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Abstract. Let
∑
p denote the class of meromorphically multivalent functions f(z) of the

form:

f(z) =
1
zp

+
∞∑
k=1

ak−pz
k−p (p ∈ N := {1, 2, 3, · · · })

which are analytic in the punctured open unit disk U∗ = {z : 0 < |z| < 1}. In this paper, by
making use of a meromorphic analogue of the Cho-Kwon-Srivastava operator and its iterations,
a new subclass of meromorphic p-valent functions is introduced. Inclusion theorems and other
properties of these function class are studied.

1 Introduction and Definition

Let
∑
p denote the class of functions of the form:

f(z) =
1
zp

+
∞∑
k=1

ak−pz
k−p (p ∈ N := {1, 2, 3, · · · }) (1.1)

which are analytic in the punctured open unit disk

U∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0}.

For functions f ∈
∑
p given by (1.1) and g ∈

∑
p given by

g(z) =
1
zp

+
∞∑
k=1

bk−pz
k−p (z ∈ U∗),

we define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = zpf(z) ? zpg(z)

zp
:=

1
zp

+
∞∑
k=1

ak−pbk−pz
k−p = (g ∗ f)(z) (z ∈ U∗),

where ? denotes the usual Hadamard product (or convolution) of analytic functions.
Let f(z) and g(z) be analytic in U. We say that the function f(z) is subordinate to g(z),

if there exists a function w(z) analytic in U with w(0) = 0 and |w(z)| < 1 such that f(z) =
g(w(z)). In such a case, we write f(z) ≺ g(z) (z ∈ U). Furthermore, if the function g is
univalent in U, then (see [6, 12, 20])

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Liu and Srivastava [10] studied meromorphic analogue of the Carlson-Shaffer operator [4] by
introducing the function φp(a, c; z) given by

φp(a, c; z) := 2F1(a, 1; c; z)
zp

=:
1
zp

+
∞∑
k=1

(a)k
(c)k

zk−p

(z ∈ U∗, a ∈ C, c ∈ C \ Z−0 ,Z
−
0 := {0,−1,−2, · · · }) (1.2)
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where 2F1(a, 1; c; z) is the Gauss hypergeometric series and (λ)k is the Pochhammer symbol (or
shifted factorial) given by

(λ)k =
Γ(λ+ k)

Γ(λ)
=

{
1 (k = 0)
λ(λ+ 1)....(λ+ k − 1) (k ∈ N).

Recently, Mishra et al. [13] (see also [16]) considered the function φ†p(a, c; z), the generalized
multiplicative inverse of φp(a, c; z) given by the relation

φp(a, c; z) ∗ φ†p(a, c; z) =
1

zp(1− z)λ+p
(a, c ∈ C \ Z−0 , λ > −p; z ∈ U∗). (1.3)

Note that if λ = −p+1, then φ†p(a, c; z) is the inverse of φp(a, c; z) with respect to the Hadamard
product ∗. Using this function they introduced the following operator In,mλ,p (a, c) :

∑
p −→

∑
p

defined by

In,mλ,p (a, c)f(z) =
1
zp

+
∞∑
k=1

[
(λ+ p)k(c)k
(a)k(1)k

]n [
p− kt
p

]m
ak−pz

k−p

(z ∈ U∗, t ≥ 0, m, n ∈ N0 = N ∪ {0}). (1.4)

The operator In,mλ,p (a, c) is obtained by taking compositions of m-iterations of the combinations
operator

Ctf(z) = (1− t)f(z) + tz

p
(−f(z))′

with n-iterations of the operator

Lλp(a, c)f(z) = φ†p(a, c; z) ∗ f(z).

The operator In,mλ,p (a, c) generalizes several previously studied familiar operators (for details, see
[13, 16]).

