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Abstract. Let R be a commutative ring with nonzero unity. L&{R) be the set of all zero-
divisors of R. The total graph of?, denoted byl'(I'(R)), is the simple graph with vertex sét
and two distinct vertices andy are adjacent if their sum + y € Z(R). Several authors pre-
sented various generalizations (" (R)). This article surveys research conducted @h(R))
and its generalizations. A historical review of literature is given. Furthepgrties ofl'(I' (R))
are also studied. Many open problems are presented for furthercbse

1 Introduction

The study of graphs associated with algebraic structures dates back3tavh&n Arthur Cayley
introduced Cayley Graph for finite groupgk?]. In 1988 Beck [L8] defined the zero-divisor graph
of a commutative ring?. The vertices of Beck’s graph are all elementsioivhere two vertices
are adjacent if their product is a zero divisor®f Anderson and Livingstonlfl] modified the
definition of zero divisor graph by restricting the vertices to the non-zero divisors of the
ring R. This graph is denoted Hy(R). The reader may refer t@] and [23] for survey on the
zero divisor graphs. The interplay between ring theory and graphthes been the impetus to
define and investigate other many graphs associated with algebraic igsuctu

Twenty years later after Beck’s graphs, Andersen and Bad@win{roduced a new graph
associated with a commutative riigwith a non-zero unity. They called this graph the total
graph ofR.

Definition 1.1.[8] Let R be a commuatative ring with a non-zero unity, #tR) be the set of
all zero divisors inR. The total graph of? is the simple graph with vertex sgtand two distinct
verticesz andy are adjacent if their sum+ y € Z(R). This graph is denoted g (I (R)).

Several induced subgraphsifl (R)) are also studied in the literature. The graphs(Rég)),
Z(T'(R)), Zo(T (R)) andTp(T (R)) are defined to be the induced subgraphs @f(R)) with ver-
tex setsReg(R), Z(R), Z(R) \ {0} and R \ {0}, respectively, wherdeg(R) is the set of all
regular elements ak andZ(R) is the set of all zero divisors dt.

The definition off'(I" (R)) brings back to our minds the infamous Cayley gréjaty (R, Z(R)*),
whereZ(R)* = Z(R) \ {0}.

Definition 1.2.Let R be a commuatative ring with a non-zero unity, J&tR) be the set of all
zero divisors inR. The Cayley graphtay(R, Z(R)*), is the simple graph with vertex sBtand
two distinct vertices: andy are adjacent it —y € Z(R).

For more on Cayley graphs, the reader may refed 8). [Despite the similarity in the defi-
nitions of the graphd’(I'(R)) andCay(R, Z(R)*), the two graphs could have totally different
graph theoretic properties. 184], the authors characterize finite ringsfor which 7(I' (R)) is
isomorphic toCay(R, Z(R)*), in particular, they provide the following theorem.

Theorem 1.3.[34] Let R be a finite commutative ring. Then the two graphd (R)) and
Cay(R, Z(R)*) are isomorphic if and only if at least one of the following conditions is true:

() R=Ry1x Ry x...x R, k>1,where eaclR; is a local ring of an even order;

(i) R= Ry x Ry x...x Ry, k> 2, where eacl®; is a local ring and mif|R;/Z(R;)|,i =
1,2 ..k} =2
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In 2010, Ashrafi et.al13] introduced the unit graph of a ring, denoted by7(R), as follows.

Definition 1.4.[13] Let R be a commuatative ring with a non-zero unity, 1&tR) be the set of
all unit elements irk. The unit graph of? is the simple graph with vertex sgtand two distinct
verticesz andy are adjacent if their sum+ y € U(R). This graph is denoted by(R).

Clearly, if R is finite, thenkR = Z(R) U U(R), thus, in this case/(R) is the complement
of T(F(R)) denoted byI'(IF'(R)). However, if R is infinite thenG(R) is just a subgraph of
T(T'(R)). For any commutative ring, 7'(I' (R)) is investigated in22].

Since the definition of the total graph(l'(R)) in 2008, several groups of authors con-
ducted rigorous research to extend the results obtained] in fnore general contexts. In 2011,
Pucanowi'defined The total graph of a module as follows

Definition 1.5.[30] Let R be a commutative ring with identity, e/ be an R-module, let
T(M) ={m € M : rm = 0 for somer € R*} be the set of its torsion elements. The to-
tal graph of a module]'T (M), is defined to be the graph with vertex g¢tand two distinct
verticesmy, my € M are adjacent ifny +my € T'(M).

