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Abstract. Let R be a ring (not necessarily commutative). A léftmodule is said to be
cotorsionif Ext}(G, M) = 0 for any flatR-moduleG. It is well known that each pure-injective
left R-module is cotorsion, but the converse does not hold: for instanBasifeft perfect but not
left pure-semisimple then, each Iéftmodule is cotorsion but there exist non-pure-injective left
modules. The aim of this paper is to describe the dasscommutative ringsz for which each
cotorsionR-module is pure-injective. It is easy to see thatontains the class of von Neumann
regular rings and the one of pure-semisimple rings. We provectigstrictly contained in the
class of locally pure-semisimple rings. We state that a commutativeRringlongs taC if and
only if R verifies one of the following conditions:

(1) Ris coherent and each pure-essential extensidR-ofodules is essential;
(2) Ris coherent and each RD-essential extensioR-ofiodules is essential;

(3) any R-module)M is pure-injective if and only if EX{(R/A, M) = 0 for each pure idealt
of R (Baer’s criterion).

1 Introduction and preliminaries

The aim of this study is to give a complete description of commutative rings/ffiich each
cotorsion module is pure-injective. In this first section we recall sonifimitens and some
former results. Then, in secti@we enunciate and show some partial results which are available
even if the ring is not commutative. SectiBns devoted to the commutative case. We get our
main result (Theorer.9) by using localizations and local rings. In the last section we show that
a commutative ring? is locally perfect if and only if anyz-modules for which Ext, (C, M) =

0 for each cyclic flat modul€' is cotorsion, and we investigate the following question: give
a characterization of ring® for which each flat-essential exension ®fmodules is essential.
Throughout this paper other related questions are studied, whereevtbaufollowing notions:
Warfield cotorsion module, RD-injective module, RD-essential exteresioiso on...

Even in the commutative case some questions are open. For instancentligon "each
cotorsion module is pure-injective" implies the condition " each Warfieldrs@o module is
RD-injective", but the converse is not proven. On the other hand,on@tknow if there exist
non-coherent commutative rings for which each pure-essentiaiggteof modules is essential.
Also, it should be interesting to study strongly perfect rings which aredoted in the last
section.

We shall assume that all rings are associative with identity and all mod@esm#ary. Given
aringR, any left module) is said to beP-flat (resp.P-injective) if Tor{*(R/rR, M) = O (resp.
Exts(R/Rr, M) = 0) for eachr € R. We say thaiR is left P-coherentif each principal left
ideal of R is finitely presented.

A left module M is FP-injective if Extk(F, M) = 0 for each finitely presented left module
F.

Any left module M is calledcotorsion (resp. Warfield cotorsion) if, for each flat (resp.
P-flat) left moduleF, Exty,(F, M) = 0.
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A short exact sequence of left modulespigre (resp. RD-pure) if it remains exact when
tensoring it by any right module (resp. module of the foRfvR, » € R). A left module is
pure-injective (resp. RD-injective) if it is injective relatively to each pure (resp. RD-pure)
exact sequence of left modules.

R is said to be lefpure-semisimple(resp. RD-semisimplg if each left R-module is pure-
injective (resp. RD-injective). WheR is commutative therR is pure-semisimple if and only
if it is RD-semisimple if and only if it is an Artinian ring whose all ideals are pipat ([6,
Theorem 4.3)).

An R-moduleB is apure-essential extensiorfresp.RD-essential extensiopof a submod-
ule A if Ais a pure (resp. RD) submodule 8fand, if for each submodul& of B, either
KnNA=#O0or(A+ K)/K is not a pure (resp. RD) submodule Bf K. We say thatB is a
pure-injective hull (resp. RD-injective hull) of A if B is pure-injective (resp. RD-injective)
and a pure-essential (resp. RD-essential) extensian of

EachR-moduleM has a pure-injective hull and an RD-injective hu8,(Proposition 6]).

A left module B is aflat extension(resp.P-flat extensior) of a submoduled if B/A is flat
(resp. P-flat). Moreover, if there are no submoduflesf B with SN A = 0 andB/ S flat (resp.
P-flat) extension ofd, thenB is aflat essential extensior(resp.P-flat essential extensionof
A. If B is cotorsion (resp. Warfield cotorsion) and a flat (resp. P-flat) éissentension of a
submoduleA then we say thaB is acotorsion (resp. Warfield cotorsion) envelopeof A (by
[10, Theorem 3.4.5] these definitions are equivalent to the usual ones).

