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Abstract. Let R be a ring (not necessarily commutative). A leftR-module is said to be
cotorsionif Ext1

R(G,M) = 0 for any flatR-moduleG. It is well known that each pure-injective
left R-module is cotorsion, but the converse does not hold: for instance, ifR is left perfect but not
left pure-semisimple then, each leftR-module is cotorsion but there exist non-pure-injective left
modules. The aim of this paper is to describe the classC of commutative ringsR for which each
cotorsionR-module is pure-injective. It is easy to see thatC contains the class of von Neumann
regular rings and the one of pure-semisimple rings. We prove thatC is strictly contained in the
class of locally pure-semisimple rings. We state that a commutative ringR belongs toC if and
only if R verifies one of the following conditions:

(1) R is coherent and each pure-essential extension ofR-modules is essential;

(2) R is coherent and each RD-essential extension ofR-modules is essential;

(3) anyR-moduleM is pure-injective if and only if Ext1R(R/A,M) = 0 for each pure idealA
of R (Baer’s criterion).

1 Introduction and preliminaries

The aim of this study is to give a complete description of commutative rings for which each
cotorsion module is pure-injective. In this first section we recall some definitions and some
former results. Then, in section2, we enunciate and show some partial results which are available
even if the ring is not commutative. Section3 is devoted to the commutative case. We get our
main result (Theorem3.9) by using localizations and local rings. In the last section we show that
a commutative ringR is locally perfect if and only if anyR-moduleM for which Ext1R(C,M) =
0 for each cyclic flat moduleC is cotorsion, and we investigate the following question: give
a characterization of ringsR for which each flat-essential exension ofR-modules is essential.
Throughout this paper other related questions are studied, where we use the following notions:
Warfield cotorsion module, RD-injective module, RD-essential extensionand so on...

Even in the commutative case some questions are open. For instance, thecondition "each
cotorsion module is pure-injective" implies the condition " each Warfield cotorsion module is
RD-injective", but the converse is not proven. On the other hand, we do not know if there exist
non-coherent commutative rings for which each pure-essential extension of modules is essential.
Also, it should be interesting to study strongly perfect rings which are introduced in the last
section.

We shall assume that all rings are associative with identity and all modules are unitary. Given
a ringR, any left moduleM is said to beP-flat (resp.P-injective) if TorR1 (R/rR,M) = 0 (resp.
Ext1R(R/Rr,M) = 0) for eachr ∈ R. We say thatR is left P-coherent if each principal left
ideal ofR is finitely presented.

A left moduleM is FP-injective if Ext1
R(F,M) = 0 for each finitely presented left module

F .
Any left moduleM is calledcotorsion (resp. Warfield cotorsion) if, for each flat (resp.

P-flat) left moduleF , Ext1R(F,M) = 0.
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A short exact sequence of left modules ispure (resp. RD-pure) if it remains exact when
tensoring it by any right module (resp. module of the formR/rR, r ∈ R). A left module is
pure-injective (resp. RD-injective) if it is injective relatively to each pure (resp. RD-pure)
exact sequence of left modules.

R is said to be leftpure-semisimple(resp.RD-semisimple) if each leftR-module is pure-
injective (resp. RD-injective). WhenR is commutative thenR is pure-semisimple if and only
if it is RD-semisimple if and only if it is an Artinian ring whose all ideals are principal ([6,
Theorem 4.3]).

An R-moduleB is apure-essential extension(resp.RD-essential extension) of a submod-
ule A if A is a pure (resp. RD) submodule ofB and, if for each submoduleK of B, either
K ∩ A 6= 0 or (A + K)/K is not a pure (resp. RD) submodule ofB/K. We say thatB is a
pure-injective hull (resp. RD-injective hull ) of A if B is pure-injective (resp. RD-injective)
and a pure-essential (resp. RD-essential) extension ofA.

