RAD-D_{12} MODULES

Recep Kılıç and Burcu Nişancı Türkmen

MSC 2010 Classifications: Primary 16D10; Secondary 16P70.

Keywords and phrases: (cofinitely) Rad-D_{12} module, (semi-)perfect ring, artinian serial ring.

This work is supported by Scientific Research Project in Amasya University (FMB-BAP-13-051).

Abstract Let R be a ring and M be a right R-module. M is called (cofinitely) Rad-D_{12} if, for every (cofinite) submodule N of M, there exist a direct summand K of M and an epimorphism $\psi : K \to \frac{M}{N}$ with $\ker(\alpha) \subseteq \text{Rad}(K)$. In this paper, we provide various properties of Rad-D_{12} modules and cofinitely Rad-D_{12} modules. In particular, we characterize semiperfect rings, perfect rings and artinian serial rings using (cofinitely) Rad-D_{12} modules. Moreover, we prove that every quasi-projective Rad-D_{12} module is Rad-\oplus-supplemented. Finally, we show that any factor module of a (cofinitely) Rad-D_{12} module by a fully invariant submodule is (cofinitely) Rad-D_{12}.

1 Introduction

Throughout this paper, it is assumed that R is an associative ring with identity and all modules are unital right R-modules. Let M be a module. A submodule N of an R-module M will be denoted by $N \subseteq M$. A submodule $N \subseteq M$ is said to be cofinite if $\frac{M}{N}$ is finitely generated. Maximal submodules are cofinite. Also, every submodule of a finitely generated module is cofinite. A submodule $L \subseteq M$ is said to be essential in M, if every submodule $L \subseteq M$, $L \cap N \neq 0$ for every nonzero submodule $N \subseteq M$. M is said to be uniform if its submodules is essential in M, and it is said to be extending (or a CS-module) if every submodule of M is essential in a direct summand of M. Dually, a module M is called lifting (or D_1) if, every submodule N of M contains a direct summand L of M such that $M = L \oplus K$ and $N \cap K$ is small in M. Here a submodule S of M is called small in M if $S + K \neq M$ for every proper submodule K of M. In [5, 29.10], every right R-module is lifting if and only if R is a left and right artinian serial ring with $J^2 = 0$, where J is the Jacobson radical of R. A module M is called hollow (or couniform) if every submodule is small in M. Hollow and semisimple modules are lifting. If M has a largest proper submodule, i.e., a proper submodule which contains all other proper submodules, then M is called local [23].

As a generalization of direct summands, a submodule V of M is called a supplement of a submodule U in M if $M = U + V$ and $U \cap V \ll V$ [23, pp. 348]. A module M is called (cofinitely) supplemented if every (cofinite) submodule has a supplement in M, and it is called amply (cofinitely) supplemented if, whenever (cofinite submodule N) $M = N + K$, N has a supplement $V \subseteq K$ in M. Every right R-module is (cofinitely) supplemented if and only if R is right (semi)perfect [1, Theorem 2.13] and [23, 43.9]. It can be seen that M is lifting if and only if it is amply supplemented and every supplement in M is a direct summand of M. Following [18], M is said to be cofinitely lifting if it is amply cofinitely supplemented and supplements of a cofinite submodule M is a direct summand of M.

Mohamed and Müller [12] call a module M \oplus-supplemented (according to [8], (D_{11})) if every submodule N of M has a supplement that is a direct summand of M. Lifting modules are \oplus-supplemented. Zöschinger proved in [25] that every supplemented module over a dedekind domain is \oplus-supplemented. Moreover, it follows from [8, Theorem 1.1] a commutative ring R is an artinian principal ideal ring if and only if every right R-module is \oplus-supplemented. In [7], a module M is called \oplus-cofinitely supplemented if every cofinite submodule of M has a supplement that is a direct summand of M. For a module M, consider the following condition:

$$(D_{12})$$

For every submodule N of M, there exist a direct summand K of M and an epimorphism $\alpha : \frac{M}{K} \to \frac{M}{N}$ such that $\ker(\alpha) \ll \frac{M}{K}$.