Each left moduleV/ has a cotorsion (resp. Warfield cotorsion) envelogeTheorem 6] and
[10, Theorem 3.4.6]).

For each left module\/ we denote by (M) its cotorsion envelopeSy, (M) its Warfield
cotorsion envelope, RB/7) its pure-injective hull and RDE/) its RD-injective hull.

Each pure(RD)-injective module is (Warfield) cotorsion, @, [Example p.75] shows that
the converse does not hold.

Theorem 1.1.[10, Theorem 3.5.1] For any rinde the following are equivalent:

(1) for any exact sequence of left moduless> G’ — G — G” — 0 with G’ and G” pure-
injective,G is also pure-injective;

(2) for any left module\s, PE(M ) /M is flat;
(3) every cotorsion left module is pure-injective.
Moreover if R is right coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modutes» ¢’ — G — G” — 0 with G’ and G pure-
injective,G" is also pure-injective.

By a similar way the following can be proven.

Theorem 1.2.For any ring R the following are equivalent:

(1) for any exact sequence of left modutess G’ — G — G” — 0 with G’ and G” RD-
injective,G is also RD-injective;

(2) for any left module\/, RDE(M)/M is P-flat;
(3) every Warfield cotorsion left module is RD-injective.
Moreover if R is right P-coherent, then the above are equivalent to the following:

(4) forany exact sequence of left modwes G — G — G” — Owith G’ andG RD-injective,
G" is also RD-injective.

The following proposition is well known. For convenience, a proof iegiwVe set @ to be
the kernel of the natural map —+ Rp whereP € SpecR.

Proposition 1.3.Let R be a commutative ring. We assume that each prime ideal is maximal.
Then:

(1) for any closed subsét of SpecR, C' = V(A) whereA = Npc0p is a pure ideal;
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(2) for each maximal ideaP, Rp = R/Op;

(3) each pure ideal oR is generated by idempotents.

Proof. (1). LetC = V(B) whereB = NreccL. We putd = Npec0p. Leth € BandP € C.
The image ob, by the natural ma@® — Rp, belongs to the nilradical d?p. It follows that there
exist 0# np € Nandsp € R\ P such thatspb™? = 0. HenceyL € D(sp) N C, b"" € 0r. A
finite family (D(sp,))1<;j<m coversC. Letn = max{np,...,np, }. Thenb” € Oz, VL € C,
whenceb™ € A. We deduce thaf' = V(A). Now, we havedp = 0if P € V(A) andAp = Rp
if P € D(A). HenceA is a pure ideal.

(2) is a consequence 01) by takingC = {P}.

(3). We know that Spec is homeomorphic to SpeB/N where N is the nilradical ofR.
SinceR/N is von Neumann regular its principal ideals are generated by idempoSmtSped®
has a base of clopen subsets (closed and open). WheAds & pure ideal then, for anye A
there exists an idempoteat such thatD(e,) = D(a) C D(A). ClearlyD(A) = D(Z,ecaRe,).
SinceX,c 4 Re, is a pure ideal, by1) we conclude thatl = X, 4 Re,. O

2 when cotorsion modules are pure-injective: general case

A left module M over a ringR is calledregular (respectivelyRD-regular) if all its submodules
are pure (respectively RD-pure).

Proposition 2.1.Let R be aring,J its Jacobson radical. Let/ be an RD-regular lefR-module.
ThenJM = 0and, if in additionR is semilocal M is semisimple.

Proof. If 0 #£ 2 € M thenRax is an RD-submodule aRx for eacha € R. So, for eachu € J,
there exist$ € R such thatuz = abaz. It follows that(1 — ab)az = 0, and froma € J we
successively deduce thdt — ab) is a unit anchx = 0. O

Proposition 2.2.Let R be a ring. Assume there exists a fanélyf orthogonal central idempo-
tents ofR satisfying the following conditions:
(a8) R/R(1— e)is aleft pure-semisimple ring , for eaete ¢;
(b) R/Ais avon Neumann regular ring where= &, ¢ Re.
Then:
(1) each cotorsion lefR-module is pure-injective;
(2) each pure-essential extension of IBRfmodules is essential;

(3) any leftR-moduleM is pure-injective if and only iIExtk(C, M) = 0 for each cyclic flat left
R-moduleC;

(4) for any leftR-moduleM, PE(M)/M is flat, FP-injective and regular.