EachR-moduleM has a pure-injective hull and an RD-injective hull ([8, Proposition 6]).
A left moduleB is aflat extension(resp.P-flat extension) of a submoduleA if B/A is flat

(resp. P-flat). Moreover, if there are no submodulesS of B with S ∩ A = 0 andB/S flat (resp.
P-flat) extension ofA, thenB is aflat essential extension(resp.P-flat essential extension) of
A. If B is cotorsion (resp. Warfield cotorsion) and a flat (resp. P-flat) essential extension of a
submoduleA then we say thatB is acotorsion (resp.Warfield cotorsion) envelopeof A (by
[10, Theorem 3.4.5] these definitions are equivalent to the usual ones).

Each left moduleM has a cotorsion (resp. Warfield cotorsion) envelope ([4, Theorem 6] and
[10, Theorem 3.4.6]).

For each left moduleM we denote byE(M) its cotorsion envelope,EW (M) its Warfield
cotorsion envelope, PE(M) its pure-injective hull and RDE(M) its RD-injective hull.

Each pure(RD)-injective module is (Warfield) cotorsion, but [10, Example p.75] shows that
the converse does not hold.

Theorem 1.1.[10, Theorem 3.5.1] For any ringR the following are equivalent:

(1) for any exact sequence of left modules0 → G′ → G → G′′ → 0 with G′ andG′′ pure-
injective,G is also pure-injective;

(2) for any left moduleM , PE(M)/M is flat;

(3) every cotorsion left module is pure-injective.

Moreover ifR is right coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modules0 → G′ → G → G′′ → 0 with G′ andG pure-
injective,G′′ is also pure-injective.

By a similar way the following can be proven.

Theorem 1.2.For any ringR the following are equivalent:

(1) for any exact sequence of left modules0 → G′ → G → G′′ → 0 with G′ andG′′ RD-
injective,G is also RD-injective;

(2) for any left moduleM , RDE(M)/M is P-flat;

(3) every Warfield cotorsion left module is RD-injective.

Moreover ifR is right P-coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modules0 → G′ → G → G′′ → 0 withG′ andG RD-injective,
G′′ is also RD-injective.

The following proposition is well known. For convenience, a proof is given. We set 0P to be
the kernel of the natural mapR → RP whereP ∈ SpecR.

Proposition 1.3.Let R be a commutative ring. We assume that each prime ideal is maximal.
Then:

(1) for any closed subsetC of SpecR, C = V (A) whereA = ∩P∈C0P is a pure ideal;
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(2) for each maximal idealP , RP = R/0P ;

(3) each pure ideal ofR is generated by idempotents.

Proof. (1). LetC = V (B) whereB = ∩L∈CL. We putA = ∩P∈C0P . Let b ∈ B andP ∈ C.
The image ofb, by the natural mapR → RP , belongs to the nilradical ofRP . It follows that there
exist 0 6= nP ∈ N andsP ∈ R \ P such thatsP bnP = 0. Hence,∀L ∈ D(sP ) ∩ C, bnP ∈ 0L. A
finite family (D(sPj

))1≤j≤m coversC. Let n = max{nP1, . . . , nPm
}. Thenbn ∈ 0L, ∀L ∈ C,

whencebn ∈ A. We deduce thatC = V (A). Now, we haveAP = 0 if P ∈ V (A) andAP = RP

if P ∈ D(A). HenceA is a pure ideal.
(2) is a consequence of(1) by takingC = {P}.
(3). We know that SpecR is homeomorphic to SpecR/N whereN is the nilradical ofR.

SinceR/N is von Neumann regular its principal ideals are generated by idempotents.So, SpecR
has a base of clopen subsets (closed and open). Whence ifA is a pure ideal then, for anya ∈ A
there exists an idempotentea such thatD(ea) = D(a) ⊆ D(A). ClearlyD(A) = D(Σa∈ARea).
SinceΣa∈ARea is a pure ideal, by(1) we conclude thatA = Σa∈ARea.