It is easily verify from (1.4) that

z(In,mλ,p (a, c)f)′(z) =
p

t
(1− t)In,mλ,p (a, c)f(z)− p

t
In,m+1
λ,p (a, c)f(z). (1.5)

Here we recall that the holomorphic analogue of the function φ†p(a, c; z) if the function φ†p(a, c; z)
given by the relation

zp 2F1(a, 1; c; z) ∗ φ†p(a, c; z) :=
zp

(1− z)λ+p
(a, c ∈ C \ Z−0 , λ > −p; z ∈ U)

and the corresponding transform defined by

Lλp(a, c)f(z) = φ†p(a, c; z) ∗ f(z)

were studied by Cho, Kwon and Srivastava [5]. The transform Lλp(a, c) is popularly known as
the Cho-Kwon-Srivastava operator (see, for detail [7, 18, 21]).
Few literature is available on systematic study of successive iterations of certain transforms on
classes of meromorphic as well as analytic functions (see e.g., [1, 2, 13, 16, 19]). Furthermore,
using the operator In,mλ,p (a, c), Panigrahi [17] and Mishra and Soren [14] have investigated its
various interesting properties ( for recent expository work on meromorphic functions see [3, 8,
9, 22]).

Motivated by the aforementioned work, in this paper we introduce a new subclass of mero-
morphic functions and investigate inclusion theorems and other properties of a certain class of
meromorphically p-valent functions, which are defined by making use of a meromorphic ana-
logue of the Cho-Kwon-Srivastava operator and its iterations given by (1.4).

Throughout this paper, we assume that p, l ∈ N, εl = e
2πi
l , and for f ∈

∑
p, we have

fn,mp,l (λ, a, c; z) =
1
l

l−1∑
j=0

εjpl

(
In,mλ,p (a, c)f

)
(εjl z)

=
1
zp

+

[
(λ+ p)l(c)l
(a)l(1)l

]n [
p− lt
p

]m
al−pz

l−p + · · · . (1.6)
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Note that the series we consider is a gap series, each nonzero coefficient appearing after l gaps.
For l = 1, it follows from (1.6) that

fn,mp,1 (λ, a, c; z) = In,mλ,p (a, c)f(z).

Let P denote the class of functions of the form:

p(z) = 1 + b1z + b2z
2 + · · · ,

which are analytic and convex in U satisfying the condition <(p(z)) > 0 (z ∈ U).
By making use of the operator In,mλ,p (a, c), we now define a new subclass of

∑
p as follows:

Definition 1.1. A function f(z) ∈
∑
p is said to be in the class T n,mp,l (λ, a, c, α, β;h) if it satisfies

the following subordination conditions:

−β
z
[
(1 + α)(In,mλ,p (a, c)f)′(z) + α(In,m+1

λ,p (a, c)f)′(z)
]

p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] − (1− β)

z(In,mλ,p (a, c)f)′(z)

pfn,mp,l (λ, a, c; z)
≺ h(z),

(1.7)
(a, c ∈ C \ Z−0 , λ > −p, n, m ∈ N0, α > 0, β ≥ 0, h ∈ P; z ∈ U).

When n = 1 we use the following notation :
T 1,m
p,l (λ, a, c, α, β;h) := T mp,l(λ, a, c, α, β;h).

In particular for l = 1, β = 0 and h(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in (1.7), we get the

following function class.

T n,mp (λ, a, c, α,A,B) =

{
f ∈

∑
p

: −
z(In,mλ,p (a, c)f)′(z)

pIn,mλ,p (a, c)f(z)
≺ 1 +Az

1 +Bz
, (z ∈ U)

}
. (1.8)

2 Preliminaries

We need the following lemmas for our present investigation:

Lemma 2.1. (see [11]) Let β, γ ∈ C. Suppose that φ(z) is convex and univalent in U with

φ(0) = 1, <(βφ(z) + γ) > 0 (z ∈ U).

If p(z) is analytic in U with p(0) = 1, then the following subordination:

p(z) +
zp′(z)

βp(z) + γ
≺ φ(z) (z ∈ U),

implies that p(z) ≺ φ(z).

Lemma 2.2. (see [15]) Let β, γ ∈ C. Suppose that φ(z) is convex and univalent in U with

φ(0) = 1, <(βφ(z) + γ) > 0 (z ∈ U).

Also let
q(z) ≺ φ(z) (z ∈ U).