Proof. (3) and(1). Let M be a leftR-module satisfying EX{(R/B, M) = 0 for each pure left
ideal B of R. SinceA is a pure ideal, the following sequence is exact:

0 — Homg(R/A, M) — Homg(R, M) — Homg (A, M) — O.

LetC be aleftideal ofR/A. SinceR/A is von Neumann regulaf] is a pure ideal and its inverse
imageB by the natural ma® — R/Ais a pure leftideal ofz. From Exf;z/A(R/B, Homg(R/A, M)) =

Exty(R/B, M) = 0 we deduce that Hop(R/A, M) is injective overR/A andR. So, the above
sequence splits. On the other hand Hgm, M) = [] .. eM. SinceR/R(1 — e) is left pure-
semisimple, it successively follows that/ is pure-injective for each € ¢, Homg(A, M) is
pure-injective and\/ too.

(2). Let M be a leftR-module,N = Homg(R/A, M), E = E(N) andL = Homg(A, M).
As aboveL is pure-injective. SoF @ L is pure injective. The inclusion maj§ — E extends to
a homomorphisny : M — E. Letg : M — L be the canonical map armd its image. Then,
it is easy to check that the homomorphigm M — E & L defined byp(m) = (f(m), g(m))
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for eachm € M is injective. SinceR/A is von Neumann regulafy/N is flat. It is easy to see
that AL = AL'. So,L/L’is also ankR/A-module. It follows that cokér) is an R/A-module
which is flat overR. Hence¢ is a pure monomorphism. Lét,y) € E & L. First assume that
y # 0. There existg € € such thatey # 0. So, there exists € M such thaty = g(z). It
follows thatey = g(ez) and¢(ez) = e(z,y) = (0,ey). If y = O then there exists € R such
that 0# sz € N, whencep(sz) = s(z,0). Henceg is an essential monomorphism.
(4). Since cokefp) is a module ovelR/A which is a von Neumann regular ring and flat as

right R-module, we have cokép) is flat, FP-injective and regular @&module. o

Proposition 2.3.Let R be a ring. Assume there exists a fan@lwpf orthogonal central idempo-
tents ofR satisfying the following conditions:

(@) R/R(1—e)is aleft RD-semisimple ring , for eaehe €;
(b) R/Ais avon Neumann regular ring where= @ ¢ Re.
Then:
(1) each Warfield cotorsion leiR-module is RD-injective;
(2) each RD-essential extension of IBfimodules is essential;

(3) any leftR-module) is RD-injective if and only iExt (C, M) = 0 for each cyclic flat left
R-moduleC.

(4) for any leftkR-moduleM, RDE(M)/M is flat, FP-injective and regular.

As in [7] a left R-module M is said to besemi-compactif every finitely solvable set of
congruences = z, (mod M|[l,]) (wherea € A, z, € M andl, is a left ideal ofR for each
a € N\) has a simultaneous solution i.

Proposition 2.4.Let R be a ring. Assume that each pure-essential extension aRefbdules
is essential. Then each semi-compact left module is pure-injective.

Proof. Let M be a semi-compact lefe-module. By way of contradiction assume there exists
x € PEEM)\ M. LetA={a € R|ax € M}. ThenA # 0 since the extensioh — PE(M)
is essential. We consider the following system of equatiads:= ax, a € A. SinceM is a
pure submodule, for each finite sub&edf A, there exists:z € M such thaurp = ax for each
a € B. By [3, Proposition 1.2] the semi-compactness\pimplies that there existg € M such
thataxr = ay for eacha € A. It follows that R(z — y) N M = 0 which contradicts thai/ is
essential in PEV/). i

Proposition 2.5.Let R be a ring. Assume that each pure-essential extension of left modules is
essential. Then, for each FP-injective |&tmoduleM, PE(M)/M is regular.