2 when cotorsion modules are pure-injective: general case

A left moduleM over a ringR is calledregular (respectivelyRD-regular) if all its submodules
are pure (respectively RD-pure).

Proposition 2.1.LetR be a ring,J its Jacobson radical. LetM be an RD-regular leftR-module.
ThenJM = 0 and, if in additionR is semilocal,M is semisimple.

Proof. If 0 6= x ∈ M thenRax is an RD-submodule ofRx for eacha ∈ R. So, for eacha ∈ J ,
there existsb ∈ R such thatax = abax. It follows that(1 − ab)ax = 0, and froma ∈ J we
successively deduce that(1− ab) is a unit andax = 0.

Proposition 2.2.LetR be a ring. Assume there exists a familyE of orthogonal central idempo-
tents ofR satisfying the following conditions:

(a) R/R(1− e) is a left pure-semisimple ring , for eache ∈ E;

(b) R/A is a von Neumann regular ring whereA = ⊕e∈ERe.

Then:

(1) each cotorsion leftR-module is pure-injective;

(2) each pure-essential extension of leftR-modules is essential;

(3) any leftR-moduleM is pure-injective if and only ifExt1R(C,M) = 0 for each cyclic flat left
R-moduleC;

(4) for any leftR-moduleM , PE(M)/M is flat, FP-injective and regular.

Proof. (3) and(1). LetM be a leftR-module satisfying Ext1
R(R/B,M) = 0 for each pure left

idealB of R. SinceA is a pure ideal, the following sequence is exact:

0 → HomR(R/A,M) → HomR(R,M) → HomR(A,M) → 0.

LetC be a left ideal ofR/A. SinceR/A is von Neumann regular,C is a pure ideal and its inverse
imageB by the natural mapR → R/A is a pure left ideal ofR. From Ext1R/A(R/B,HomR(R/A,M)) ∼=

Ext1R(R/B,M) = 0 we deduce that HomR(R/A,M) is injective overR/A andR. So, the above
sequence splits. On the other hand HomR(A,M) ∼=

∏
e∈E eM . SinceR/R(1− e) is left pure-

semisimple, it successively follows thateM is pure-injective for eache ∈ E, HomR(A,M) is
pure-injective andM too.

(2). Let M be a leftR-module,N = HomR(R/A,M), E = E(N) andL = HomR(A,M).
As aboveL is pure-injective. So,E ⊕ L is pure injective. The inclusion mapN → E extends to
a homomorphismf : M → E. Let g : M → L be the canonical map andL′ its image. Then,
it is easy to check that the homomorphismφ : M → E ⊕ L defined byφ(m) = (f(m), g(m))
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for eachm ∈ M is injective. SinceR/A is von Neumann regular,E/N is flat. It is easy to see
thatAL = AL′. So,L/L′ is also anR/A-module. It follows that coker(φ) is anR/A-module
which is flat overR. Henceφ is a pure monomorphism. Let(x, y) ∈ E ⊕ L. First assume that
y 6= 0. There existse ∈ E such thatey 6= 0. So, there existsz ∈ M such thatey = g(z). It
follows thatey = g(ez) andφ(ez) = e(x, y) = (0, ey). If y = 0 then there existss ∈ R such
that 0 6= sx ∈ N , whenceφ(sx) = s(x,0). Henceφ is an essential monomorphism.

(4). Since coker(φ) is a module overR/A which is a von Neumann regular ring and flat as
right R-module, we have coker(φ) is flat, FP-injective and regular asR-module.

Proposition 2.3.LetR be a ring. Assume there exists a familyE of orthogonal central idempo-
tents ofR satisfying the following conditions:

(a) R/R(1− e) is a left RD-semisimple ring , for eache ∈ E;

(b) R/A is a von Neumann regular ring whereA = ⊕e∈ERe.