Observe thatif\/ = R, thenT' (M) = Z(R) and hence, the resultant graph will B (R)).
In 2012, Barati et al.J7] introduced the grapli g(R) associated to a ring and a multi-
plicatively closed subset of R (i.e, S is closed under multiplication).

Definition 1.6.[17] The graphl” s(R) is defined to be the simple graph with all element&afs
vertices, and two distinct verticasandy of R are adjacent if and only if +y € S.

Obviously, bothZ(R) andU(R) are multiplicatively closed subsets & so if we takeS
to be Z(R), then we get the total graph &. Besides, ifS = U(R) then the resultant graph
will be G(R). Thus, in this sensé,s(R) generalizes both the total and the unit graph&ofA
multiplicatively closed subset of R is called saturated ify € S implies thatz € S andy € S.

Let R be a commutative ring with non-zero identity. Liebe a proper ideal of:. Let S(I)
be the set of elements @t that are not prime td. An elementa € R is said to be prime to
Iif ar € I, for r € R implies thatr € I, see R4]. In 2012, Abbasi 2] presented another
generalization to the total graph in the following definition

Definition 1.7.[2] The total graph of a commutative ring with respect to proper idedlis the
graph whose vertices are all elementsiofind two distinct vertices,y € R are adjacent if
x+y € S(I). This graph is denoted B§(I" ;(R)).

In the this defintion, if we sef = {0}, thenT'(I';(R)) = T(I'(R)). The setS(I) is not in
general an ideal o. However, wherS(7) is an ideal ofR, then it is a prime ideal ofk. The
graphsS(I';(R)) and S(I';(R)) are defined to be the (induced) subgraphg'¢f ;(R)) with
vertex setsS(I), andR \ S(I) respectively.

Let R be a commutative ring with non-zero identity. A nonempty proper multiplieftiv
closed subset/ of R is said to be a multiplicative-prime subset Bfif ab € H for some
a,b € R, implies that either € H orb € H. In 2013, Anderson and Badawii(]] introduced the
generalized total graph as follows:

Definition 1.8.[10] let H be a multiplicative-prime subset of a commutative ridgthe gener-
alized total graph ok, denoted byGTx (R), is the graph with vertex sé&t(GTx(R)) = R and
edge set)(GTy(R)) = {zy : z,y € Randx +y € H, wherez # y}.

Note that wherd = Z(R), thenGTy (R) is justT(I'(R)). Moreover, ifH is the union of
all the maximal ideals ofz, thenGTy (R) is the unit graphG(R). If R is an integral domain,
thenT'(I'(R)) is the union of one copy ok; and copiesky ;. On the other hand, the graph
GTyu(R) for an integral domairR is much more interesting. However, as we will s€&; (R)
andT'(I' (R)) have many common structural properties as one may expectA letR, then
GTy(A) is defined to be the subgraph@f'y (R) induced by the sed.

One can easily see thaf is a multiplicative-prime subset ot if and only if R\ H is a
saturated multiplicatively closed subset/fOn the other hand, by Theorem 2, page 228] p
subsetS of R is saturated if and only iR \ S is a union of some prime ideals. Therefofgjs a
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multiplicative-prime subset aR if and only if A is a union of prime ideals. Observe thatiis
saturated thefi5(R) is the complement of the graghl’z\ s (R).

Other graphs which extend the concept of total graph include the L-totiphgof an L-
module over an L-commutative rind%|, the total torsion element graph of a moduleover a
commutative ringR [16], and The total graph of a module with respect to multiplicative-prime
subsets33].

2 Some Structural Properties

All total graphs of a commutative ring in this paper, exceptT (M) whose vertex set i3/,
have the same vertex sgt In each graph, two distinct verticasandy are adjacent if: + y
belongs to a particular subsgtof R. The study of each such graph breaks naturally into two
cases depending on whethEsatisfies a specific condition, the table below shows th& set
each graph and the corresponding conditiorfon

The study of depends on whether
T(F'(R)) Z(R) is an ideal or not
T (M) T(M) is a proper submodules or not
Is(R) S is an ideal or not
T(F(R)) S(I) is an ideal or not
GTy(R) H is a prime ideal or not

2.1 The Total GraphT'(I'(R))

Two main well known graphs reveals to be building blocks for the total lpfa@ (R)). A
complete graph on vertices is a graph in which each pair of distinct vertices are adjacent. this
graph is denoted bit,,. A complete bipartite graph is a graph whose vertices can be partitioned
into two subset$; andV, and two distinct vertices are adjacent if and only if one vertex belongs
to V1 and the other belongs 6. If |V1| = m and|V;| = n, this graph is denoted ki, ,,.