Modules with the property (D_{12}) are extensively studied in [11]. In addition, it is proven in [11, Proposition 4.3] that every \oplus-supplemented module has the property (D_{12}). Wang [22]
generalizes modules with \((D_{12})\) to cofinitely \((D_{12})\)-modules. A module \(M\) is called cofinitely \((D_{12})\) if, for every cofinite submodule \(N\) of \(M\), there exist a direct summand \(K\) of \(M\) and an epimorphism \(\alpha : \frac{M}{N} \to \frac{M}{N}\) such that \(\ker(\alpha) \subseteq \frac{M}{N}\). He obtained various properties of these modules in the same paper.

We will denote by \(\text{Rad}(M)\), namely radical of \(M\), the sum of all small submodules of a module \(M\). We say that a submodule \(V\) of a module \(M\) is Rad-supplement \((\text{in} [24], \text{generalized supplement})\) of a submodule \(U\) in \(M\) if \(M = U + V\) and \(U \cap V \subseteq \text{Rad}(V)\) as in [5, pp. 100]. Clearly, we have the following diagram on submodules.

| direct summand | \(\implies\) | supplement | \(\implies\) | Rad-supplement |

Motivated by the above definitions, we say a module \(M\) is (cofinitely) Rad-supplemented if every (cofinite) submodule of \(M\) has a Rad-supplement in \(M\), and \(M\) is (cofinitely) Rad-\(\oplus\)-supplemented if every (cofinite) submodule of \(M\) has a Rad-supplement that is a direct summand in \(M\) as in these papers [4], [13] and [19]. Characterizations of those modules are studied in the same papers. From [13], we will use \(cgs\) instead of cofinitely Rad-\(\oplus\)-supplemented.

Recall from [1] that a module \(M\) has the property \((P^*)\) if, for every submodule \(N\) of \(M\), \(M\) has the decomposition \(M = L \oplus K\) such that \(L \subseteq N\) and \(N \cap K \subseteq \text{Rad}(K)\). Modules with the property \((P^*)\) is a dual notion of modules with the property \((P)\) which is a generalization of extending modules [1]. Clearly lifting modules have the property \((P^*)\). Also, by [19, Proposition 2.9], a projective module with the property \((P^*)\) is lifting.

Talebi et.al. call a module \(M\) Rad-\(D_{12}\) if, for every submodule \(N\) of \(M\), there exist a direct summand \(K\) of \(M\) and an epimorphism \(\psi : K \to \frac{M}{N}\) with \(\ker(\psi) \subseteq \text{Rad}(K)\). Some properties of Rad-\(D_{12}\) modules are given in [17]. It is shown in [17, Proposition 2.1] that every Rad-\(\oplus\)-supplemented module is Rad-\(D_{12}\). It is of obvious interest to study characterizations of Rad-\(D_{12}\) modules by rings. In Theorem 2.9, we will prove that a ring \(R\) is right perfect if and only if every projective right \(R\)-module is Rad-\(D_{12}\). In particular, we shall show in Theorem 2.16 that every right \(R\)-module is Rad-\(D_{12}\) if and only if a commutative ring \(R\) is an artinian serial ring.

Let \(M\) be a module. We call a module \(M\) cofinitely Rad-\(D_{12}\) if for every cofinite submodule \(N\) of \(M\), there exist a direct summand \(K\) of \(M\) and an epimorphism \(\alpha : K \to \frac{M}{N}\) such that \(\ker(\alpha) \subseteq \text{Rad}(K)\). We will investigate various properties of cofinitely Rad-\(D_{12}\) modules in section 2.

Under given definitions, we clearly have the following implication on modules:

\[
\begin{align*}
\text{semisimple} & \quad \downarrow \quad \text{lifting} \\
\text{the property \((P^*)\)} & \quad \oplus - \text{supplemented} \\
\text{Rad} - \oplus - \text{supplemented} & \quad \downarrow \quad \text{cofinitely lifting} \\
D_{12} & \quad \downarrow \quad \oplus - \text{cofinitely supplemented} \\
cgs \quad \downarrow \quad \text{cofinitely} Rad - D_{12} \\
\text{cofinitely} \text{Rad} - D_{12} & \quad \downarrow \quad \text{cofinitely} (D_{12}) \\
\end{align*}
\]

In this paper, we give a new characterization of semiperfect rings via cofinitely Rad-\(D_{12}\) modules. Every non-radical indecomposable cofinitely Rad-\(D_{12}\)-module is \(\omega\)-local. We show that if every right \(R\)-module is cofinitely Rad-\(D_{12}\), then \(R\) is a noetherian serial ring.