Then:

(1) each Warfield cotorsion leftR-module is RD-injective;

(2) each RD-essential extension of leftR-modules is essential;

(3) any leftR-moduleM is RD-injective if and only ifExt1R(C,M) = 0 for each cyclic flat left
R-moduleC.

(4) for any leftR-moduleM , RDE(M)/M is flat, FP-injective and regular.

As in [7] a left R-moduleM is said to besemi-compactif every finitely solvable set of
congruencesx ≡ xα (modM [Iα]) (whereα ∈ Λ, xα ∈ M andIα is a left ideal ofR for each
α ∈ Λ) has a simultaneous solution inM .

Proposition 2.4.LetR be a ring. Assume that each pure-essential extension of leftR-modules
is essential. Then each semi-compact left module is pure-injective.

Proof. Let M be a semi-compact leftR-module. By way of contradiction assume there exists
x ∈ PE(M) \M . Let A = {a ∈ R | ax ∈ M}. ThenA 6= 0 since the extensionM → PE(M)
is essential. We consider the following system of equations:aX = ax, a ∈ A. SinceM is a
pure submodule, for each finite subsetB of A, there existsxB ∈ M such thataxB = ax for each
a ∈ B. By [3, Proposition 1.2] the semi-compactness ofM implies that there existsy ∈ M such
that ax = ay for eacha ∈ A. It follows thatR(x − y) ∩ M = 0 which contradicts thatM is
essential in PE(M).

Proposition 2.5.LetR be a ring. Assume that each pure-essential extension of left modules is
essential. Then, for each FP-injective leftR-moduleM , PE(M)/M is regular.

Proof. SinceM is FP-injective, we have PE(M) is an injective hull ofM . LetC be a submodule
of PE(M)/M andA its inverse image by the natural epimorphism PE(M) → PE(M)/M . The
inclusion mapM → A → PE(A) is an essential extension. Hence PE(A) ∼= PE(M). Then
PE(A) is injective andA is FP-injective, whenceA is a pure submodule of PE(M) andC a pure
submodule of PE(M)/M .

In the same way and by using Proposition2.1we get the following.

Proposition 2.6.LetR be a ring. Assume that each RD-essential extension of leftR-modules is
essential. Then, for each P-injective leftR-moduleM , RDE(M)/M is RD-regular.

Proposition 2.7.Let R be a ring. Assume that each RD-essential extension of left modules is
essential. Then, for any two-sided idealA, each RD-essential extension of leftR/A-modules is
essential.

Proof. Let α : M → N be an RD-essential extension of leftR/A-modules and letβ : M → E
be an RD-injective hull ofM overR. Then there exists a homomorphismγ : N → E such that
β = γα. From the fact thatα is RD-essential andβ is an RD-monomorphism we deduce thatγ
is injective. We conclude thatα is essential.
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3 when cotorsion modules are pure-injective: commutative case

Proposition 3.1.LetR be a commutative ring. Assume that each pure(RD)-essential extension
of R-modules is essential. Then for each multiplicative subsetS of R, each pure(RD)-essential
extension ofS−1R-modules is essential.

Proof. LetA → B be a pure-essential extension ofS−1R-modules, and letC be anR-submodule
of B such thatA∩C = 0 andA is a pure submodule ofB/C. It is easy to check thatA∩S−1C =
0 andA is a pure submodule ofB/S−1C. So,S−1C = 0 andC = 0. ThenA → B is a pure-
essential extension ofR-modules. Now it is easy to conclude.

Recall that a ringR is left perfect if each flat leftR-module is projective.

Proposition 3.2.Let R be a commutative ring. Assume that each semi-compactR-module is
pure-injective. Then each prime ideal is maximal.

Proof. Let L be a prime ideal ofR, R′ = R/L andM a flatR′-module. SinceR′ is a domain,
each flatR′-module is semi-compact overR′ and overR too. It follows that each flatR′-module
is pure-injective. There is a pure-exact sequence 0→ K → F → M → 0 whereF is a free
R′-module. So,K is flat and pure-injective overR′. We deduce that the above sequence splits
and consequentlyM is projective. HenceR′ is a perfect domain, whenceR′ is a field andL is
maximal.