The study off'(I'(R)) falls naturally into two cases depending on whetfiéR) is an ideal of
R or not. If Ris a commutative ring such that( R) is an ideal ofk. Then, clearly, in this case,
Z(T'(R)) is a complete (induced) subgraph®fl (R)). Andersen and Badaw8] proved that
RedT (R)) is the union of complete graphs if2 Z(R), otherwise, Red (R)) is the union of
complete bipartite graphs. Summing up, they obtained a perfect desergftio( (R)), when
Z(R) is an ideal ofR, in the following theorem

Theorem 2.1.[8] Let R be a commutative ring such that R) is an ideal ofR. Let|Z(R)| = A,
|R/Z(R)| = p. Then

o
K, if2 e Z(R),
i=1

1=

T(F(R)) = s
K)\U<‘U K)\’)\>, IfZGR\Z(R)

=1

A graph is connected when there is a path between every pair of its veiggaph that is
not connected is disconnected. A graph with no or one vertex is comhekiteedgeless graph
with two or more vertices is totally disconnected.

Theorem 2.2.[8] Let R be a commutative ring such th&{ R) is an ideal ofk. Then
(i) Regl(R))is complete if and only if eitheR/Z(R) = Z, or R = Zs.
(i) Reg(I'(R)) is connected if and only if eithe®/Z (R) = Z, or R/Z(R) = Zs.
(iii) Reg(I'(R)) is totally disconnected if and only & is an integral domain with chaR) = 2.

Theorem 2.3.[8] Let R be a commutative ring such thai(R) is an ideal of R. Then the
following statements are equivalent.
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(i) Reg(R)) is connected.
(i) Eitherz +y e Z(R) orz —y € Z(R) for everyz,y € Req R).

(iii) Either x +y € Z(R) orxz + 2y € Z(R) for everyz,y € Req R). In particular, either
2r € Z(R) or 3z € Z(R) (but not both) for every: € Req R).

(iv) EitherR/Z(R) = Zy0r R/Z(R) = Z3

The case whe (R) is not an ideal of is much more complicated. In this casg (R))
is connected and is not disjoint from REGR)) [8].

Theorem 2.4.[8] Let R be a commutative ring such that(R) is not an ideal ofR. Then
Red"(R)) is connected implies th&t(I' (R)) is connected.

Theorem 2.5.[31] Let R be a commutative ring such that(R) is not an ideal ofR, then
T(I (R[z])) is connected if and only if'(I' (R)) is connected.

We say that a ring? is generated by a subsEtof R, denoted by(T') = Rif R = (t1,...,t,)
for somety, ...,t, € T.

Theorem 2.6.[8] Let R be a commutative ring such thaf R) is not an ideal of?, thenT (I' (R))
is connected if and only ifZ(R)) = R. In particlar, if R is a finite ring andZ(R) is not an ideal
thenT' (I (R)) is connected.

Theorem 2.7.[28] Let R be a commutative ring, then for any vertexc V(T (T'(R))),

|Z(R)|—1, if2e€ Z(R)orue Z(R);
|Z(R)| otherwise.

dequ) = {

A regular graph is a graph where each vertex has the same numbeighbars; i.e. every
vertex has the same degree. Theogirshows that7' (I (R)) is regular if and only if 2= Z(R).

Theorem 2.8.[29] Let R be a finite ring, then
(i) Reg(R)) is aregular graph.
(i) Z(r(R))isregular graph if and only if2 is a local ring.

If G has a walk that traverses each edge exactly once, goes throughtiekseand ends
at the starting vertex, thef is called Eulerian. Equivalently, a nontrivial, connected gréph
is Eulerian if and only if every vertex off has even degree. An Eulerian trail of a gragh
is an open trail containing every edge®@f A graph containing an Eulerian trail is said to be
traversable. Or equivalently, a connected grépis traversable if and only if exactly 2 vertices
of G have odd degree. Furthermore, each Eulerian trail begins at one of these odd vertices
and ends at the other. A graph is called Hamiltonian if there exists a cyctaiciog every
vertex.