2 (Cofinitely) Rad-\(D_{12}\) Modules

In this section, we will give characterizations of (semi)perfect rings in terms of (cofinitely) Rad-\(D_{12}\). In particular, we will determine commutative rings whose modules are Rad-\(D_{12}\).
Recall from [23] that an epimorphism \(f : P \rightarrow M \) is called a cover if \(\text{Ker}(f) \ll P \), and a cover \(f \) is called a projective cover if \(P \) is a projective module. In the spirit of [23], a module \(M \) is said to be semiperfect if every factor module of \(M \) has a projective cover. Every semiperfect module is supplemented. A ring \(R \) is called semiperfect, if every finitely generated right (or left) \(R \)-module has a projective cover, and a ring \(R \) is called right perfect if every right \(R \)-module has a projective cover.

The proof of the next result is taken from [17, Proposition 2.1], but is given for the sake of completeness.

Proposition 2.1. Every \(\text{cgs}^{\oplus} \)-module is cofinitely \(\text{Rad-}D_{12} \).

Proof. Let \(N \) be a cofinite submodule of \(M \). Since \(M \) is \(\text{cgs}^{\oplus} \), then there exist direct summands \(K \) and \(K' \) of \(M \) such that \(M = N + K = K \oplus K' \) and \(N \cap K \subseteq \text{Rad}(K) \). Now we have the epimorphism \(g \) from \(K \) to \(\frac{M}{K} \) which is defined by \(k \rightarrow k + N \) with \(\text{Ker}(g) = N \cap K \subseteq \text{Rad}(K) \).

Hence \(M \) is a cofinitely \(\text{Rad-}D_{12} \)-module.

The following example shows that a cofinitely \(\text{Rad-}D_{12} \) module need not \(\text{cgs}^{\oplus} \).

Example 2.2. (See [11, Examples 4.5\&4.6]) Let \(R \) be a local artinian ring with radical \(J \) such that \(J^2 = 0, Q = \frac{J}{J^2} \) is commutative, \(\text{dim}(QJ) = 2 \) and \(\text{dim}(JQ) = 1 \). Consider the indecomposable injective right \(R \)-module \(U = \frac{(R/B)D}{D} \) with \(J = Ru + Rv \) and \(D = \{(ar − vr) | r \in R \} \). Now let \(S = \frac{Q}{J} \), the simple \(R \)-module, and \(M = U \oplus S \). By [11, Example 4.6], \(M \) is cofinitely \(\text{Rad-}D_{12} \), but not \(\text{cgs}^{\oplus} \).

Recall from [23] that an \(R \)-module \(M \) is called quasi-projective if, for every \(R \)-module \(K \), every \(R \)-epimorphism \(\xi : M \rightarrow K \), and every \(R \)-homomorphism \(f : M \rightarrow K \), there is an \(\gamma \in \text{End}_R(M) \) such that \(\xi \circ \gamma = f \). Now we prove that every quasi-projective (cofinitely) \(\text{Rad-}D_{12} \) module is \(\oplus \)-supplemented (\(\text{cgs}^{\oplus} \)).

Theorem 2.3. Let \(M \) be a quasi-projective module.

(i) If \(M \) is \(\text{Rad-}D_{12} \), then \(M \) is a \(\oplus \)-supplemented module.

(ii) If \(M \) is cofinitely \(\text{Rad-}D_{12} \), then \(M \) is a \(\text{cgs}^{\oplus} \)-module.

