ON ANNIHILATOR GRAPHS OF NEAR-RINGS

T. Tamizh Chelvam and S. Rammurthy

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16Y30; Secondary 5C75.

Keywords and phrases: Near-rings, annihilating ideal graph, diameter, girth.

This work is supported by the UGC-BSR One-time grant(F:19-109/2013(BSR)) of University Grants Commission, Government of India for the first named-author.

Abstract. Graphs from commutative rings are well studied through zero-divisor graphs, total graphs and other several graph constructions. Through these constructions, the interplay between algebraic structures and graphs are studied. Indeed, it is worthwhile to relate algebraic properties of commutative rings to the combinatorial properties of assigned graphs. Near-rings are generalized rings. In this paper, we introduce and study about annihilating ideal graphs of near-rings and in turn they generalize the results obtained for commutative rings.

1 Introduction

Graph constructions from commutative rings was by the concept of zero-divisor graph introduced and studied by Beck [8]. Subsequently several authors [1, 2, 3, 4, 5, 7, 14, 16, 17] have extensively studied various graph constructions from commutative rings. Some of the worthwhile constructions from commutative rings are zero-divisor graphs, total graphs, annihilator graphs and Cayley graphs.

Near-rings are generalized rings. In fact if we drop one of the distributive law and abelian nature of addition in the axioms of a ring, then one gets a near-ring. If the near-ring satisfies right distributive law, it is called a right near-ring. Let R be a commutative ring and $Z^*(R)$ is the set of all non-zero zero-divisors of R. Badawi [5] defined and studied the annihilator graph $AG(R)$ of a commutative ring R. Note that, for a commutative ring R, $AG(R)$ is the simple undirected graph with vertices $Z^*(R)$ and two distinct vertices x, y in R are adjacent if $ann_R(x) \cap ann_R(y) \neq \{0\}$. In parallel to this notation, we introduce and study the annihilator graph of a near-ring. Actually we construct three types of annihilator graphs of near-rings and study about their fundamental properties.

Throughout this paper N denotes a commutative right near-ring with non-zero identity and $Z(N)$ be its set of all zero-divisors. For $x \in Z(N)$, $ann_N(x) = \{y \in N/xy = 0\}$. For convenience we denote $ann_N(x)$ by $ann(x)$ for $x \in N$. For basic properties regarding near-rings, one may refer Pilz [12] and basic properties on graph theory we refer [9].

2 Annihilator graph-I of near-rings

In this section, first we introduce and study about a class of annihilator graph corresponding to near-rings. After introducing this definition, we study about the new graph and its inter link with the zero-divisor graphs of near-rings.

Let N be a commutative near-ring. The annihilator graph-I of a near-ring N is the simple undirected graph with vertex set N and two distinct vertices x and y in N are adjacent if $ann(x) \cap ann(y) \neq \{0\}$. This graph is denoted by $\Gamma_1(N)$.

Example 2.1. Consider the near-ring N defined on the Kelin’s 4-group $\{0, a, b, c\}$ with multiplication corresponding to the scheme 15:(0,13,0,13), p. 340 Pilz [12]. One can see that for this near-ring N, $\Gamma_1(N) = K_4$, the complete graph on vertices. Note that two non-isomorphic
near-rings may have the same annihilator graph-I. For example the zero near-ring on the Klein’s 4-group \(\{0, a, b, c\} \) and the near-ring corresponding to the scheme 15:(0,13,0,13), p. 340 Pilz [12] are one and the same where as the near-rings are not isomorphic.

First let us see a relation between the annihilator ideal graph-I \(\Gamma_1(N) \) and the zero-divisor graph \(\Gamma(N) \) of near-ring \(N \).

Theorem 2.2. The graphs \(\Gamma(N) \cup \Gamma_1(N) \) and \(\Gamma(N)^2 \) are identical.

Proof. Since the vertex set of \(\Gamma(N) \) and \(\Gamma_1(N) \) are same, it is enough to show the edge sets of \(\Gamma(N) \cup \Gamma_1(N) \) and \(\Gamma(N)^2 \) are also same.

For, let \(xy \in \Gamma(N) \cup \Gamma_1(N) \). This implies that either \(xy = 0 \) or \(\text{ann}(x) \cap \text{ann}(y) \neq \{0\} \), which implies either \(xy = 0 \) or there exists a \(w \in \mathbb{Z}(N)^* \) such that \(xw = 0, yw = 0 \). From this we have \(d(x, y) = 2 \) and hence \(xy \in E(\Gamma(N)^2) \).

Next, consider an edge \(xy \in E(\Gamma(N)^2) \). Then \(d(x, y) \leq 2 \) in \(\Gamma(N) \). If \(d(x, y) = 1 \), then \(xy = 0 \) and so, \(xy \in E(\Gamma(N)) \). If \(d(x, y) = 2 \), then there exists a \(w \in \mathbb{Z}(N)^* \) such that \(xw = 0, yw = 0 \) and so, \(w \in \text{ann}(x) \cap \text{ann}(y) \). From this we get that \(xy \in E(\Gamma_1(N)) \) which implies that \(xy \in \Gamma(N) \cup \Gamma_1(N) \).