Proof. SinceM is FP-injective, we have RR/) is an injective hull ofd/. LetC be a submodule
of PE(M)/M and A its inverse image by the natural epimorphism(PE — PE(M)/M. The
inclusion mapM — A — PE(A) is an essential extension. Hence(RE = PE(M). Then
PE(A) is injective andA is FP-injective, whencé is a pure submodule of RE/) andC a pure
submodule of PEM) /M. i

In the same way and by using Propositii we get the following.

Proposition 2.6.Let R be a ring. Assume that each RD-essential extension aRlefbdules is
essential. Then, for each P-injective |&tmoduleM, RDE(M)/M is RD-regular.

Proposition 2.7.Let R be a ring. Assume that each RD-essential extension of left modules is
essential. Then, for any two-sided idefleach RD-essential extension of |&ftA-modules is
essential.

Proof. Let« : M — N be an RD-essential extension of I&ff A-modules and le : M — E
be an RD-injective hull o/ over R. Then there exists a homomorphism N — E such that
B = va. From the fact that is RD-essential and is an RD-monomorphism we deduce that
is injective. We conclude that is essential. O
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3 when cotorsion modules are pure-injective: commutative &se

Proposition 3.1.Let R be a commutative ring. Assume that each pure(RD)-essential extension
of R-modules is essential. Then for each multiplicative suSseft R, each pure(RD)-essential
extension ob~1R-modules is essential.

Proof. Let A — B be a pure-essential extensionsof! R-modules, and lef' be anR-submodule
of B suchthatAnC = 0 andA is a pure submodule @¢/C. Itis easy to check thatnS—1C =
0 andA is a pure submodule d8/S~C. So,5~1C = 0 andC = 0. ThenA — B is a pure-
essential extension df-modules. Now it is easy to conclude. ]

Recall that a ringr is left perfect if each flat leftR-module is projective.

Proposition 3.2.Let R be a commutative ring. Assume that each semi-compautibdule is
pure-injective. Then each prime ideal is maximal.

Proof. Let L be a prime ideal ok, R = R/L and M a flat R’-module. SinceR’ is a domain,
each flatR’-module is semi-compact ov&' and overR too. It follows that each flak’-module
is pure-injective. There is a pure-exact sequence & — F — M — 0 whereF is a free
R’-module. SoK is flat and pure-injective oveR’. We deduce that the above sequence splits
and consequently/ is projective. Hence®' is a perfect domain, whend® is a field andL is
maximal. O

Theorem 3.3.Let R be a commutative ring satisfying each pure-essential extensi@muddules
is essential. The®p is pure-semisimple for any maximal idefal

Proof. By PropositiorB.1we may assume thatis local of maximal ideaP. Let] = Ez(R/P),

M = 1IN, F = Eg(M) andS = E/M. By Proposition2.5and2.1 S is semisimple. Let
0#ae€ P, A=(0:a)andR, = R/A. By Proposition®2.4and3.2 P is the sole prime
ideal. So0,4 # 0. For anyR-moduleG we putG’ = {g € G | Ag = 0} = G[A]. Then

I' =Eg,(R/P) =al, M = I'™) = aM, E' = oE andE' is injective overR,. SinceaS = 0,
we haveM’ = E’. By [2, Theorem 25.3F,, is Noetherian, and Artinian sindeis the sole prime
ideal. Let(Ray,).en be a descending chain of proper idealdofWe may assume thap € P.

If we chooser = ag, thenRa is anR,-module. So, itis Artinian and consequenitysatisfies the
descending condition on principal ideals. We conclude tha perfect by 9, 43.9]. It follows
that P2 # P. By way of contradiction suppose th&y P? is a vector space of dimension 2
over R/P. Then there is a Noetherian fact8f of R modulo a suitable ideal whose maximal
ideal is generated by 2 elements. $,is not pure-semisimple. But, we successively get that
eachR’-module is semicompact (becauBéis Noetherian), and pure-injective by Proposition
2.4. From this contradiction we deduce tHais principal andR pure-semisimple. O

Theorem 3.4.Let R be a commutative ring satisfying each RD-essential extensi@moddules
is essential. The®p is pure-semisimple for any maximal idefal

Proof. By Proposition3.1 we may assume that is local of maximal idealP. LetS = R/P
and E an R-module containings' as proper RD-submodule. Lete £\ S. If ax € S then there
existss € S such thatez = as. Sincea € P, we haveaxz = 0 andRx NS = 0. HenceS is
RD-injective.