Proof. (1) Let \(N \) be a submodule of \(M \). Then there exist a direct summand \(K \) of \(M \) and an epimorphism \(\alpha : K \rightarrow \frac{M}{N} \) with \(\text{Ker}(\alpha) \subseteq \text{Rad}(K) \). Let \(\pi : M \rightarrow \frac{M}{N} \) be the natural epimorphism. Since \(M \) is a quasi-projective, we have the homomorphism \(h : M \rightarrow K \) with \(\pi = \alpha \circ h \). Since \(K \) is \(M \)-projective, \(h \) splits. Hence there is a direct summand \(K' \) of \(M \) with \(h|_{K'} : K' \cong K \). So \(\pi|_{K'} \) is an epimorphism. Therefore \(M = K' + N \) and \(N \cap K' = \text{Ker}(\pi|_{K'}) \subseteq \text{Rad}(M) \).

Since \(K' \) is a direct summand of \(M \), \(N \cap K' \subseteq \text{Rad}(K') \). Thus \(M \) is \(\oplus \)-supplemented.

(2) The proof can be made similar to (1).

Clearly, every cofinitely \(D_{12} \)-module is cofinitely \(\text{Rad-}D_{12} \). But the converse is not always true the following example shows. Recall from [4] that a module \(M \) is called \(\omega \)-local if it has a unique maximal submodule. It is clear that a module is \(\omega \)-local if and only if its radical is maximal.

Example 2.4. (See [16, Theorem 4.3 and Remark 4.4]) Let \(M \) be a biuniform module and let \(S = \text{End}_R(M) \). Assume that \(P \) is a projective \(S \)-module with \(\text{dim}(P) = (1, 0) \). Then \(P \) is an indecomposable \(\omega \)-local module. Since \(\text{dim}(P) = (1, 0) \), we conclude that \(P \) is not finitely generated. Hence, \(P \) is a \(\text{cgs}^{\oplus} \)-module but not \(\oplus \)-cofinitely supplemented. Thus, \(P \) is cofinitely \(\text{Rad-}D_{12} \) but not cofinitely \(\text{cgs}^{\oplus} \).

Example 2.5. (See [9, 11.3]) Let \(R \) denote the ring \(K[[x]] \) of all power series \(\sum_{i=0}^{\infty} k_i x^i \) in an indeterminate \(x \) and with coefficients from a field \(K \) which is a local ring. Note that \(R \) is a semiperfect ring that is not perfect. Then by [7, Theorem 2.9] and [10, Corollary 2.11], the free (projective) \(R \)-module \(R^X \) is \(\oplus \)-cofinitely supplemented but not \(\oplus \)-supplemented. It follows that \(R^X \) is \(\text{cgs}^{\oplus} \). By [19, Theorem 2.2], \(R^X \) is not \(\text{Rad-} \)-supplemented. Therefore \(R^X \) is cofinitely \(\text{Rad-}D_{12} \) but not \(\text{Rad-}D_{12} \) by Theorem 2.3.

Theorem 2.6. For a ring \(R \), \(R \) is semiperfect if and only if every free right \(R \)-module is cofinitely \(\text{Rad-}D_{12} \).

Proof. (\(\Rightarrow \)) Suppose that a ring \(R \) is semiperfect. By [13, Theorem 2.4], every free right \(R \)-module is \(\text{cgs}^{\oplus} \). Then by Proposition 2.1, every free right \(R \)-module is cofinitely \(\text{Rad-}D_{12} \).

(\(\Leftarrow \)) Since every free right \(R \)-module is cofinitely \(\text{Rad-}D_{12} \), it is \(\text{cgs}^{\oplus} \) by Theorem 2.3. It follows from [13, Theorem 2.4] that \(R \) is semiperfect. \(\Box \)
Proposition 2.7. Let M be a cofinitely Rad-D_{12} module. If $\text{Rad}(M) \ll M$, then M is a cofinitely (D_{12})-module.

Proof. Let N be a cofinite submodule of M. Since M is cofinitely Rad-D_{12}, there exist a direct summand K of M and an epimorphism $\alpha : K \to M/N$ such that $\ker(\alpha) \ll M$. Since K is a direct summand of M, $\ker(\alpha) \ll K$. Hence M is a cofinitely (D_{12})-module.