Theorem 2.9.[6] Let R be a finite commutative rings such thatR) is not an ideal. Then the
following hold

(i) T(r(R)is a Hamiltonian graph.
(i) Reg(l'(R)) is a Hamiltonian graph if and only if R is isomorphic to none of the following
rings: Zzn+1, Zzn X Zg, Zzn X g, Zzn X Zz[l’}/(mz)

Asir and Chelvam14] relaxed the conditions so th@{ " (R) is a Hamiltonian graph in the
following theorem

Theorem 2.10[14] If R is a commutative ring and diaf@' (" (R))) = 2, thenT'(I' (R) is Hamil-
tonian.

Corollary 2.11.[14] If R s finite ring, thenZ'(I' (R)) is Hamiltonian.



112 Khalida Nazzal

Corollary 2.12.[14] If R is an Artinian ring such thaZ (R) is not an ideal, therd'(I'(R)) is
Hamiltonian.

Theorem 2.13[29] Let R be a finite local ring, then
(i) T(T'(R)) is non-Eulerian.

(i) Reg(I(R)) is Eulerian if and only ifR = Z,.

(i) Z(F(R)) is Eulerian if and only if R| is odd orR is a field.

Theorem 2.14[14] If R is a commutative ring such that R) is not an ideal of?, then
(i) T(T'(R)) is Eulerian if and only if 2= Z(R) and|Z(R)| is odd.

(i) T(T(R)) is Eulerian if and only if 2= Z(R) and|Reg R)| is even.

The next theorem, which is due to Shekarriz et 34l [characterizes Eulerigh(I" (R)) when
R is afinite ring.

Theorem 2.15[34] Let R be a finite ring, then the gragh(I' (R)) is Eulerian if and only ifR
is a product of two or more fields of even orders.

Theorem 2.16.[29] Let R be a finite ring, then

(i) Regl'(R)) is Eulerian if and only ifR = Z, or R is a product of two or more fields of even
orders.

(i) Z(I'(R)) is Eulerian if and only ifR is a field or|R| is odd.
Let R be a finite nontrivial ring. Since a traversal graph has exactly two vert¢edd

degree, thefl’(I'(R)) could not be regular and hen(#| is odd. By Lemma 3.4 of]9], | Z(R)|
is odd andU (R)| is even. Thus we get the following theorem.

Theorem 2.17 Let R be a finite nontrivial ring Then
(i) T(r(R)) is traversable graph if and only|iR| is odd andU (R)| = 2
(i) Reg(l'(R)) is never traversable.

A graph@ is said to be locally connected if for alle V(G), the neighborhood of, N (v),
induces a connected graphdh

Theorem 2.18[29] Let R be a ring andZ(R) be an ideal ofr.
(i) Z(I'(R)) is locally connected graph.

(i) Reg(I'(R)) andT(I'(R)) are locally connected graphs if and only i£2Z(R), or R is an
integral domain.

The next theorem considers the case wRea a product of two rings.

Theorem 2.19[29] Let Ry and R, be two rings, and? = R; x R,. ThenT'(I'(R)) is locally
connected if and only if eitheR; or R, is not an integral domain.

If Ris alocal ring, therZ(R) is an ideal and hencg(I"(R)) is a complete graph which is
obviously locally connected. WheR is a product of two rings, we have the following theorem.

Theorem 2.20[29] Let R, and R, be two rings, and? = R; x Rp. ThenZ(I'(R)) is locally
connected if and only if eitheR; or R is not an integral domain.

Next we will investigate when RéG(R)) is locally connected. IfR is local ring, then
Redl(R)) is locally connected ifR is an integral domain or 2 Z(R). If R is a product
of two rings, then we have

Theorem 2.21[29] Let R = R; x Ry and 2 Req R). Then Regl (R)) is locally connected.
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Theorem 2.22[29] Let R be a product of two local ring®; and R, such that 2¢ Z(R) and
|Reg(R;)| > 2fori=12. Then Red (R)) is locally connected if and only iR; or R, is not
an integral domain.