First assume thak is Noetherian. By%, Corollary 4.7]R is a chain ring. So, each RD-
exact sequence is pure. Consequentlgatisfies the assumption of Theor&®3, whenceR is
pure-semisimple.

Now, assume thaR is not Noetherian. LeL be a prime ideal an®&’ = R/L. Suppose that
L # P. Each RD-essential extension Bf-modules is essential by Propositiary. Then, from
the first part of the proof’ is not Noetherian. LelV be a FP-injective?’-module which is not
injective, E = Eg/(N) andT = E/N. Leta € P\ L. ThenE = aF, whencel' = aT'. But, by
Proposition®2.6 and2.1 T is semisimple, whenceT' = 0. From this contradiction we deduce
that L = P. Now, we do as in the proof of TheoreBi3to show thatr is perfect. Sop/P? is
of infinite dimension oveR/P. Whence there exists Noetherian factor ringgafhich are not
pure-semisimple. This contradicts the beginning of the proof. H&nisgoure-semisimple. o
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To show the following proposition we adapt the proof dd[Example p.75].

Proposition 3.5.Let R be a commutative ring for which each cotorsi&module is pure-
injective. Then each prime ideal &fis maximal.

Proof. By way of contradiction suppose there exists a non-maximal prime ide8ince each
R/L-module is pure-injective oveR/ L if and only if it is pure-injective oveR, each cotorsion
R/L-module is pure-injective by Theoreinl So, we may assume thatis an integral domain.
Let P be a maximal ideal of? containinga # 0. We put/ = E(R/P), I,, = I[a"] for each
integern > 1, M = @,>11, andN = [], -, I,. ThenN is pure-injective andV = N1 & N,
whereN; = PE(M). By Theoreml.1 N; /M is torsionfree since it is flat.

LetS = U,>1N[a"]. ClearlyM C S. Letz = (z,),>1 € S andk an integer> 1. There
exists an integep > 1 such thauw?z = 0. Letn > p + k. Thenz, = oy, wherey, € I.
But 0= a" %z, = a"y, Whencey, € I,,. So the elements dof /M are divisible bya* for each
k > 1. Consider the projectiofi, : N — N, and its restriction t&®. SinceM is in the kernel
of m,, there is an induced homomorphism : N/M — N,. Note thatN (and N, too) has no
nonzero elements divisible iy for all £ > 1. This implies thatr, mapsS/M to zero inNo.
ThusS C Ny, soS/M C PE(M)/M. ButS/M # 0 is not torsionfree. So, we get the desired
contradiction. |

Proposition 3.6.Let R be a ring, E' a left R-module andJ a pure submodule of. Then the
following conditions are equivalent:

(1) E/U is FP-injective ifE is FP-injective;
(2) E/U is FP-injective ifE is an injective hull oJ.

Proof. It is obvious thai1) = (2).

(2) = (1). First we assume thdt is injective. ThenE contains a submodulg’ which is
an injective hull ofU. SinceFE/FE’ is injective andr’ /U FP-injective,E /U is FP-injective too.
Now we assume that is FP-injective. LetH be the injective hull ofE. ThenE/U is a pure
submodule of7/U. We conclude thak' /U is FP-injective. ]

Theorem 3.7.Let R be a commutative ring. Assume that each cotordismodule is pure-
injective. Then:

(1) for each maximal ideaP, Rp is pure-semisimple;

(2) Ris coherent.

Proof. (1). For any maximal ideaP, each cotorsiomk »-module is pure-injective ovek p. So,
we may assume thak is local andP is its maximal ideal. Now we do as in the beginning of
the proof of Theoren3.3 with the same notations. Thus = «F is the pure-injective hull of
M' = aM. It follows thataS is flat overR. SinceP is the sole prime ideal ak by Proposition
3.5, a is nilpotent. Letn > 0 be the smallest integer satisfying®S = 0. Sincea™S is flat, we
haveS[a™] is a pure submodule &f. For eachs € S, a™s € S[a"] and there exists € S[a"]
such thata"s = a™x = 0. S0,a™S = 0. Itis easy to see that necessarily= 1 andaS = 0.
From PS = 0, S flat and R local ring, we deduce that = 0 if P # 0. It follows thatR is
Artinian. Hence eaclik-module is cotorsion. We conclude that ed¢tmodule is pure-injective
andR is pure-semisimple.