Theorem 2.3. Let \(N \) be a commutative near-ring having no non-zero zero divisors of nilpotent elements of order \(\geq 2 \). If \(\Gamma(N) \) is a bipartite graph, then \(G_1(N) \) has exactly two components.

Proof. Assume that \(\Gamma(N) \) be a bipartite graph and is isomorphic to \(K_{m,n} \)(say). Let \(X, Y \) be the bipartition of \(\Gamma(N) \), such that \(X = \{x_i : i = 1, 2, \ldots, m\}, Y = \{y_j : j = 1, 2, \ldots, n\} \).

Claim (i). \(\text{ann}(x_i) \cap \text{ann}(y_j) = \{0\} \) for all \(i \) and \(j \).

Suppose \(t \in \text{ann}(x_i) \cap \text{ann}(y_j) \) for some \(i, j \). Then \(tx_i = 0, ty_j = 0 \). Since \(N \) has no non-zero nilpotent element of index \(\geq 2 \), \(t \neq x_i \) or \(t \neq y_j \). Now \(tx_i = 0 = ty_j \) implies \(t \in X \cap Y \) which is a contradiction. Hence claim (i) is true.

Claim (ii). \(\Gamma_1[X] \) and \(\Gamma_1[Y] \), the induced subgraphs of \(\Gamma_1(N) \) are two components of \(\Gamma_1(N) \).

Let \(u, v \in X \). Since the graph \(\Gamma_1(N) \) is connected, there exists a \(u \) \(-\) \(v \) path, say \(u \gamma_1 y_1 \cdots \gamma_n v \) in \(\Gamma(N) \). Then \(uv \gamma_1 y_1 \cdots v \) will be a path in \(\Gamma_1(N) \). So \(u \) and \(v \) belong to the same component. Similarly for \(\Gamma_1[Y] \). Hence the claim (ii) is true.

Theorem 2.4. Let \(N \) be a commutative near-ring without nilpotent elements. If \(\Gamma(N) \) is a cycle of length \(m \), then \(\Gamma_1(N) \) is isomorphic to \(\Gamma(N) \), when \(m \) is odd. Otherwise it is isomorphic to disjoint union of two even cycles of same length.

Proof.

Case(i). \(m \) is odd.

Let \(\Gamma(N) = x_1x_2x_3 \cdots x_mx_1 \). Since \(x_i^2 \neq 0 \) for all \(i \) and \(x_1 \) is adjacent to \(x_2 \) and \(x_m \), the edge \(x_2x_m \) must be in \(\Gamma_1(N) \). Also, for all \(i = 2, \ldots, m-1 \), \(x_i \) has common neighbours \(x_{i-1} \) and \(x_{i+1} \). Hence the edges \(x_{i-1}x_{i+1} \) should be in \(\Gamma_1(N) \) for all \(i \geq 2 \). Obviously, these edges together with \(x_2x_m \) form a cycle of length \(m \). So in this case \(\Gamma(N) \) is isomorphic to \(\Gamma_1(N) \).

Case(ii). \(m \) is even and say \(m = 2k \).

Let \(\Gamma(N) = x_1x_2 \cdots x_{2k}x_1 \). As mentioned in the above case, \(x_1 \) has common neighbours \(x_2 \) and \(x_{2k} \). From this the edge \(x_2x_{2k} \) exists in \(\Gamma_1(N) \) and \(x_2 \) has common neighbours \(x_3 \) and \(x_1 \) in \(\Gamma_1(N) \), so the edge \(x_1x_3 \) exists. Proceeding like this, we get two sequences of edges \(x_1x_3, x_3x_5, \ldots, x_{2k-1}x_1 \) and \(x_2x_4, x_4x_6, \ldots, x_{2k}x_2 \). These two sequences of edges form a disjoint union of two cycles in \(\Gamma_1(N) \).

Lemma 2.5. Let \(N \) be a commutative near-ring without nilpotent elements of order \(\geq 2 \). If \(\Gamma(N) \) is a path, then \(\Gamma_1(N) \) is a disjoint union of two paths.

Proof. Let \(\Gamma(N) = x_1x_2x_3 \cdots x_n \) be a path. By the definition of \(\Gamma_1(N) \), the edges \(x_1x_3, x_3x_5, \ldots, x_2x_4, x_4x_6 \), are in \(\Gamma_1(N) \). It is clear that these two sequences form two distinct paths.

Remark 2.6. \(\Gamma_1(N) \) need not be connected always. For, when \(N = (Z_6, +, 6) \), then \(\Gamma_1(N) \) is the disjoint union of the complete graphs \(K_1 \) and \(K_2 \).
Next, we give a necessary condition for the graph $\Gamma_1(N)$ to be connected.

Theorem 3.2. If N is a commutative near-ring such that $x^n = 0$ for all $x \in N$ and for some $n \geq 2$, then the graph $\Gamma_1(N)$ is connected.