If p(z) ∈ P and satisfies the following subordination:

p(z) +
zp′(z)

βq(z) + γ
≺ φ(z)

then p(z) ≺ φ(z).

Lemma 2.3. Let f ∈ T n,mp,l (λ, a, c, α, β;φ). Then

−β
z

[
(1 + α)

(
fn,mp,l (λ, a, c; z)

)′
+ α

(
fn,m+1
p,l (λ, a, c; z)

)′]
p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] −(1−β)

z
(
fn,mp,l (λ, a, c; z)

)′
pfn,mp,l (λ, a, c; z)

≺ φ(z).

(2.1)
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Furthermore, if φ(z) ∈ P with

<
{

1
β

(
p− p

αt
− 2p

t
− pφ(z)

)}
> 0 (α, β, t > 0; z ∈ U), (2.2)

then

−
z
(
fn,mp,l (λ, a, c; z)

)′
pfn,mp,l (λ, a, c; z)

≺ φ(z) (z ∈ U). (2.3)

Proof. From (1.6), we have

fn,mp,l (λ, a, c, ; εjl z) =
1
l

l−1∑
k=0

εkpl

(
In,mλ,p (a, c)f

)
(εk+jl z)

=ε−jpl fn,mp,l (λ, a, c; z) (j = 0, 1, ...l − 1), (2.4)

and (
fn,mp,l (λ, a, c; z)

)′
=

1
l

l−1∑
k=0

ε
(p+1)k
l

(
In,mλ,p (a, c)f

)′
(εkl z). (2.5)

Replacing m by m+ 1 in (2.4) and (2.5) respectively, we can get

fn,m+1
p,l (λ, a, c; εjl z) = ε−jpl fn,m+1

p,l (a, c; z) (2.6)

and (
fn,m+1
p,l (λ, a, c; z)

)′
=

1
l

l−1∑
k=0

ε
(p+1)k
l

(
In,m+1
λ,p (a, c)f

)′
(εkl z). (2.7)

From (2.4) to (2.7) we can get

− β
z

[
(1 + α)

(
fn,mp,l (λ, a, c; z)

)′
+ α

(
fn,m+1
p,l (λ, a, c; z)

)′]
p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] − (1− β)

z
(
fn,mp,l (λ, a, c; z)

)′
pfn,mp,l (λ, a, c; z)

= −1
l

l−1∑
k=0

β

εkl z

[
(1 + α)

(
In,mλ,p (a, c)f

)′
(εkl z) + α

(
In,m+1
λ,p (a, c)f

)′
(εkl z)

]
p
[
(1 + α)fn,mp,l (λ, a, c; εkl z) + αfn,m+1

p,l (λ, a, c; εkl z)
]

− (1− β)
l

l−1∑
k=0

εkl z
(
In,mλ,p (a, c)f

)′
(εkl z)

pfn,mp,l (λ, a, c; εkl z)
. (2.8)

Since f ∈ T n,mp,l (λ, a, c, α, β;φ), it follows that

−β
εkl z

[
(1 + α)

(
In,mλ,p (a, c)f

)′
(εkl z) + α

(
In,m+1
λ,p (a, c)f

)′
(εkl z)

]
p
[
(1 + α)fn,mp,l (λ, a, c; εkl z) + αfn,m+1

p,l (λ, a, c; εkl z)
] −(1−β)

εkl z
(
In,mλ,p (a, c)f

)′
(εkl z)

pfn,mp,l (λ, a, c; εkl z)
≺ φ(z).

(2.9)
Since φ(z) is convex and univalent in U, the assertion (2.1) of Lemma 2.3 follows from (2.8) and
(2.9).

From (1.5) and (1.6) we obtain

z
(
fn,mp,l (λ, a, c; z)

)′
+
p

t
fn,m+1
p,l (λ, a, c; z) =

p
t (1− t)

l

l−1∑
k=0

εpkl

(
In,mλ,p (a, c)f

)
(εkl z) =

p(1− t)
t

fn,mp,l (λ, a, c; z).