(2). We shall prove that'/U is FP-injective for any FP-injective moduleé and any pure
submodulel/ of E. By Proposition3.6 we may assume thdt is the injective hull ofU. So,
E >~ ¢E(U). By Theoreml.1E/U is flat. Then, for each maximal ide&), (E/U)p is flat, hence
free and injective sinc&p is pure-semisimple. We conclude thatU is FP-injective and? is
coherent by 9, 35.9]. ]

Proposition 3.8.Let R be a commutative ring whose prime ideals are maximal. X die the
set of all maximal ideal$ such thatPRp = 0. We denote by, the kernel of the naturel map
R — [[pex Rp. If Ris P-coherent thend is a pure submodule dt and X = V(A4).
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Proof. SinceR/A is a subring of a product of field®}/A is reduced. From the fact that each
prime ideal is maximal we deduce th&Y/A is von Neumann regular. ThuB/A is a pure
submodule of[ [ .. y Rp which is P-flat becaus& is P-coherent. It follows thatl is a pure
ideal. Sincedp = 0 for eachP € X, we haveX C V(A). Let P € V(A). Thendp =0
becaused is pure. Itis obvious thal C A whereJ is the Jacobson radical &f. SinceJ is also
the nilradical ofR, we havePRp = JRp = 0. HenceP € X. |

Theorem 3.9.Let R be a commutative ring. The following conditions are equivalent:

(1) each cotorsiorR-module is pure-injective;

(2) Ris P-coherent and each pure-essential extensioR-ofodules is essential;

(3) Ris P-coherent and each RD-essential extensioR-ofiodules is essential;

(4) any R-module]M is pure-injective if and only iExt,(C, M) = 0 for each cyclic flatR-
moduleC;

(5) there exists a famil¢ of orthogonal irreducible idempotents &f satisfying the following
conditions:
(&) R/R(1- e)is a pure-semisimple ring but not a field, for each €;
(b) R/Ais avon Neumann regular ring where= @, ¢ Re.

Moreover, when these conditions hold, the following are satisfied:
(6) PE(M)/M is flat, FP-injective and regular for eacR-module)M .
(7) each Warfield cotorsion module is RD-injective.

Proof. It is obvious that4) = (1). If R satisfies conditiori2) or (3) then, by Theorem3.3or
3.4, Ris arithmetical. It follows thaf2) < (3).

(1) = (5). By Theorem3.7, R is coherent and?p is pure-semisimple for each maximal
ideal P. Let A be the pure ideal ok defined in Propositior8.8. By Proposition1.3 A is
generated by its idempotents. Let= ¢? ¢ A. ThenR' = R/R(1 — e) satisfies(1). Let
I = ®pepE(R/P), M =1, E =Ep (M) andS = E/M. For each nilpotent elementof
R’, we do as in the proof of Theore®7to show that.S = 0. SinceR’ is von Neumann regular
modulo its nilradical,S is regular. Thus, for eackk € D(e), Sp is flat and it is semisimple by
Proposition2.1 SincePRp # 0, it follows thatMp = Ep for eachP € D(e), andM = E. By
[2, Theorem 25.3R’ is Artinian. So,R’ is a finite product of local rings. We deduce thas a
sum of orthogonal irreductible idempotents. So,

¢ ={ep|Pec D(A)andD(ep) = {P}}.

(2) = (5). SinceR is locally pure-semisimple by TheoreBi3and coherent we do as above
to define the pure ideal. Then, by using Propositio2.5 we show that each FP-injective-
module is injective. Sak’ is Noetherian, and Artinian because each prime ideal is maximal. We
end as above.

By Proposition2.2, (5) = (4), (2) and(6) and by PropositioR.3 (5) = (7). O

4 Baer's criterion

The following two propositions are similar to Propositioa2 and 2.3 and can be proven in
the same way. They allow us to give non trivial examples of rings for whity flat-essential
(P-flat-essential) extension of left modules is essential.