Proof. Let $x, y \in V(\Gamma_1(N))$. Since $x^n = 0$, $x^{n-1} \in \text{ann}(x)$ and $y^{n-1} \in \text{ann}(y)$. If $\text{ann}(x) \cap \text{ann}(y) = \{0\}$, the edge xy exists in $\Gamma_1(N)$. If $\text{ann}(x) \cap \text{ann}(y) = \{0\}$ consider the product $x^{n-1}y^{n-1} \in N$. If $x^{n-1}y^{n-1} = 0$, then $x^{n-1}y^{n-2} \in \text{ann}(y)$ and $x^{n-2}y^{n-1} \in \text{ann}(x)$. We have $y^{n-1} \in \text{ann}(y), x^{n-2} \in N$, by the property of ideal, $x^{n-2}y^{n-1} \in \text{ann}(y)$. That is, $x^{n-2}y^{n-1} \in \text{ann}(x) \cap \text{ann}(y)$. In this case also the edge xy exists. If $x^{n-1}y^{n-1} \neq 0$, then $x(x^{n-1}y^{n-1}) = x^ny^n = 0$ and $y(x^{n-1}y^{n-1}) = x^{n-2}y^{n} = 0$ which implies that $x^{n-2}y^{n-1} \in \text{ann}(x) \cap \text{ann}(y)$ and hence, the edge xy exists. Since x and y are arbitrary, $\Gamma_1(N)$ is connected.

Theorem 2.8. If $\Gamma_1(N)$ is connected and N has at most one nilpotent element of order ≥ 2, then $\text{diam}(\Gamma_1(N)) \leq 3$.

Proof. Let x and y be two distinct vertices in $\Gamma_1(N)$. If $\text{ann}(x) \cap \text{ann}(y) = \{0\}$, then the edge xy exists, and in this situation $d(x, y) = 1$.

If $\text{ann}(x) \cap \text{ann}(y) = \{0\}$, then three cases may arise.

Case (i). $x^2 = 0, y^2 = 0$.

If $xy = 0$, then $x \in \text{ann}(y)$ together with $x^2 = 0$ implies $x \in \text{ann}(x)$ which gives $x \in \text{ann}(x) \cap \text{ann}(y)$ which is a contradiction to our assumption. Hence $xy \neq 0$. On the other hand $x(xy) = x^2y = 0$ and $y(xy) = xy^2 = 0$, which implies that $xy \in \text{ann}(x) \cap \text{ann}(y)$, which is a contradiction to $\text{ann}(x) \cap \text{ann}(y) = \{0\}$.

Case (ii). $x^2 = 0, y^2 \neq 0$.

As proved in Case (i), $xy \neq 0$. But $(xy)(xy) = x^2y^2 = 0$ implies $xy \in \text{ann}(x)$ and $x(xy) = x^2y = 0$ gives $xy \in \text{ann}(x)$. Hence $xy \in \text{ann}(x) \cap \text{ann}(y)$ so the edge xy exists.

Since $\text{ann}(y) \neq 0$ and $y^2 \neq 0$, there exist $b \neq y \in \text{ann}(y)$. Consider the product $bx \in N$. But $bx \neq 0$, for $b = 0$, then $b \in \text{ann}(x)$ which gives $b \in \text{ann}(x) \cap \text{ann}(y)$, which is not possible.

Again $(bx)y = x(by) = 0$ gives $bx \in \text{ann}(y)$ and $(bx)(by) = x^2by = 0$ gives $bx \in \text{ann}(xy)$. That is the edge xy exists. Hence a path xxy exists in $\Gamma_1(N)$. In this case $d(x, y) = 2$.

Case (iii). $x^2 \neq 0, y^2 = 0$. One can get proof as in the case (ii).

3 Annihilator graph-II of near-rings

In this section, we construct a new class of annihilator graphs denoted by $\Gamma_2(N)$ called as annihilator graph-II corresponding to the near-ring N. Some general properties satisfied by the graph are obtained and some comparisons with $\Gamma(N)$ are also studied.

We define the simple graph $\Gamma_2(N)$ with vertex set $\mathcal{Z}^*(N)$ of N and two distinct vertices x and y are adjacent in $\Gamma_2(N)$ if $\text{ann}(i) \subseteq \text{ann}(j)$ or $\text{ann}(j) \subseteq \text{ann}(i)$. We call $\Gamma_2(N)$ as the annihilator graph-II of the near-ring N.

Theorem 3.1. If N is a commutative near-ring, then $\Gamma_2(N)$ is a spanning subgraph of $\Gamma_1(N)$.

Proof. Since the vertex set of both $\Gamma_1(N)$ and $\Gamma_2(N)$ are same, we need only to consider only the edge sets of $\Gamma_1(N)$ and $\Gamma_2(N)$.

Let $e = xy \in E(\Gamma_2(N))$. Then $\text{ann}(x) \subseteq \text{ann}(y)$. Since $x, y \in \mathcal{Z}^*(N)$, $\text{ann}(x), \text{ann}(y) \neq \{0\}$. On the other hand $\text{ann}(x) \subseteq \text{ann}(y)$ or $\text{ann}(y) \subseteq \text{ann}(x)$ implies \text{ann}(x) \cap \text{ann}(y) \neq \{0\}$. It follows that $xy \in E(\Gamma_1(N))$.