(2.10)

Let f ∈ T n,mp,l (λ, a, c, α, β;φ) and suppose that

ψ(z) = −
z
(
fn,mp,l (λ, a, c; z)

)′
pfn,mp,l (λ, a, c; z)

(z ∈ U). (2.11)
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Clearly ψ(z) is analytic in U and ψ(0) = 1. It follows from (2.10) and (2.11) that

1− t+ tψ(z) =
fn,m+1
p,l (λ, a, c; z)
fn,mp,l (λ, a, c; z)

. (2.12)

Taking logarithmic differentiation on both sides of (2.12) and making use of (2.10) and (2.11) in
the resulting equation, we get

z
(
fn,m+1
p,l (λ, a, c; z)

)′
= − ([p− pt+ ptψ(z)]ψ(z)− tzψ′(z)) fn,mp,l (λ, a, c; z). (2.13)

Now it follows from (2.1) and (2.11) to (2.13) that

−β
z

[
(1 + α)

(
fn,mp,l (λ, a, c; z)

)′
+ α

(
fn,m+1
p,l (λ, a, c; z)

)′]
p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] − (1− β)

z
(
fn,mp,l (λ, a, c; z)

)′
pfn,mp,l (λ, a, c; z)

= β
(1 + α)ψ(z) + α

(
{−t+ tψ(z)}ψ(z)− t

pzψ
′(z)

)
(1 + α) + α(1− t+ tψ(z))

+ (1− β)ψ(z)

= ψ(z) +
zψ′(z)

1
β

(
p− p

αt −
2p
t − pψ(z)

) ≺ φ(z) (z ∈ U).

(2.14)

Since

<
{

1
β

(
p− p

αt
− 2p

t
− pφ(z)

)}
> 0 (α, β, t > 0, z ∈ U),

the assertion (2.3) of Lemma 2.3 follows by virtue of (2.14) and Lemma 2.1. This completes the
proof of Lemma 2.3.

3 Main Results

Theorem 3.1. Let φ(z) ∈ P be such that

<
{

1
β

(
p− p

αt
− 2p

t
− pφ(z)

)}
> 0 (α, β, t > 0, z ∈ U).

Then
T n,mp,l (λ, a, c, α, β;φ(z)) ⊂ T n,mp,l (λ, a, c, α;φ(z))

Proof. Let f ∈ T n,mp,l (λ, a, c, α, β;φ(z)) and suppose that

q(z) = −
z
(
In,mλ,p (a, c)f

)′
(z)

pfn,mp,l (λ, a, c; z)
(z ∈ U). (3.1)

Clearly q(z) is analytic in U and q(0) = 1. It follows from (1.5) and (3.1) that

q(z)fn,mp,l (λ, a, c; z) = −1
t
(1− t)In,mλ,p (a, c)f(z) +

1
t
T n,m+1
λ,p (a, c)f(z). (3.2)

Differentiating both sides of (3.2) with respect to z and using (3.1) in the resulting equation, we
obtain

zq′(z) +

z
(
fn,mp,l (λ, a, c; z)

)′
fn,mp,l (λ, a, c; z)

− p

t
(1− t)

 q(z) = p

t

z
(
In,m+1
λ,p (a, c)f

)′
(z)

pfn,mp,l (λ, a, c; z)
. (3.3)

Making use of (2.11), (2.12), (3.1) and (3.2) in (1.7) yield
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−β
z
[
(1 + α)(In,mλ,p (a, c)f)′(z) + α(In,m+1

λ,p (a, c)f)′(z)
]

p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] − (1− β)

z(In,mλ,p (a, c)f)′(z)

pfn,mp,l (λ, a, c; z)

= β
(1 + α)q(z)− αt

p

[
zq′(z) +

(
p− p

t − pψ(z)
)
q(z)

]
(1 + α) + α(1− t+ tψ(z))

+ (1− β)q(z)

= q(z) +
zq′(z)

1
β

(
p− p

αt −
2p
t − pψ(z)

) ≺ φ(z) (z ∈ U). (3.4)

Since

<
{

1
β

(
p− p

αt
− 2p

t
− pφ(z)

)}
> 0 (α, β, t > 0, z ∈ U),

by virtue of Lemma 2.3, we have

ψ(z) = −
z
(
fn,mp,l (λ, a, c; z)

)′
pfn,mp,l (λ, a, c; z)

≺ φ(z) (z ∈ U).

