed, then Anf is closed in (X, δn) for each
n ∈ N but the converse is not true [13]. Corollary 3.6 provides a pair of if and only if conditions
for an fs-set Af (s) to be closed in an FSTS.

Corollary 3.6. In an FSTS (X, δ(s)), an fs-set Af (s) = {Anf }∞n=1 is closed:
(1) if and only if Af (s) = {Bnf } and Anf is closed in (X, δn) for each n ∈ N, where Bnf = nth

component of nAnfX
0
f (s).

(2) if and only if Anf is closed in (X, δRn
Af (s)

) for each n ∈ N, where RnAf (s) is the nth relative

FS-closure operator of the closure operator in (X, δ(s)) with respect to Af (s).

Theorem 3.7. If {Aλf (s); λ ∈ Λ} be a chain of fs-sets in ((IX)N, ≤), then {δ(Cl)n
Aλf (s)

, λ ∈ Λ}

is a chain of fuzzy topologies on X for each n ∈ N, where Cl : (IX)N → (IX)N is an FS-closure
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operator on X .
Proof: Let Aλf (s) ≤ Aµf (s), λ, µ∈ Λ. It suffices to show that δ(Cl)n

Aµf (s)
≤ δ(Cl)n

Aλf (s)
.

Let B ∈ δ(Cl)n
Aµf (s)

⇒ (Cl)nAµf (s)(1−B) = 1−B

⇒ nth term of Cl(n(1−B)Aµf (s)) = 1−B

Therefore nth term of Cl(n(1−B)Aλf (s)) ≤ 1−B
⇒ (Cl)nAλf (s)(1−B) ≤ 1−B.

Hence B ∈ δ(Cl)n
Aλf (s)

.

Definition 3.8. Each member except possibly 1 of δ(Cl)n
Af (s)

is contained in 1− (Cl)nAf (s)(0) and

so δ(Cl)n
Af (s)

is called (1− (Cl)nAf (s)(0))-cut of δ(Cl)nf .

Theorem 3.9. Let {Cn : IX → IX} be a sequence of fuzzy closure operators on X . Then the
operator C : (IX)N → (IX)N defined by C(Af (s)) = {Cn(Anf )} for all Af (s) = {Anf }∞n=1 ∈
(IX)N is an FS-closure operator on X .
Proof: The proof is omitted.

Definition 3.10. Let {Cn : IX → IX} be a sequence of fuzzy closure operators on X . The
operator C : (IX)N → (IX)N defined by C(Af (s)) = {Cn(Anf )} for all Af (s) = {Anf }∞n=1 ∈
(IX)N is called an FS-closure operator induced by a sequence {Cn : IX → IX} of fuzzy closure
operators on X .

Definition 3.11. Let δ and δ′ be two fuzzy topologies on a set X . A subset Kf of δ′δ is called an
FS-connector of δ to δ′ if it satisfies the following conditions:
(1) Aλ ∈ δ and fλ ∈ Kf , λ ∈ Λ⇒ there exist f ∈ Kf so that f(∨λ∈ΛAλ) = ∨λ∈Λfλ(Aλ),
(2) Ai ∈ δ and fi ∈ Kf , i = 1(1)n⇒ there exist f ∈ Kf so that f(∧ni=1Ai) = ∧ni=1fi(Ai) and
(3) δ′ = ∨f∈Kf f(δ).

Example 3.12. Let δ and δ′ be two fuzzy topologies on a set X . A function f : δ → δ′ defined
by f(A) = O for all A ∈ δ, where O is a fixed element of δ′, is called a constant function from
δ into δ′. If Kf be the collection of all such constant functions from δ into δ′, then Kf forms an
FS-connector from δ to δ′.

Definition 3.13. Let δ and δ′ be two fuzzy topologies on a set X . Then the collection of all
constant functions from δ into δ′ forms an FS-connector of δ to δ′. This is called the discrete
FS-connector of δ to δ′.

If {δn} be a sequence of fuzzy topologies on a set X , then any sequence {Kn} of FS-
connectors such that Kn connects δn to δn+1 for all n ∈ N, provides a unique FST on X
(Theorem 3.14) which is denoted by δ(s) < {δn}, {Kn} > such that the nth components
(δ < {δn}, {Kn} >)n = δn for all n ∈ N and it is called the FST generated by {δn} and
{Kn}. If further each Kn is the discrete FS-connector of δn to δn+1, then the FST is said to be
generated by {δn} and is denoted by δ < {δn} >.