Theorem 3.2. Let N be a commutative near-ring. If an edge $xy \in \Gamma_2(N)$, then $d(x, y) \leq 2$ in $\Gamma(N)$.

Proof. Suppose $e = xy \in E(\Gamma_2(N))$ and so $\text{ann}(x) \subseteq \text{ann}(y)$ or $\text{ann}(y) \subseteq \text{ann}(x)$. Without loss of generality, we may assume that $\text{ann}(x) \subseteq \text{ann}(y)$. Since $x \in \mathcal{Z}^*(N)$, we have $\text{ann}(x) \neq \{0\}$. From this we have that there exists an $n(\neq 0) \in \text{ann}(x)$ such that $nx = 0$. Since $\text{ann}(x) \subseteq \text{ann}(y)$, $n \in \text{ann}(y)$ and so $ny = 0$.

If $n = x$, then $xy = 0$. It follows $e = xy \in E(\Gamma(N))$ and so $d(x, y) = 1$ in $\Gamma(N)$.

If $n = y$, then $xy = 0$ which implies that $xy \in E(\Gamma(N))$, and hence theorem follows.

If $n \neq x$ and $n \neq y$, then $nx = 0$ and $ny = 0$ which implies that $x - n - y$ is a path in $\Gamma(N)$. From this we have that $d(x, y) \leq 2$. Hence in all the cases $d(x, y) \leq 2$.

\square
Theorem 3.3. The path of length two cannot be realized as $\Gamma_2(N)$ for some near-ring N.

Proof. If possible, let $Z^*(N) = \{i, j, k\}$ and assume $i - j = k$ be the path of length two viz., P_3, which is $\Gamma_2(N)$. By the definition, we have $\text{ann}(i) \subseteq \text{ann}(j)$ or $\text{ann}(j) \subseteq \text{ann}(i)$ and $\text{ann}(j) \subseteq \text{ann}(k)$ or $\text{ann}(k) \subseteq \text{ann}(j)$.

Case(i) Assume that $\text{ann}(i) \subseteq \text{ann}(j)$ and $\text{ann}(j) \subseteq \text{ann}(k)$. Then $\text{ann}(i) \subseteq \text{ann}(k)$, which implies i and k are adjacent in $\Gamma_2(N)$, which is not possible.

Case(ii) $\text{ann}(i) \subseteq \text{ann}(j)$ and $\text{ann}(k) \subseteq \text{ann}(j)$. Then it follows that $\text{ann}(i) \cup \text{ann}(k) \subseteq \text{ann}(j)$. Since $\text{ann}(i) \neq \{0\}$, assume that $n(\neq 0) \in \text{ann}(i)$. Then $ni = 0$ and by assumption, $n \in \text{ann}(j)$. That is $nj = 0$, which implies $n(i + j) = 0$, i.e., $i + j$ is a zero divisor.

If $i + j = 0$ then $i = -j$ and hence $\text{ann}(i) = \text{ann}(j)$. Then $\text{ann}(i) = \text{ann}(j)$ and $\text{ann}(k) \subseteq \text{ann}(i)$ implies i is adjacent to k, which is not possible.

If $i + j \neq 0$, then $i + j$ is a non-zero zero divisor. So the only possibility is $i + j = k$. But then $nk = n(i + j) = ni + nj = 0$. That is, $r \in \text{ann}(k)$. Since n is arbitrary, $\text{ann}(i) \subseteq \text{ann}(k)$.

That is, i and k are adjacent, which is not possible.

The remaining cases reduce to the cases similar to (i) or (ii). \hfill \Box

Theorem 3.4. Every simple graph with order less than or equal to three (except P_3) can be realized as $\Gamma_2(N)$ for some commutative near-ring N.

Proof. We know that there are only five non-isomorphic simple graphs of order less than or equal to three other than P_3. The existence of such near-rings are listed below:

$K_1 = \Gamma_2(\mathbb{Z}_4), 2K_1 = \Gamma_2(\mathbb{Z}_2 \times \mathbb{Z}_2), K_2 = \Gamma_2(\mathbb{Z}_2), K_1 \cup K_2 = \Gamma_2(\mathbb{Z}_2)$ and $K_3 = \Gamma_2(\mathbb{Z}_2[^{x, y}]^{x, y})$. \hfill \Box

Remark 3.5. The proof of the theorem reveals that non-isomorphic near-rings may have isomorphic graphs.

4 Annihilator graph-III of near-rings

In this section, we define another class of annihilator graphs of near-rings. This notion extends the annihilator graph defined by Badawi [1]. This graph is denoted by $\Gamma_3(N)$. The annihilator graph $\Gamma_3(N)$ for a near-ring N is the (undirected) graph $\Gamma_3(N)$ with vertices $Z(N)^*$ and two distinct vertices x and y are adjacent if and only if $\text{ann}(xy) \neq \text{ann}(x) \cup \text{ann}(y)$.