Theorem 3.3.LetR be a commutative ring satisfying each pure-essential extension ofR-modules
is essential. ThenRP is pure-semisimple for any maximal idealP .

Proof. By Proposition3.1we may assume thatR is local of maximal idealP . LetI = ER(R/P ),
M = I(N), E = ER(M) andS = E/M . By Propositions2.5 and2.1 S is semisimple. Let
0 6= a ∈ P , A = (0 : a) andRa = R/A. By Propositions2.4 and3.2 P is the sole prime
ideal. So,A 6= 0. For anyR-moduleG we putG′ = {g ∈ G | Ag = 0} = G[A]. Then
I ′ = ERa

(R/P ) = aI, M ′ = I ′(N) = aM , E′ = aE andE′ is injective overRa. SinceaS = 0,
we haveM ′ = E′. By [2, Theorem 25.3]Ra is Noetherian, and Artinian sinceP is the sole prime
ideal. Let(Ran)n∈N be a descending chain of proper ideals ofR. We may assume thata0 ∈ P .
If we choosea = a0, thenRa is anRa-module. So, it is Artinian and consequentlyR satisfies the
descending condition on principal ideals. We conclude thatR is perfect by [9, 43.9]. It follows
thatP 2 6= P . By way of contradiction suppose thatP/P 2 is a vector space of dimension≥ 2
overR/P . Then there is a Noetherian factorR′ of R modulo a suitable ideal whose maximal
ideal is generated by 2 elements. So,R′ is not pure-semisimple. But, we successively get that
eachR′-module is semicompact (becauseR′ is Noetherian), and pure-injective by Proposition
2.4. From this contradiction we deduce thatP is principal andR pure-semisimple.

Theorem 3.4.LetR be a commutative ring satisfying each RD-essential extension ofR-modules
is essential. ThenRP is pure-semisimple for any maximal idealP .

Proof. By Proposition3.1 we may assume thatR is local of maximal idealP . Let S = R/P
andE anR-module containingS as proper RD-submodule. Letx ∈ E \ S. If ax ∈ S then there
existss ∈ S such thatax = as. Sincea ∈ P , we haveax = 0 andRx ∩ S = 0. HenceS is
RD-injective.

First assume thatR is Noetherian. By [5, Corollary 4.7]R is a chain ring. So, each RD-
exact sequence is pure. ConsequentlyR satisfies the assumption of Theorem3.3, whenceR is
pure-semisimple.

Now, assume thatR is not Noetherian. LetL be a prime ideal andR′ = R/L. Suppose that
L 6= P . Each RD-essential extension ofR′-modules is essential by Proposition2.7. Then, from
the first part of the proofR′ is not Noetherian. LetN be a FP-injectiveR′-module which is not
injective,E = ER′(N) andT = E/N . Let a ∈ P \ L. ThenE = aE, whenceT = aT . But, by
Propositions2.6 and2.1T is semisimple, whenceaT = 0. From this contradiction we deduce
thatL = P . Now, we do as in the proof of Theorem3.3 to show thatR is perfect. So,P/P 2 is
of infinite dimension overR/P . Whence there exists Noetherian factor rings ofR which are not
pure-semisimple. This contradicts the beginning of the proof. HenceR is pure-semisimple.
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To show the following proposition we adapt the proof of [10, Example p.75].

Proposition 3.5.Let R be a commutative ring for which each cotorsionR-module is pure-
injective. Then each prime ideal ofR is maximal.