A module M is called coatomic if every proper submodule is contained in a maximal submodule of M. Every coatomic module has a small radical. Using the above proposition, we obtain the following corollary.

Corollary 2.8. Every coatomic cofinitely Rad-D_{12} module is cofinitely (D_{12}).

Theorem 2.9. For a ring R, R is right perfect if and only if every projective right R-module is Rad-D_{12}.

Proof. The proof follows from Theorem 2.3(1) and [19, Corollary 2.3].

A module M is called radical if $\text{Rad}(M) = M$.

Proposition 2.10. Let M be a non-radical indecomposable module. Suppose that M is a cofinitely Rad-D_{12} module. Then M is ω-local.

Proof. Suppose that $\text{Rad}(M) \neq M$. Then M contains a maximal submodule N. By the hypothesis, there exist a direct summand K of M and an epimorphism $\alpha : K \to M/N$ with $\ker(\alpha) \subseteq \text{Rad}(K)$. Note that $K \neq 0$. Since M is indecomposable, $K = M$. Therefore $\alpha : M \to M/N$ is an epimorphism with $\ker(\alpha) \subseteq \text{Rad}(M)$. It follows that $M/\ker(\alpha) \cong M/N$. Since N is a maximal submodule of M, $\ker(\alpha)$ is a maximal submodule of M. But $\ker(\alpha) \subseteq \text{Rad}(M)$. Thus $\text{Rad}(M)$ is a maximal submodule of M. Hence M is ω-local.

Corollary 2.11. Every finitely generated indecomposable, (cofinitely) Rad-D_{12} module is local.

In [15, 1.4] a module M is called uniserial if its lattice of submodules is a chain. By [5, 2.17], a module M is uniserial if and only if every submodule of M is hollow. A module M is said to be serial if M is a direct sum of uniserial modules. A commutative ring R is called uniserial if the module R is uniserial, and the ring is called serial if the module R is serial.

Recall from [5, 1.5] that a module M is uniform if and only if every non-zero submodule of M is indecomposable.

Proposition 2.12. Let M be a uniform module over a local commutative ring R. Then the following statements are equivalent.

(i) M is uniserial.

(ii) Every submodule of M is cofinitely Rad-D_{12}.

Proof. (i) \Rightarrow (ii) Clear.

(ii) \Rightarrow (i) Let N be a finitely generated submodule of M. By (2), N is Rad-D_{12}. Since N is indecomposable, applying Corollary 2.11 we obtain that N is local. It follows from [5, 2.17] that M is uniserial.

By $E(M)$ we denote the injective hull of a module M. Note that the injective hull of a simple module is uniform.

Corollary 2.13. Let R be a local commutative ring. Suppose that M is the module $E(M/R_{\text{Rad}(R)})$, and every submodule of M is cofinitely Rad-D_{12}. Then, R is uniserial.

Proof. Since M is uniform, the hypothesis implies that M is uniserial by Proposition 2.12. It follows from [20, 6.2] that R is uniserial.

Lemma 2.14. (See [8, Theorem 1.1], [19, Corollary 2.15]) Let R be a commutative ring. Then the following statements are equivalent.

(i) R is an artinian serial ring.

(ii) Every R-module is \oplus-supplemented.

(iii) Every R-module is Rad-\oplus-supplemented.
By Lemma 2.14, every module over an artinian serial ring is Rad-D_{12}. Now we show that the converse of this fact is true in the following Theorem. Firstly, we have:

Proposition 2.15. Let R be a commutative ring. If every right R-module is cofinitely Rad-D_{12}, then R is a serial ring.

Proof. Let M be a free R-module. By the hypothesis, M is cofinitely Rad-D_{12}. It follows from Theorem 2.6 that R is semiperfect. Note that $R = R_1 \oplus R_2 \oplus \ldots \oplus R_n$ such that the ring R_i is local for all $1 \leq i \leq n$ with $n \in \mathbb{N}$ (23, 42.6). For all $1 \leq i \leq n$, R_i is commutative and every R_i-module is cofinitely Rad-D_{12} by assumption. Using Corollary 2.13, we get R_i is uniserial. Thus R is a serial ring. \hfill \Box

Theorem 2.16. The following statements are equivalent for a commutative ring R.