Thus, by (3.4) and Lemma 2.2, we find that

q(z) ≺ φ(z) (z ∈ U),

which implies
T n,mp,l (λ, a, c, α, β;φ(z)) ⊂ T n,mp,l (λ, a, c, α;φ(z))

The proof of Theorem 3.1 is thus completed.

For n = 1, Theorem 3.1 takes the following form:

Corollary 3.2. Let φ(z) ∈ P be such that

<
{

1
β

(
p− p

αt
− 2p

t
− pφ(z)

)}
> 0 (α, β, t > 0; z ∈ U).

Then
T mp,l(λ, a, c, α, β, φ) ⊂ T mp,l(λ, a, c, α, φ).

Taking φ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 3.1, we get the following result.

Corollary 3.3. Let −1 ≤ B < A ≤ 1 and

1 +A

1 +B
<

(
1− 1

αt
− 2
t

)
(α, t > 0).

Then
T n,mp,l (λ, a, c, α, β,A,B) ⊂ T n,mp,l (λ, a, c, α,A,B).

Theorem 3.4. Let h(z) ∈ P and 0 ≤ β1 < β2 be such that

<
{

1
β2

(
p− p

αt
− 2p

t
− ph(z)

)}
> 0 (α, β, t > 0, z ∈ U).

Then
T n,mp,l (λ, a, c, α, β2;h(z)) ⊂ T n,mp,l (λ, a, c, α, β1;h(z)).

Proof. Let f ∈ T n,mp,l (λ, a, c, α, β2;h(z)). Then by Definition 1.1, we have

−β2

z
[
(1 + α)(In,mλ,p (a, c)f)′(z) + α(In,m+1

λ,p (a, c)f)′(z)
]

p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] −(1−β2)

z(In,mλ,p (a, c)f)′(z)

pfn,mp,l (λ, a, c; z)
≺ h(z).

(3.5)
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We define the function q(z) by the following:

q(z) = −
z
(
In,mλ,p (a, c)f

)′
(z)

pfn,mp,l (λ, a, c; z)
(z ∈ U).

Therefore by Theorem 3.1, we get

T n,mp,l (λ, a, c, α, β2;h(z)) ⊂ T n,mp,l (λ, a, c, α, β1;h(z)).

Hence,
q(z) ≺ h(z) (z ∈ U). (3.6)

We also observe that the following identity holds:

−β1

z
[
(1 + α)(In,mλ,p (a, c)f)′(z) + α(In,m+1

λ,p (a, c)f)′(z)
]

p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] − (1− β1)

z(In,mλ,p (a, c)f)′(z)

pfn,mp,l (λ, a, c; z)

=
β1

β2

−β2

z
[
(1 + α)(In,mλ,p (a, c)f)′(z) + α(In,m+1

λ,p (a, c)f)′(z)
]

p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] − (1− β2)

z(In,mλ,p (a, c)f)′(z)

pfn,mp,l (λ, a, c; z)

+(1− β1

β2

)
q(z).

Since 0 ≤ β1
β2
< 1, and h(z) is convex univalent in U, we conclude from (3.5) and (3.6) that

−β1

z
[
(1 + α)(In,mλ,p (a, c)f)′(z) + α(In,m+1

λ,p (a, c)f)′(z)
]

p
[
(1 + α)fn,mp,l (λ, a, c; z) + αfn,m+1

p,l (λ, a, c; z)
] −(1−β1)

z(In,mλ,p (a, c)f)′(z)

pfn,mp,l (λ, a, c; z)
≺ h(z) (z ∈ U).

Thus
f(z) ∈ T n,mp,l (λ, a, c, α, β1;h).

The proof of Theorem 3.4 is completed.

Acknowledgement: The author thanks the reviewer for many useful suggestions for revision
which improved the content of the manuscript.
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