Theorem 2.23[29] If R = N7 ;R;,n > 3, then Red (R)) is locally connected.
Theorem 2.24[29] Let R be an Artinian ring, then

(i) T(r'(R))is not locally connected if and only i is a local ring satisfying Z Reg(R) and
Ris not an integral domain dR = R; x Ry, where,R; and R, are both integral domains.

(it Z(F'(R)) is not locally connected if and only i is a product of two integral domains.

(iii) Reg(I'(R)) is not locally connected if and only i is a local ring satisfying 2 Redg R)
and R is not an integral domain dkR = Ry x Ry, 2 € Z(R), and|Red R;)| > 2 andR; is
an integral domain foi = 1, 2.

A graphG is called locallyH if for each vertexo € V(G), the subgraph induced by the set
of neighbors oy, N(v), is isomorphic toH .

Theorem 2.25[29] Let R be a finite ring. Then
(i) T(I'(R))is locally H if and only if | R| is even.
(i) Reg(l'(R)) is locally H.
(i) Z(F(R))islocally H if and only if R is a local ring.
Theorem 2.26.[9] Let R be a commutative ring
(i) If |R| <3, thenTy(I(R)) is connected,
(i) If |R| > 4, thenTyp(I(R)) is connected if and only if'(I' (R)) is connected.
(i) If Ris anon-reduced commutative ring. Th&§(I"(R)) is connected
(iv) If Ris areduced commutative ring witMin(R)| = 2. ThenZy(I'(R)) is not connected.

(v) If Ris areduced commutative ring that is not an integral domain. Téh(R)) is con-
nected if and only ifMin(R)| > 3.

2.2 The Total Graph of a ModuleTT' (M)
Theorem 2.27[30] Let R be a commutative ring with identity, Iét/ be ank-module. Then
(i) 7T (M) is complete if and only if'(M) = M.
(i) TT (M) is totally disconnected if and only i® has characteristic 2 and is torsion-free.
(iii) If 7(M) is a proper submodule @ff, thenTT (M) is disconnected.

Theorem 2.28[30] Let R be a commutative ring andl/ an R-module such thaf'(M) is a
proper submodule of/. |[T'(M)| = A and|M/T(M)| = u, then
"

U Ko, if2 € Z(R);
i=1

TF(JV[): /A;l
K)\U<U K)\’)\>, |f2¢Z(R)
i=1

1=

Theorem 2.29[30] Let M be anR-module such thaf’(1/) is not a submodule. Thefl (M)
is connected if and only i/ is generated by its torsion elements.

Theorem 2.30.[30] Let R be a commutative ring antff an R-module. If7T (R) is connected,
thenTT (M) is connected as well.

Theorem 2.31[30] Let R be a commutative ring ant an R-module. Ther?'T (M) is totally
disconnected if and only iR has characteristic 2 and is torsion-free.
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2.3 The Total GraphT's(R)

The following theorem is analogous to Theorem 2.1.

Theorem 2.32[17] Suppose that is an ideal ofR with |S| = A and|R/S| = p, then

u -
K, if2ecs;
=1

1=

Ms(R)) = = '
KyuU KN)\ , IfZGR\S
=1

1=

Theorem 2.33[17] The graphl s(R) is complete if and only ifS = R or char(R) = 2 and
S =R\ {0}.

Theorem 2.34[17] Let R be a finite ring such thaR # Z3. Also, suppose that is a satu-
rated multiplicatively closed subset & Thenl s(R) is a forest if and only if it is a complete
matching.

Theorem 2.35[17] Let R = Ry X Ry X --- X Ry, where(R;, m;) is a finite local ring such that
R;/m; = Z,, and letS = 51 x Sy x - -- x Sy, be a saturated multiplicatively closed subsekof
Thenl g(R) is disconnected if and only if there existli # j < n such thatS; = U(R;) and
Sj = U(R;).

Theorem 2.36[17] Let S be a multiplicatively closed subset &f such thatS = —S. Then
Is(R) is connected if and only ifR, +) is generated by.

Theorem 2.37.[17] For an arbitrary saturated multiplicatively closed sulssef R, in the graph
I's(R), the following statements hold.

() If z € R\ S, thendeg(x) =|S|.
(i) If2 ¢ S, thendeg(x) = |S| for all x € R.

2.4 The Total GraphTT' 1 (R)

The next two theorems illustrate the relation betw&¢h;(R)) andT' (I (R/I)).