Remark 4.1. Note that each edge (path) of $\Gamma(N)$ is an edge (path) of $\Gamma_3(N)$. For let $e = xy \in E(\Gamma(N))$. From this, we have $xy = 0$ and $\text{ann}(xy) \neq \text{ann}(x) \cup \text{ann}(y)$. Hence $xy \in \Gamma_3(N)$.

Lemma 4.2. Let N be a commutative near-ring. Then the following are hold.

(i) Let x, y be distinct elements of $Z(N)^*$. Then $x - y$ is not an edge of $\Gamma_3(N)$ if and only if $\text{ann}(xy) = \text{ann}(x)$ or $\text{ann}(xy) = \text{ann}(y)$;

(ii) If $x - y$ is an edge of $\Gamma(N)$ for some distinct $x, y \in Z(N)^*$, then $x - y$ is an edge of $\Gamma_3(N)$. In particular if P is a path in $\Gamma(N)$, then P is a path in $\Gamma_3(N)$;

(iii) If $x - y$ is not an edge of $\Gamma_3(N)$ for some distinct $x, y \in Z(N)^*$, then $\text{ann}(x) \subseteq \text{ann}(y)$ or $\text{ann}(y) \subseteq \text{ann}(x)$;

(iv) If $\text{ann}(x) \not\subseteq \text{ann}(y)$ and $\text{ann}(y) \not\subseteq \text{ann}(x)$ for some distinct $x, y \in Z(N)^*$, then $x - y$ is an edge of $\Gamma_3(N)$;

(v) If $d_{\Gamma(N)}(x, y) = 3$ for some distinct $x, y \in Z(N)^*$, then $x - y$ is an edge of $\Gamma_3(N)$;

(vi) If $x - y$ is not an edge of $\Gamma_3(N)$ for some distinct $x, y \in Z(N)^*$, then there exists $w \in Z(N)^* \setminus \{x, y\}$ such that $x - w - y$ is a path in $\Gamma(N)$ and hence $x - w - y$ is also a path in $\Gamma_3(N)$.

Proof. (i) Suppose that $x - y$ is not an edge of $\Gamma_3(N)$. By definition, $\text{ann}(xy) = \text{ann}(x) \cup \text{ann}(y)$. Since $\text{ann}(xy)$ is a union of two ideals, we have, $\text{ann}(xy) = \text{ann}(x)$ or $\text{ann}(xy) = \text{ann}(y)$. Conversely, suppose that $\text{ann}(xy) = \text{ann}(x)$ or $\text{ann}(xy) = \text{ann}(y)$. Then $\text{ann}(xy) = \text{ann}(x) \cup \text{ann}(y)$ and thus $x - y$ is not an edge of $\Gamma_3(N)$.
(ii) Suppose $x - y$ is an edge of $\Gamma(N)$ for some distinct $x, y \in Z(N)^*$. Then $xy = 0$ and hence $\text{ann}(xy) = N$. Since $x \neq 0$ and $y \neq 0$, $\text{ann}(x) \neq N$ and $\text{ann}(y) \neq N$. Thus $x - y$ is an edge of $\Gamma_3(N)$. In particular statements is clearly true from this.

(iii) Suppose $x - y$ is not an edge of $\Gamma_3(N)$ for some distinct $x, y \in Z(N)^*$. Then $\text{ann}(x) \cup \text{ann}(y) = \text{ann}(xy)$. Since $\text{ann}(xy)$ is a union of two ideals, we have $\text{ann}(x) \subseteq \text{ann}(y)$ or $\text{ann}(y) \subseteq \text{ann}(x)$.

(iv) This statement is trivial consequence of (iii).

(v) Suppose that $d_{\Gamma_3(N)}(x, y) = 3$ for some distinct $x, y \in Z(N)^*$. Then $\text{ann}(x) \not\subseteq \text{ann}(y)$ and $\text{ann}(y) \not\subseteq \text{ann}(x)$. Hence $x - y$ is an edge of $\Gamma_3(N)$ by (iv).

(vi) Suppose that $x - y$ is not an edge of $\Gamma_3(N)$ for some distinct $x, y \in Z(N)^*$. Then there is a $w \in \text{ann}(x) \cup \text{ann}(y)$ such that $w \neq 0$ by (iii). Since $xy \neq 0$, we have $w \in Z(N)^* \setminus \{x, y\}$. Hence $x - w - y$ is a path in $\Gamma(N)$ and thus $x - w - y$ is also a path in $\Gamma_3(N)$ by (iii).

In view of Lemma 4.2, we have the following result.

Theorem 4.3. Let N be a commutative near-ring with $|Z(N)^*| \geq 2$. Then $\Gamma_3(N)$ is connected and $\text{diam}(\Gamma_3(N)) \leq 2$.