Theorem 3.14. Let {δn} be a sequence of fuzzy topologies on a set X . Then for any sequence
{Kn} of FS-connectors such that Kn connects δn to δn+1 for all n ∈ N, there is a unique FST
δ(s) < {δn}, {Kn} > on X such that (δ(s) < {δn}, {Kn} >)n = δn, n ∈ N. Also for any
FSTS (X ,δ(s)), there is a sequence {Kn} of FS-connectors such that Kn connects δn to δn+1
and δ(s) = δ(s) < {δn}, {Kn} >.
Proof: Let K =

∏∞
n=1 Kn, g = {gn} ∈ K and A ∈ δ1. Define H1 = A and Hn =

gn−1gn−2.....g2g1A, n > 1. Let Hg
A(s) = {Hn} ∈ (IX)N and consider δ(s) < {δn}, {Kn} >=

{X1
f (s), X

0
f (s)} ∨ {H

g
A(s); g ∈ K and A ∈ δ1}. Consider

Hλ(s) = Hgλ
Aλ

(s) ∈ δ(s), λ ∈ Λ

where Λ is an index set and

A = ∨λ∈ΛAλ ∈ δ1.



42 N. Tamang, M. Singha and S. De Sarkar

For gλ1 ∈ K1 and A ∈ δ1 there exist g1 ∈ K1 such that

g1A = ∨λ∈Λgλ1Aλ; gλn ∈ Kn

and for gn−1gn−2......g2g1A ∈ δn there exist gn ∈ Kn such that

gngn−1......g2g1A = ∨λ∈Λgλngλ(n−1)....gλ2gλ1Aλ.

Obviously,

∨λ∈ΛHλ(s) = ∨λ∈ΛH
gλ
Aλ

(s) = Hg
A(s) ∈ δ(s) < {δn}, {Kn} >

where g = gn. Arguing in the same way it can be shown that δ(s) < {δn}, {Kn} > is closed
under finite intersection. Therefore, (X , δ(s) < {δn}, {Kn} >) is a fuzzy sequential topological
space. The third condition to be an FS-connector ensures that (δ(s) < {δn}, {Kn} >)n = δn
for all n ∈ N. For the next part, for each n ∈ N define a relation Rn,n+1 on δ(s) by Af (s) =
{Anf }Rn,n+1Bf (s) = {Bnf } if and only if Anf = Bnf . Then Rn,n+1 defines a partition of δ(s) say

{Cls(Af (s)); Af (s) ∈ δn,n+1(s) ⊂ δ(s)}

where δn,n+1(s) is a family of open fs-sets taking exactly one from each class of the partition of
δ(s) by Rn,n+1 and Cls(Af (s)) represents the class of Af (s). Let

Kn,n+1 =
∏
Af (s)∈δn,n+1(s) Cls(Af (s))

Then each t ∈ Kn,n+1 defines a function gt : δn → δn+1 and Kn = {gt; t ∈ Kn,n+1} is an
FS-connector connecting δn to δn+1 and properties of FS-connectors ensures that δ(s) = δ(s) <
{δn}, {Kn} >.

Corollary 3.15. Let Cl : (IX)N → (IX)N be an FS-closure operator on X . Then for any
sequence {Kn} of FS-connectors such that Kn connects δ(Cl)nf to δ(Cl)n+1

f
for all n ∈ N, there is

a unique FST δ(s) < {δ(Cl)nf }, {Kn} > on X such that (δ(s) < {δ(Cl)nf }, {Kn} >)n = δ(Cl)nf and
the components of the closure operator on (X , δ(s) < {δ(Cl)nf }, {Kn} >) are (Cl)nf , n ∈ N. Also
for any FSTS (X ,δ(s)), there is a sequence {Kn} of FS-connectors such that Kn connects δ(Cl)nf
to δ(Cl)n+1

f
and δ(s) = δ(s) < {δ(Cl)nf }, {Kn} >.

Corollary 3.16. Let I : (IX)N → (IX)N be an FS-interior operator onX . Then for any sequence
{Kn} of FS-connectors such thatKn connects δ(I)nf to δ(I)n+1

f
for all n ∈ N, there is a unique FST

δ(s) < {δ(I)nf }, {Kn} > on X such that (δ(s) < {δ(I)nf }, {Kn} >)n = δ(I)nf and the components
of the interior operator on (X , δ(s) < {δ(I)nf }, {Kn} >) are (I)nf , n ∈ N. Also for any FSTS
(X ,δ(s)), there is a sequence {Kn} of FS-connectors such that Kn connects δ(I)nf to δ(I)n+1

f
and

δ(s) = δ(s) < {δ(I)nf }, {Kn} >.

Corollary 3.17. If {δn} be a sequence of fuzzy topologies on a set X such that δn = δ for all
n ∈ N, then δ(s) < {δn} >= δN.

Corollary 3.18. If {Cn : IX → IX} be a sequence of fuzzy closure operators and C be an FS-
closure operator induced by {Cn}, then δC(s) = δ(s) < {δn} > where δn is the fuzzy topology
on X induced by Cn, n ∈ N.
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