Proof. By way of contradiction suppose there exists a non-maximal prime idealL. Since each
R/L-module is pure-injective overR/L if and only if it is pure-injective overR, each cotorsion
R/L-module is pure-injective by Theorem1.1. So, we may assume thatR is an integral domain.
Let P be a maximal ideal ofR containinga 6= 0. We putI = E(R/P ), In = I[an] for each
integern ≥ 1, M = ⊕n≥1In andN =

∏
n≥1 In. ThenN is pure-injective andN = N1 ⊕ N2

whereN1 = PE(M). By Theorem1.1N1/M is torsionfree since it is flat.
Let S = ∪n≥1N [an]. ClearlyM ⊂ S. Let x = (xn)n≥1 ∈ S andk an integer≥ 1. There

exists an integerp ≥ 1 such thatapx = 0. Let n ≥ p + k. Thenxn = akyn whereyn ∈ I.
But 0= an−kxn = anyn whenceyn ∈ In. So the elements ofS/M are divisible byak for each
k ≥ 1. Consider the projectionπ2 : N → N2 and its restriction toS. SinceM is in the kernel
of π2, there is an induced homomorphism ¯π2 : N/M → N2. Note thatN (andN2 too) has no
nonzero elements divisible byak for all k ≥ 1. This implies that ¯π2 mapsS/M to zero inN2.
ThusS ⊆ N1, soS/M ⊆ PE(M)/M . But S/M 6= 0 is not torsionfree. So, we get the desired
contradiction.

Proposition 3.6.Let R be a ring,E a left R-module andU a pure submodule ofE. Then the
following conditions are equivalent:

(1) E/U is FP-injective ifE is FP-injective;

(2) E/U is FP-injective ifE is an injective hull ofU .

Proof. It is obvious that(1) ⇒ (2).
(2) ⇒ (1). First we assume thatE is injective. ThenE contains a submoduleE′ which is

an injective hull ofU . SinceE/E′ is injective andE′/U FP-injective,E/U is FP-injective too.
Now we assume thatE is FP-injective. LetH be the injective hull ofE. ThenE/U is a pure
submodule ofH/U . We conclude thatE/U is FP-injective.

Theorem 3.7.Let R be a commutative ring. Assume that each cotorsionR-module is pure-
injective. Then:

(1) for each maximal idealP , RP is pure-semisimple;

(2) R is coherent.

Proof. (1). For any maximal idealP , each cotorsionRP -module is pure-injective overRP . So,
we may assume thatR is local andP is its maximal ideal. Now we do as in the beginning of
the proof of Theorem3.3 with the same notations. ThusE′ = aE is the pure-injective hull of
M ′ = aM . It follows thataS is flat overR. SinceP is the sole prime ideal ofR by Proposition
3.5, a is nilpotent. Letn > 0 be the smallest integer satisfyinga2nS = 0. SinceanS is flat, we
haveS[an] is a pure submodule ofS. For eachs ∈ S, ans ∈ S[an] and there existsx ∈ S[an]
such thatans = anx = 0. So,anS = 0. It is easy to see that necessarilyn = 1 andaS = 0.
FromPS = 0, S flat andR local ring, we deduce thatS = 0 if P 6= 0. It follows thatR is
Artinian. Hence eachR-module is cotorsion. We conclude that eachR-module is pure-injective
andR is pure-semisimple.

(2). We shall prove thatE/U is FP-injective for any FP-injective moduleE and any pure
submoduleU of E. By Proposition3.6 we may assume thatE is the injective hull ofU . So,
E ∼= E(U). By Theorem1.1E/U is flat. Then, for each maximal idealP , (E/U)P is flat, hence
free and injective sinceRP is pure-semisimple. We conclude thatE/U is FP-injective andR is
coherent by [9, 35.9].