(i) R is an artinian serial ring.

(ii) Every R-module is Rad-D_{12}.

Proof. (i) \Rightarrow (ii) Clear.

(ii) \Rightarrow (i) Applying Theorem 2.9, we obtain that R is perfect. It follows from ([23, 42.6]) that we can write $R = R_1 \oplus R_2 \oplus \ldots \oplus R_n$, where each R_i is a local perfect ring for all $1 \leq i \leq n$. By Corollary 2.13 and the hypothesis, it can be seen easily that each R_i is noetherian. Therefore, R is a serial noetherian ring as a finite direct sum of uniserial noetherian rings R_i. Applying [9, 11.6.4(c)], we deduce that R is an artinian serial ring. \hfill \Box

Let M be a module. $U \subseteq M$ is called QSL in M if $(A+U)/A$ is a direct summand of M/A, then there exists a direct summand P of M such that $P \subseteq A$ and $A+U = P+U$ [3]. M is said to be cofinitely weak Rad-supplemented if every cofinite submodule U of M has a weak Rad-supplement in M, i.e. there exists a submodule V of M such that $M = U+V$ and $U \cap V \subseteq Rad(M)$ [6].

Proposition 2.17. Let M be a cofinitely weak Rad-supplemented module with $Rad(M)$ QSL in M. Then M is cofinitely Rad-D_{12}.

Proof. Let N be a cofinite submodule of M. Then M/N is cofinitely generated, and so M/N is a module. Thus $M/N = M/\text{Rad}(M)$ is a submodule of $M/\text{Rad}(M)$. By [6, Corollary 2.5], $N/\text{Rad}(M)$ is a direct summand of $M/\text{Rad}(M)$. Since $Rad(M)$ is QSL in M, there exists a decomposition $M = K \oplus L$ such that $K \subseteq N$ and $N + \text{Rad}(M) = K + \text{Rad}(M)$. Now consider the epimorphism $\alpha : L \rightarrow M$ defined by $\alpha(l) = l + N (l \in L)$. Since $M = K \oplus L$, then $\text{Rad}(M) = \text{Rad}(K) \oplus \text{Rad}(L)$. It follows that $N + \text{Rad}(L) = K + \text{Rad}(L)$ and, so $L \cap N + \text{Rad}(L) = L \cap K + \text{Rad}(L) = \text{Rad}(L)$. Note that $\text{Ker}(\alpha) = L \cap N \subseteq \text{Rad}(L)$. Hence M is cofinitely Rad-D_{12}. \hfill \Box

A module M is called refinable if for any submodules U, V of M with $M = U + V$, there exists a direct summand U' of M with $U' \subseteq U$ and $M = U' + V$ [5, 11.26]. It is easy to see that M is refinable if and only if every submodule of M is QSL.

Corollary 2.18. Let M be a cofinitely weak Rad-supplemented refinable module. Then M is cofinitely Rad-D_{12}.

Proof. Clear by Proposition 2.17. \hfill \Box

Proposition 2.19. Let M be a cofinitely Rad-D_{12} module. If $\text{Rad}(M) \neq M$, then M has a non-zero ω-local direct summand.

Proof. Let N be a maximal submodule of M. Then N is a cofinite submodule of M. Since M is a cofinitely Rad-D_{12} module, there exist a direct summand K of M and an epimorphism $\alpha : K \rightarrow M$ such that $\text{ker}(\alpha) \subseteq \text{Rad}(K)$. Clearly, $K \neq 0$ and $\text{ker}(\alpha)$ is a maximal submodule of K. Therefore $\text{ker}(\alpha) = \text{Rad}(K)$ and hence K is a non-zero ω-local direct summand of M. \hfill \Box
Recall from [23] that an R-module M has the summand sum property (SSP) if the sum of two direct summands of M is again a direct summand of M, and a submodule U of an R-module M is called fully invariant if $f(U)$ is contained in U for every R-endomorphism f of M. Let M be an R-module and let τ be a preradical for the category of R-modules. Then $\text{Rad}(M)$, $P(M)$ and $\tau(M)$ are fully invariant submodules of M. An R-module M is called a (weak) duo module if every (direct summand) submodule of M is fully invariant. Note that weak duo modules have SSP (See [14]).