Theorem 2.38.[2] Let R be a commutative ring with the proper iddaland letz, y € R. Then

() If =+ I andy + I are (distinct) adjacent vertices (I (R/I)), thenz is adjacent ta, in
(T (R)).

(i) If x andy are (distinct) adjacent vertices il ;(R)) andz + I # y + I thenxz + I is
adjacentta) + I'inT(F(R/I)).

(iii) If zis adjacent toyin T(I';(R)) andz + I = y + I, then 2,2y € S(I) and all distinct
elements of: + I are adjacent if'(I';(R)).

Corollary 2.39.[2] Let R be a commutative ring with the proper idgalThenT' (' ;(R)) con-
tains|I| disjoint subgraphs isomorphic ®(I" (R/I)).

Theorem 2.40[2] Let R be a commutative ring with the proper iddalThen
(i) S(r;(R))is complete (connected) if and only4f(I' (R/I)) is complete (connected).

(i) If S(T;(R))is complete, thetkeg(I (R/I)) is complete.

(i) S(T';(R))is connected if and only ikeg(I(R/I)) is connected.

Theorem 2.41.[2] Let R be a commutative ring with the proper idgauch thatS(7) is an ideal
of R. Then

(i) S(T;(R))is acomplete (induced) subgrapkil;(R)) and is disjoint fromS(I"';(R)).
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(i) The (induced) subgrapls(I";(R)) with verticesv/T is complete and each vertex of this
subgraph is adjacent to each vertexSof ;(R)) and is disjoint fromS(I' ;(R)).

Theorem 2.42.[2] Let R be a commutative ring with the proper idgauch thatS(7) is an ideal
of R. Then the following statements are equivalent.

(i) S(r';(R)) is connected.
(i) Eitherz +ye S(I)orz —y e S(I)forallz,y € R\ S(I).
(iii) Either z +y € S(I) orx + 2y € S(I) (but not both) for alke,y € R\ S(I). In particular,
either 2z € S(I)or 3z € S(I)forallz € R\ S(I).

Theorem 2.43.[2] Let R be a commutative ring with the proper iddaduch thatS(7) is an ideal
of R. let|S(I)| = Xand|R/S(I)| = u Then
p—1
3 U K, if2eS);
S(ri(R) = § ik
UK)\J\? |f2€R\S(I)
=1

L
N

Theorem 2.44.[2] Let R be a commutative ring with the proper idgauch thatS(7) is an ideal
of R. Then

(i) S(T;(R))is complete if and only if eitheR/S(I) = Z, 0or R = Z3

(i) S(r;(R)) is connected if and only if eitheR/S(I) = Z, or R/S(R) = Zs

(iiy S(T;(R))(and henc&'(I';(R))andS (I ;(R)) s totally disconnected if and only if = {0}
andR is an integral domain with chéR) = 2.

Theorem 2.45[2] Let R be a commutative ring with the proper iddasuch thatS(7) is not an
ideal of R.

(i) S(r';(R)) is connected.
(i) Some vertex of5(I';(R)) is adjacent to a vertex &f(I";(R)). In particular, the subgraphs

S(T;(R)) andS(T ;(R)) are not disjoint.

(iii) If S(I';(R)) is connected, the? (I";(R)) is connected.

2.5 The Generalized Total GraphG Ty (R)

Theorem 2.46.[10] Let H be a prime ideal of a commutative ririy ThenGTy(H) is a com-
plete (induced ) subgraph 6f7'y (R) andGTx (H) is disjoint fromGTy (R \ H). In particular,
GTy(H) is connected and'T'y (R) is never connected.

The following theorem concerning the generalized total graph is anaddgotheoren.1

Theorem 2.47[10] Let H be a prime ideal of a commutative ritity Let |H| = A, |R/H| = p.
Then

1=

GTh(R) = st
K,\U(U K)\7,\>, IfZGR\H
i=1

(2

0
Ky, if2 e H;
=1

Theorem 2.48[10] Let H be a prime ideal of a commutative ritig
() Gu(R\ H) is complete if and only if eitheR/H = Z, or R = Z3.
(i) GTu(R\ H) is connected if and only if eitheR/H = Z, or R/H = Z3
(i) GTy(R\ H) is totally disconnected if and only i = {0} andchar(R) = 2.
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Theorem 2.49[10] Let H be a prime ideal of a commutative ririyy Then the following state-
ments are equivalent.