Proposition 4.1.Let R be a ring. Assume there exists a fan#lpf orthogonal central idempo-
tents ofR satisfying the following conditions:

(@) R/R(1— e)is left perfect for each € ¢;
(b) R/Ais a von Neumann regular ring where= &, ¢ Re.
Then:
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(1) each flat-essential extension of I&fmodules is essential;

(2) any leftR-moduleM is cotorsion if and only iExt,(C, M) = 0 for each cyclic flat left
R-moduleC;

(3) £(M)/M is flat, FP-injective and regular for each left-module)/.

We say that a ring is left strongly perfectif each P-flat leftR-module is projective. Clearly
every left strongly perfect ring is perfect, but [Proposition 4.8] shows that there exist Artinian
commutative rings which are not strongly perfect. ABdExample 3.2] is a strongly perfect
ring by [1, Theorem 4.11] and it is non-Artinian A is not finite.

Proposition 4.2.Let R be a ring. Assume there exists a fan@lpf orthogonal central idempo-
tents ofR satisfying the following conditions:

(a) R/R(1— e)is left strongly perfect for eache €;

(b) R/Ais a von Neumann regular ring where= @ ¢ Re.
Then:
(1) each P-flat-essential extension of IBfmodules is essential;

(2) any leftR-moduleM is Warfield cotorsion if and only iExty(C, M) = 0 for each cyclic
flat left R-moduleC;

(3) Ew(M)/M is flat, FP-injective and regular for each left-module)/.

Now we end by giving a description of commutative rings satisfying the’8asdterion for
(Warfield) cotorsion modules.

Theorem 4.3.Let R be commutative ring. Then the following conditions are equivalent:
(1) Rp is perfect for each maximal idedt;

(2) anyR-module)M is cotorsion if and only iExt,(C, M) = 0 for each cyclic flatR-module
C.

Proof. (2) = (1). Let P be a maximal ideal and/ an R p-module. IfC is a nonzero cyclic flat
R-module, therC is free overRp. It follows that Ext,(C, M) =2 Ext}%(CP,M) =0. So,M
is cotorsion ovelk andRp. Since eachk p-module is cotorsionR p is perfect.

(1) = (2). Let M be anR-module satisfying E}{(C, M) = 0 for any flat cyclick-module
C. Let F be a freeR-module,K a pure submodule of and« : K — M a homomorphism.
We must prove that extends toF’. We consider the family= = {(V, 3)} whereN is a pure
submodule ofF" containing K and 3 an extension of to N. We consider the following order
onF: (N,B) < (L,v)ifand only if N C L and~|y = . Itis easy to see that we can apply
Zorn Lemma taF. So, let(N, 8) be a maximal element of. By way of contradiction suppose
that NV # F. LetG = F/N. There exists a maximal ide#l such thatGZp # 0. SinceRp is
perfect,Gp is free overRp. Thus there exists € F'\ N such that its image in Gp verifies
(0 :g, y) = 0. It follows that(N : z) = Op (see Propositiod.3). Lets : 0, — M be
the homomorphism defined Bya) = S(ax) for anya € 0p. Thend extends taR. Now, let
¢ : N+ Rz — M be the homomorphism defined byn +rz) = 5(n) +4(r) foranyn € N and
r € R. Itis easy to check that is well defined. Let = N + Rz/N. ThenH = Rp. So,Hp
is a direct summand af p» and if P’ is another maximal ideal thelip, = 0. We successively
deduce thaf{ is a pure submodule @¥, F/N + Rz is flat andN + Rz is a pure submodule of
F. This contradicts the maximality @1V, 3). HenceN = F andM is cotorsion. O

It is easy to check that each P-flat cyclic left module is flat.
Corollary 4.4. Let R be commutative ring. Then the following conditions are equivalent:
(1) Rp is strongly perfect for each maximal ide&}

(2) any R-module)M is Warfield cotorsion if and only iExty(C, M) = 0 for each cyclic flat
R-moduleC.

Proof. Let G be a P-flatR-module. For each maximal ideBIGp is P-flat. SinceRp is strongly
perfect,Gp is free. Hencé? is flat. So, each cotorsioR-module is Warfield cotorsion. O
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