The following Example shows a cofinitely Rad-D_{12} module that contains a direct summand which is not cofinitely Rad-D_{12}.

Example 2.20. Consider the right R-module $M = U \oplus S$ in Example 2.2. The module M is cofinitely Rad-D_{12}, but the submodule U is not cofinitely Rad-D_{12}.

Theorem 2.21. Let $M = M_1 \oplus M_2$. Then M_2 is cofinitely Rad-D_{12} if and only if for every cofinite submodule N of M containing M_1, there exist a direct summand K of M_2 and an epimorphism $\varphi : M \to \frac{N}{K}$ such that K is a direct summand Rad-supplement of $\ker(\varphi)$ in M.

Proof. Suppose that M_2 is a cofinitely Rad-D_{12} module. Let N be a cofinite submodule of M with $M_1 \subseteq N$. Consider the submodule $N \cap M_2$ of M_2. Since $\frac{M_2}{N \cap M_2} \cong \frac{M_1}{N \cap M_2}$, $N \cap M_2$ is a cofinite submodule of M_2. Then there exist a direct summand K of M_2 and an epimorphism $\alpha : K \to \frac{M_1}{N \cap M_2}$ such that $\ker(\alpha) = N \cap K \subseteq \text{Rad}(K)$. Note that $M = N + M_2$ and K is a direct summand of M. Let $M = K \oplus K'$ for some submodule K' of M. Consider the projection map $\xi : M \to K$ and the isomorphism $\beta : \frac{M_1}{N \cap M_2} \to \frac{M}{K}$ defined by $\beta(x + N \cap M_2) = x + N$. Thus $\beta \circ \alpha \circ \xi : M \to \frac{M}{K}$ is an epimorphism. Let $\varphi = \beta \circ \alpha \circ \xi$. Clearly, we have $\ker(\varphi) = N + K' \subseteq \ker(\alpha) \subseteq \text{Rad}(K)$. Moreover $K \cap \ker(\varphi) = K \cap N = \ker(\alpha) \subseteq \text{Rad}(K)$.

Conversely, suppose that every cofinite submodule of M containing M_1 has the stated property. Let H be a cofinite submodule of M_2. Consider the submodule $H \oplus M_1$ of M. Since $\frac{M_1}{H \oplus M_1} \cong \frac{M}{H}$ is finitely generated, $H \oplus M_1$ is a cofinite submodule of M. By the hypothesis, there exist a direct summand K of $H \oplus M_1$ and an epimorphism $\mu : M \to \frac{M}{H \oplus M_1}$ such that $M = K + \ker(\mu)$ and $K \cap \ker(\mu) \subseteq \text{Rad}(K)$. Let $g : K \to \frac{M}{H \oplus M_1}$ be the restriction of μ to K. Consider the isomorphism $\eta : \frac{M}{H \oplus M_1} \to \frac{M}{K}$ defined by $\eta(m_1 + m_2 + (H \oplus M_1)) = m_2 + H$. Therefore $\eta \circ g : K \to \frac{M}{K}$ is an epimorphism. Let $\kappa = \eta \circ g$. Clearly, $\ker(\kappa) \subseteq \text{Rad}(K)$. Hence M_2 is a cofinitely Rad-D_{12} module.

Theorem 2.22. Let $\{M_i\}_{i \in I}$ be any family of cofinitely Rad-D_{12} modules on a ring R and $M = \bigoplus_{i \in I} M_i$. If every cofinite submodule of M is fully invariant, then M is a cofinitely Rad-D_{12} module.