Lemma 4.4. Let N be a commutative near-ring and let x, y be distinct non zero elements. Suppose that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$. If there is a $w \in \text{ann}(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$, then $x - w - y$ is a path in $\Gamma_3(N)$ that is not a path in $\Gamma(N)$ and hence $C : x - w - y - x$ is a cycle in $\Gamma_3(N)$ of length three and each edge of C is not an edge of $\Gamma(N)$.

Proof. Suppose that $x - y$ is an edge in $\Gamma_3(N)$ that is not an edge in $\Gamma(N)$. Then $xy \neq 0$. Assume there exists a $w \in \text{ann}(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$. Since $y \in \text{ann}(wx) \setminus (\text{ann}(x) \cup \text{ann}(w))$, we conclude that $x - w$ is an edge of $\Gamma_3(N)$. Since $x \in \text{ann}(yw) \setminus (\text{ann}(y) \cup \text{ann}(w))$, we have that $y - w$ is an edge of $\Gamma_3(N)$. Hence $x - w - y$ is a path in $\Gamma_3(N)$. Since $xw \neq 0$ and $yw \neq 0$, we have $x - w - y$ is not a path in $\Gamma(N)$. It is clear that $C : x - w - y - x$ is a cycle in $\Gamma_3(N)$ of length three and each edge of C is not an edge of $\Gamma(N)$.

Theorem 4.5. Let N be a commutative near-ring. Suppose that $x - y$ is an edge of $\text{AG}(N)$ that is not an edge of $\Gamma(N)$ for some distinct $x, y \in Z(N)^*$. If $xy^2 \neq 0$ and $x^2y \neq 0$, then there is a $w \in Z(N)^*$ such that $x - w - y$ is a path in $\Gamma_3(N)$ that is not a path in $\Gamma(N)$ and hence $C : x - w - y - x$ is a cycle in $\Gamma_3(N)$ of length three and each edge of C is not an edge of $\Gamma(N)$.

Proof. Suppose that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$. Then $xy \neq 0$ and there is a $w \in \text{ann}(xy) \setminus (\text{ann}(x) \cup \text{ann}(y))$. We show $w \notin \{x, y\}$. Assume $w \in \{x, y\}$. Then either $x^2y = 0$ or $y^2x = 0$, which is a contradiction. Thus $w \notin \{x, y\}$. Hence $x - w - y$ is the desired path in $\Gamma_3(N)$ by Lemma 4.4.

Corollary 4.6. Let N be a reduced commutative near-ring. Suppose that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$ for some distinct $x, y \in Z(N)^*$. Then there is a $w \in \text{ann}(xy) \setminus \{x, y\}$ such that $x - w - y$ is a path in $\Gamma_3(N)$ that is not a path in $\Gamma(N)$ and $\Gamma_3(N)$ contains a cycle C of length 3 such that at least two edges C are not the edges of $\Gamma(N)$.

Proof. Suppose that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$ for some distinct $x, y \in Z(N)^*$. Since N is reduced, we have $(xy)^2 \neq 0, \in \Gamma$. This implies $x^2y \neq 0$ and $xy^2 \neq 0$. Thus the claim is now clear by Theorem 4.5.

Corollary 4.7. Let N be a reduced commutative near-ring and suppose that $\Gamma_3(N) \neq \Gamma(N)$. Then $\text{gr}(\Gamma_3(N)) = 3$, moreover, there is a cycle C of length 3 in $\Gamma_3(N)$ such that at least two edges of C are not the edges of $\Gamma(N)$.

Proof. Since $\Gamma_3(N) \neq \Gamma(N)$, there are some distinct $x, y \in Z(N)^*$ such that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$. Since N is reduced, we have $(xy)^2 \neq 0, \in \Gamma$. This implies $x^2y \neq 0$ and $xy^2 \neq 0$. Thus the claim is now clear by Theorem 4.5.

Theorem 4.8. Let N be a commutative near-ring and suppose that $\Gamma_3(N) \neq \Gamma(N)$ with $\text{gr}(\Gamma_3(N)) \neq 3$. Then there are some distinct $x, y \in Z(N)^*$ such that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$ and there is no path of length 2 from x to y in $\Gamma(N)$.
Proof. Since $\Gamma_3(N) \neq \Gamma(N)$, there are some distinct $x, y \in Z(N)^*$ such that $x - y$ is an edge of $\Gamma_3(N)$ that is not an edge of $\Gamma(N)$. Assume that $x - w - y$ is a path of length 2 in $\Gamma(N)$. Then $x - w - y$ is a path of length 2 in $\Gamma_3(N)$ by Lemma 4.2(i). Therefore $x - w - y - x$ is a cycle of length 3 in $\Gamma_3(N)$ and hence $gr(\Gamma_3(N)) = 3$, a contradiction. Thus there is no path of length from x to y in $\Gamma(N)$.

Lemma 4.9. Let N be a reduced near-ring that is not an gamma near-integral domain and let $z \in Z(N)^*$. Then

(i) $ann(x) = ann(z^n)$ for each positive integer $n \geq 2$;
(ii) If $c + z \in Z(N)$ for some $c \in ann(z) \setminus \{0\}$, then $ann(z + c) \subset ann(z)$. In particular if $Z(N)$ is an ideal of N and $c \in ann(x) \setminus \{0\}$, then $ann(z + c)$ is properly contained in $ann(z)$.