Proposition 3.8.Let R be a commutative ring whose prime ideals are maximal. LetX be the
set of all maximal idealsP such thatPRP = 0. We denote byA, the kernel of the naturel map
R →

∏
P∈X RP . If R is P-coherent then,A is a pure submodule ofR andX = V (A).
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Proof. SinceR/A is a subring of a product of fields,R/A is reduced. From the fact that each
prime ideal is maximal we deduce thatR/A is von Neumann regular. ThusR/A is a pure
submodule of

∏
P∈X RP which is P-flat becauseR is P-coherent. It follows thatA is a pure

ideal. SinceAP = 0 for eachP ∈ X , we haveX ⊆ V (A). Let P ∈ V (A). ThenAP = 0
becauseA is pure. It is obvious thatJ ⊆ A whereJ is the Jacobson radical ofR. SinceJ is also
the nilradical ofR, we havePRP = JRP = 0. HenceP ∈ X .

Theorem 3.9.LetR be a commutative ring. The following conditions are equivalent:

(1) each cotorsionR-module is pure-injective;

(2) R is P-coherent and each pure-essential extension ofR-modules is essential;

(3) R is P-coherent and each RD-essential extension ofR-modules is essential;

(4) anyR-moduleM is pure-injective if and only ifExt1R(C,M) = 0 for each cyclic flatR-
moduleC;

(5) there exists a familyE of orthogonal irreducible idempotents ofR satisfying the following
conditions:

(a) R/R(1− e) is a pure-semisimple ring but not a field, for eache ∈ E;

(b) R/A is a von Neumann regular ring whereA = ⊕e∈ERe.

Moreover, when these conditions hold, the following are satisfied:

(6) PE(M)/M is flat, FP-injective and regular for eachR-moduleM .

(7) each Warfield cotorsion module is RD-injective.

Proof. It is obvious that(4) ⇒ (1). If R satisfies condition(2) or (3) then, by Theorems3.3or
3.4, R is arithmetical. It follows that(2) ⇔ (3).

(1) ⇒ (5). By Theorem3.7, R is coherent andRP is pure-semisimple for each maximal
ideal P . Let A be the pure ideal ofR defined in Proposition3.8. By Proposition1.3 A is
generated by its idempotents. Lete = e2 ∈ A. ThenR′ = R/R(1 − e) satisfies(1). Let
I = ⊕P∈D(e)E(R/P ), M = I(N), E = ER′(M) andS = E/M . For each nilpotent elementa of
R′, we do as in the proof of Theorem3.7to show thataS = 0. SinceR′ is von Neumann regular
modulo its nilradical,S is regular. Thus, for eachP ∈ D(e), SP is flat and it is semisimple by
Proposition2.1. SincePRP 6= 0, it follows thatMP = EP for eachP ∈ D(e), andM = E. By
[2, Theorem 25.3]R′ is Artinian. So,R′ is a finite product of local rings. We deduce thate is a
sum of orthogonal irreductible idempotents. So,

E = {eP | P ∈ D(A) andD(eP ) = {P}}.

(2) ⇒ (5). SinceR is locally pure-semisimple by Theorem3.3and coherent we do as above
to define the pure idealA. Then, by using Proposition2.5, we show that each FP-injectiveR′-
module is injective. So,R′ is Noetherian, and Artinian because each prime ideal is maximal. We
end as above.

By Proposition2.2, (5) ⇒ (4), (2) and(6) and by Proposition2.3, (5) ⇒ (7).

4 Baer’s criterion

The following two propositions are similar to Propositions2.2 and 2.3 and can be proven in
the same way. They allow us to give non trivial examples of rings for which any flat-essential
(P-flat-essential) extension of left modules is essential.

Proposition 4.1.LetR be a ring. Assume there exists a familyE of orthogonal central idempo-
tents ofR satisfying the following conditions:

(a) R/R(1− e) is left perfect for eache ∈ E;

(b) R/A is a von Neumann regular ring whereA = ⊕e∈ERe.

Then:



88 François Couchot

(1) each flat-essential extension of leftR-modules is essential;

(2) any leftR-moduleM is cotorsion if and only ifExt1R(C,M) = 0 for each cyclic flat left
R-moduleC;

(3) E(M)/M is flat, FP-injective and regular for each leftR-moduleM .