Proof. Let N be a cofinite submodule of M. Since N is fully invariant, we have $N = \bigoplus_{i \in I}(N \cap M_i)$. Since $\frac{M_i}{N \cap M_i} \cong \bigoplus_{i \in I} \frac{M_i}{N \cap M_i}$ for every $i \in I$, $N \cap M_i$ is a cofinite submodule of M_i. Then there exist a direct summand K_i of M_i and an epimorphism $\alpha_i : K_i \to \frac{M_i}{N \cap M_i}$ with $\ker(\alpha_i) \subseteq \text{Rad}(K_i)$. Now we define the homomorphism $\alpha : \bigoplus_{i \in I} K_i \to \bigoplus_{i \in I} \frac{M_i}{N \cap M_i}$ by $\alpha_i(k_i) = \alpha_i(k_i) + \ldots + \alpha_i(k_i) = k_i, \ldots, k_n \mapsto \alpha_i(k_i)$ for every $i = 1, 2, \ldots, n$. It is not hard to check that α is an epimorphism with $\ker(\alpha) \subseteq \text{Rad}(\bigoplus_{i \in I} K_i)$ and $\bigoplus_{i \in I} K_i$ is a direct summand of M. It follows that M is a cofinitely Rad-D_{12} module.

Proposition 2.23. Let M be a cofinitely Rad-D_{12} module with the property SSP. Suppose that L is a direct summand of M. Then, $\frac{M}{L}$ is a cofinitely Rad-D_{12} module.

Proof. Let M be a cofinitely Rad-D_{12} module and $\frac{M}{L}$ be a cofinite submodule of $\frac{M}{L}$. Then N is a cofinite submodule of M. Since M is a cofinitely Rad-D_{12} module, there exist a direct summand K of M and an epimorphism $\alpha : K \to \frac{M}{L}$ with $\ker(\alpha) \subseteq \text{Rad}(K)$. Since M has the property SSP, $K + L$ is a direct summand of M. Therefore there exists a submodule X of M such that $M = (K + L) \oplus X$. Note that $\frac{M}{L} = \frac{K + L}{L} \oplus \frac{X}{L}$. Because $\frac{K + L}{L} \cap \frac{X}{L} \subseteq \frac{X \cap (K + L) + L \cap (K + L)}{L} = \frac{L}{L}$, we can define the homomorphism $\alpha' : \frac{K + L}{L} \to \frac{M}{L}$ by $k + l + L = k + L \mapsto \alpha(k)$ with $k \in K$, $l \in L$. It’s easy to see that α' is an epimorphism with $\ker(\alpha') \subseteq \text{Rad}(\frac{K + L}{L})$ and $\frac{K + L}{L}$ is a direct summand of $\frac{M}{L}$. Hence $\frac{M}{L}$ is a cofinitely Rad-D_{12} module.

Theorem 2.24. Let M be a (cofinitely) Rad-D_{12} module. If L is a fully invariant submodule of M, then $\frac{M}{L}$ is a (cofinitely) Rad-D_{12} module.
Proof. Let $\frac{M}{T}$ be a (cofinite) submodule of $\frac{M}{\alpha(T)}$. Then N is a (cofinite) submodule of M. Since M is a (cofinitely) Rad-D_{12} module, there exist a direct summand K of M and an epimorphism $\alpha: K \to \frac{M}{\alpha(T)}$ with $\ker(\alpha) \subseteq \text{Rad}(K)$. It follows that there exists a submodule K' of M such that $M = K \oplus K'$. Since L is a fully invariant submodule of M, $L = (L \cap K) \oplus (L \cap K')$. It is clear that $\frac{M}{L} = \frac{K+L}{L} \oplus \frac{K'+L}{L}$. Since $\frac{M}{L} \cong \frac{M}{\alpha(T)}$, we can define the homomorphism $\beta: \frac{K+L}{L} \to \frac{M}{L}$ by $k + L \mapsto \beta(k + L) = \alpha(k)$ with $k \in K$. Then β is an epimorphism and $\ker(\beta) \subseteq \text{Rad}(\frac{K+L}{L})$. Hence $\frac{M}{L}$ is a (cofinitely) Rad-D_{12} module. \qed

References

Author information

Recep Kılıç and Burcu Nişancı Türkmen, Department of Mathematics, Amasya University, Amasya, 05100, Turkey.

E-mail: burcuniisancie@hotmail.com

Received: March 6, 2015.

Accepted: April 29, 2015.