Proof. (i) Let $n \geq 2$. It is clear that $ann(z) \subseteq ann(z^n)$. Let $a \in ann(z^n)$. Since $fz^n = 0$ and N is reduced, we have $fz = 0$. Thus $ann(z^n) = ann(z)$.

(ii) Let $c \in ann(z) \setminus \{0\}$ and suppose that $c + z \in Z(N)$. Since $z^2 \neq 0$, we have $c + z \neq 0$ and hence $c + z \in Z(N)^*$. Since $c \in ann(z)$ and N is reduced, we have $c \not\in ann(c + z)$. Hence $ann(c + z) \neq ann(z)$. Since $ann(c + z) \subseteq ann(z(c + z)) = ann(z^2)$ and $ann(z^2) = ann(z)$, by(i), it follows that $ann(c + z) \subset ann(z)$.

Theorem 4.10. Let N be a reduced near-ring with $|\text{Min}(N)| \neq 3$ (possibly $\text{Min}(N)$ is infinite). Then $\Gamma_3(N) \neq \Gamma(N)$ and $gr(\Gamma_3(N)) = 3$.

Proof. If $Z(N)$ is an ideal of N, by Theorem 4.2, $\Gamma_3(N) \neq \Gamma(N)$. Hence assume that $Z(N)$ is not an ideal of N. Since $|\text{Min}(N)| \neq 3$, we have diam($\Gamma(N)) = 3$ and thus $\Gamma_3(N) \neq \Gamma(N)$ by Theorem 4.2. Since N is reduced and $\Gamma_3(N) \neq \Gamma(N)$, we have $gr(\Gamma_3(N)) = 3$.

Theorem 4.11. Let N be a reduced near-ring that is not an gamma near-integral domain. Then $\Gamma_3(N) = \Gamma(N)$ if and only if $|\text{Min}(N)| = 2$.

Proof. Suppose that $\Gamma_3(N) = \Gamma(N)$. Since N is a reduced near-ring that is not an gamma near-integral domain $|\text{Min}(N)| = 2$ by Theorem 4.5.

Conversely, suppose that $|\text{Min}(N)| = 2$. Let P_1, P_2 be the minimal prime ideals of N. Since N is reduced, we have $Z(N) = P_1 \cup P_2$ and $P_1 \cap P_2 = \{0\}$. Let $a, b \in Z(N)^*$. Assume that $a, b \in P_1$. Since $P_1 \cap P_2 = \emptyset$, neither $a \not\in P_2$ nor $b \not\in P_2$ and thus $ab \not\in P_1$. Since $P_1 \subseteq P_1 \cap P_2 = \emptyset$, it follows that $ann(ab) = ann(a) \cup ann(b)$. Thus $a - b$ is not an edge of $\Gamma_3(N)$.

Similarly, if $a, b \in P_2$, then $a - b$ is not an edge of $\Gamma_3(N)$. If $a \in P_1, b \in P_2$, then $ab = 0$ and thus $a - b$ is an edge of $\Gamma_3(N)$. Hence each edge of $\Gamma_3(N)$ is an edge of $\Gamma(N)$ and therefore $\Gamma_3(N) = \Gamma(N)$.

For the remainder of this section, we study the case when N is non reduced.

Theorem 4.12. Let N be a non reduced near-ring with $|\text{Nil}(N)^*| \geq 2$ and let $\Gamma_3(N)$ be the (induced) sub graph of $\Gamma_3(N)$ with vertices $\text{Nil}(N)^*$. Then $\Gamma_3(N)$ is complete.

Proof. Suppose there are non zero distinct elements $a, b \in \text{Nil}(N)$ such that $ab \neq 0, \in \Gamma$. Assume that $ann(ab) = ann(a) \cup ann(b)$. Hence $ann(ab) = ann(a)$ or $ann(ab) = ann(b)$. Without loss of generality, we may assume that $ann(ab) = ann(a)$. Let n be the least positive integer such that $b^n = 0$. Suppose that $ab^k \neq 0$, for each $k, 1 \leq k \leq n$. Then $b^{n-1} \in ann(ab) \setminus ann(a)$, a contradiction. Hence assume that $\ell, 1 \leq \ell \leq n$ is the least positive integer such that $ab^\ell = 0$. Since $ab^{\ell - 1} \neq 0, 1 < i < n$, we have $b^{\ell - 1} \in ann(ab) \setminus ann(a)$, a contradiction. Thus $a - b$ is an edge of $\Gamma_3(N)$.

Theorem 4.13. Let N be a non reduced near-ring with $|\text{Nil}(N)^*| \geq 2$ and let $\Gamma_3(N)$ be the induced sub graph of $\Gamma(N)$ with vertices $\text{Nil}(N)^*$. Then $\Gamma_3(N)$ is complete if and only if $\text{Nil}(N)^2 = 0$.