We say that a ringR is left strongly perfect if each P-flat leftR-module is projective. Clearly
every left strongly perfect ring is perfect, but [1, Proposition 4.8] shows that there exist Artinian
commutative rings which are not strongly perfect. And [3, Example 3.2] is a strongly perfect
ring by [1, Theorem 4.11] and it is non-Artinian ifΛ is not finite.

Proposition 4.2.LetR be a ring. Assume there exists a familyE of orthogonal central idempo-
tents ofR satisfying the following conditions:

(a) R/R(1− e) is left strongly perfect for eache ∈ E;

(b) R/A is a von Neumann regular ring whereA = ⊕e∈ERe.

Then:

(1) each P-flat-essential extension of leftR-modules is essential;

(2) any leftR-moduleM is Warfield cotorsion if and only ifExt1R(C,M) = 0 for each cyclic
flat leftR-moduleC;

(3) EW (M)/M is flat, FP-injective and regular for each leftR-moduleM .

Now we end by giving a description of commutative rings satisfying the Baer’s criterion for
(Warfield) cotorsion modules.

Theorem 4.3.LetR be commutative ring. Then the following conditions are equivalent:

(1) RP is perfect for each maximal idealP ;

(2) anyR-moduleM is cotorsion if and only ifExt1R(C,M) = 0 for each cyclic flatR-module
C.

Proof. (2) ⇒ (1). LetP be a maximal ideal andM anRP -module. IfC is a nonzero cyclic flat
R-module, thenCP is free overRP . It follows that Ext1R(C,M) ∼= Ext1RP

(CP ,M) = 0. So,M
is cotorsion overR andRP . Since eachRP -module is cotorsion,RP is perfect.

(1) ⇒ (2). LetM be anR-module satisfying Ext1
R(C,M) = 0 for any flat cyclicR-module

C. Let F be a freeR-module,K a pure submodule ofF andα : K → M a homomorphism.
We must prove thatα extends toF . We consider the familyF = {(N, β)} whereN is a pure
submodule ofF containingK andβ an extension ofα to N . We consider the following order
onF : (N, β) ≤ (L, γ) if and only if N ⊆ L andγ|N = β. It is easy to see that we can apply
Zorn Lemma toF . So, let(N, β) be a maximal element ofF . By way of contradiction suppose
thatN 6= F . Let G = F/N . There exists a maximal idealP such thatGP 6= 0. SinceRP is
perfect,GP is free overRP . Thus there existsx ∈ F \ N such that its imagey in GP verifies
(0 :RP

y) = 0. It follows that (N : x) = 0P (see Proposition1.3). Let δ : 0p → M be
the homomorphism defined byδ(a) = β(ax) for any a ∈ 0P . Thenδ extends toR. Now, let
φ : N+Rx → M be the homomorphism defined byφ(n+rx) = β(n)+δ(r) for anyn ∈ N and
r ∈ R. It is easy to check thatφ is well defined. LetH = N + Rx/N . ThenH ∼= RP . So,HP

is a direct summand ofGP and ifP ′ is another maximal ideal thenHP ′ = 0. We successively
deduce thatH is a pure submodule ofG, F/N + Rx is flat andN + Rx is a pure submodule of
F . This contradicts the maximality of(N, β). HenceN = F andM is cotorsion.

It is easy to check that each P-flat cyclic left module is flat.

Corollary 4.4. LetR be commutative ring. Then the following conditions are equivalent:

(1) RP is strongly perfect for each maximal idealP ;

(2) anyR-moduleM is Warfield cotorsion if and only ifExt1R(C,M) = 0 for each cyclic flat
R-moduleC.

Proof. LetG be a P-flatR-module. For each maximal idealP GP is P-flat. SinceRP is strongly
perfect,GP is free. HenceG is flat. So, each cotorsionR-module is Warfield cotorsion.
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