Proof. If $\text{Nil}(N)^2 = \{0\}$, then it is clear that $\Gamma_3(N)$ is complete. Conversely assume that $\Gamma_3(N)$ is complete. We need only show that $w^2 = 0$ for each $w \in \text{Nil}(N)^*$. Let $\in \text{Nil}(N)^*$ and assume that $w^2 \neq 0$. Let n be the least positive integer such that $w^n = 0$. Then $n \geq 3$. Thus $w|w^{n-1} + w| = 0$ and $w^n = 0$. From these, we have $w^2 = 0$, which is a contradiction. Thus $w^2 = 0$ for each $w \in \text{Nil}(N)$.
Theorem 4.14. Let N be a near-ring such that $\Gamma_3(N) \neq \Gamma(N)$. Then the following statements are equivalent:

(i) $\Gamma(N)$ is a star graph;

(ii) $\Gamma(N) = K_{1,2}$;

(iii) $\Gamma_3(N) = K_3$.

Proof. (i) \implies (ii). Since $\Gamma(N)$ is a star graph, $\text{gr}(\Gamma(N)) = \infty$ and $\Gamma_3(N) \neq \Gamma(N)$. From Theorem 4.10, we have N is non reduced and $|Z(N)| \geq 3$. Since $\Gamma(N)$ is a star graph, there are two sets A, B such that $Z(N)^* = A \cup B$ with $|A| = 1$, $A \cap B = \emptyset$, $AB = \{0\}$ and $b_1b_2 \neq 0$ for every $b_1, b_2 \in B$. Since $|A| = 1$, we may assume that $A = \{w\}$ for some $w \in Z(N)^*$. Since each edge of $\Gamma(N)$ is an edge of $\Gamma_3(N)$ and $\Gamma_3(N) \neq \Gamma(N)$, there are some $x, y \in B$ such that xy is an edge of $\Gamma(N)$, but not an edge of $A\mathcal{G}(N)$. Since $\text{ann}(c) = \emptyset$ for each $c \in B$ and $\text{ann}(xy) \neq \text{ann}(x) \cup \text{ann}(y)$. From this we have $\text{ann}(xy) \neq w$. Thus $\text{ann}(xy) = B$ and $xy = w$. Since $A = \{xy\}$ and $AB = \{0\}$, we have $(xy)x = x^2y = 0$ and $(xy)y = y^2x = 0$. Now we show that $B = \{x, y\}$ and hence $|B| = 2$. Thus assume there is an $c \in B$ such that $c \neq x$ and $c \neq y$. From this we set $wc = yc = 0$.

We claim that $(xc+xy) \neq x$ and $(xc+xy) \neq xy$ (note that $xy = w$). Suppose that $(xc+xy) = x$. Then $(xc+xy)y = xcy + xy^2 = 0$ and $xy = 0$, a contradiction. Hence $x \neq (xc + xy)$. Since $x, c \in B$, we have $xc \neq 0$ and thus $(xc + xy), xy$ are distinct elements of $Z(N)^*$. Since $x^2y = 0$ and $y \in B$ either $x^2 = 0$ or $x^2 = xy$ or $x^2 = y$. Suppose that $x^2 = y$. Since $xy = w \neq 0$. We have $xy = x(x^2) = x^3 = w \neq 0$. Since $x^2y = 0$, we have $x^2 = 0$. Since $x^2 = 0$, and $x^2 \neq 0$, we have x^2, x^3, x^4 are distinct elements of $Z(N)^*$, and thus $x^2 - x^3 - x^4 + x^3 - x^2$ is a cycle of length three in $\Gamma(N)$, which is a contradiction. Hence we assume that either $x^2 = 0$ or $x^2 = xy = w$. In both cases, we have $x^2c = 0$. Since $x, (xc + xy), xy$ are distinct elements of $Z(N)^*$. We have $xy^2 = xy^2 = x^2c = 0$. Now we have $x - (xc + xy) - xy - x = s$ is a cycle of length three in $\Gamma(N)$, again a contradiction. Thus $B = \{x, y\}$ and $|B| = 2$. Hence $\Gamma(N) = K_{1,2}$.

(ii) \implies (iii). Note that each edge of $\Gamma(N)$ is an edge of $\Gamma_3(N)$ and $\Gamma_3(N) \neq \Gamma(N)$. Hence from $\Gamma(N) = K_{1,2}$, we have that $\Gamma_3(N)$ must be K_3.

(iii) \implies (i). Since $|Z(N)| = 3$, $\Gamma(N)$ is connected and $\Gamma_3(N) \neq \Gamma(N)$ exactly one edge of $A\mathcal{G}(N)$ is not and edge of $\Gamma(N)$. Thus $\Gamma(N)$ is a star graph. \qed

References

Author information

T. Tamizh Chelvam, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
E-mail: tamche59@gmail.com

S. Rammurthy, Department of Mathematics, National Engineering College, Kovilpatti 628503, Tamil Nadu, India.
E-mail: chithiramdeep@yahoo.co.in

Received: December 7, 2015.

Accepted: February 22, 2016