() GTg(R\ H) is connected.
(ii) Eitherx +y € Horxz —y € H foreveryz,y € R\ H.

(iii) Eitherz +y € H orxz + 2y € H for everyz,y € R\ H. In particular, either 2 € H or
3z € H (but not both) for every: € R\ H.

(iv) EitherR/H = Z, or R/H = Z3

Theorem 2.50[10] Let R be a commutative ring anl be a multiplicative-prime subset &f.
ThenGTy(R) is connected if and only ifH) = R.

Theorem 2.51[10] Let R be a commutative ring and be a multiplicative-prime subset &
that is not an ideal oR.

() GTy(H) is connected.

(i) Some vertex ofTy (H) is adjacent to a vertex 6¥1y (R\ H). In particular, the subgraphs
GTy(H)andGTy(R\ H) of GTy(R) are not disjoint.

(iii) If GTy(R\ H) is connected, theGTy (R) is connected.

Theorem 2.52[10] Let R be a commutative ring anH be a multiplicative-prime subset &t
that is not an ideal oR. ThenGTy (R) is connected ifand only ifH) = R (i.e. R = (z1, ..., 2)
for somezy, ..., 2z, € H. In particular, ifH is not an ideal of? and either dinfiR) = 0 (e.g.R is
finite) or R is an integral domain with difR) = 1, thenGTy (R) is connected.

Corollary 2.53.[10] Let R be a commutative ring and be a multiplicative-prime subset .
ThenGTy(R) is connected if and only ifH) = R.

3 Some Graph Invariants

For a connected graph, the distancel(u, v), between two verticeg andv is the minimum of
the lengths of all: — v paths ofG. The eccentricity of a vertexin G is the maximum distance
from v to any vertex inG. The radius ofG, rad(G), is the minimum eccentricity among the
vertices ofGG. The diameter of Gdiam(G), is the maximum eccentricity among the vertices of
G. The open neighborhood of a vertexn G is the setN(z) = {y : zy € E(G)} while the
closed neighborhood of a vertexn G is the setV[z] = N(z) U{x}. The girth of a graph is the
length of a shortest cycle contained in the graph. If the graph doesntatin any cycles (i.e. it's
an acyclic graph), its girth is defined to be infinity. LiRbe a commutative ring and y € R* be
distinct. We say that —a; —- - - —a,, —y is a zero-divisor path fromtoy if as, - -- ,a, € Z(R*)
anda;+a;1 € Z(R) forevery 0< i < n. letag = x anda,,+1 = y. We definelz (=, y) to be the
length of a shortest zero-divisor path franto y, dz(z,z) = 0 anddz(z,y) = oo if there is no
such path. Let diam(R) = sup{dz(x,y) : z,y € R*}. Thusdr(z,y) = dn(z,y) < dz(z,y),
for everyz,y € R*, wheredr(z,y) anddg,(z,y) denote the distance betweerandy in the
graphsIp(I'(R)) andT' (T (R)) respectively. We say that-a;—- - -—a,—y is aregular path from
ztoyif ai---a, € Req R)anda;+a;+1 € Z(R) forevery 0< i < n. Letag = z anda,+1 = y.
We definedieg(z, y) to be the length of a shortest regular path froro y, dreg(z, z) = 0 and
dreg(,y) = oo if there is no such path, and diagg{ R) = sup{dreg(z,y) : z,y € R*}. Then
dr(z,y) = dn(z,y) < dreg(z,y) for everyz,y € R*. For any commutative ring, we have
max{diam(Zo(I" (R))), diamRedT (R)))} < diameg(R).

3.1 The Total GraphT'(I'(R))
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If Z(R)is an ideal, then the precise descriptionTdf (R)) of Theorm2.1makes it an easy task
to characterize rings whose regular graphs, (R€g)), is connected, complete or even totally
disconnected. On the other hand, One may easily conclude the following

Theorem 3.1.[8] Let R be a commutative ring such th&{ R) is an ideal ofk. Then
(i) diam(Redgl'(R))) =0ifand only if R = Zj.
(i) diam(RegT(R))) = 1 if and only if eitherR/Z(R) = Z, andR % Z; or R = Zs.
(i) diam(Regl(R))) =2ifandonly if R/Z(R) = Z3z andR % Zs.
(iv) Otherwise, diamiReg (R))) = oo.
Theorem 3.2.[8] Let R be a commutative ring such th&{ R) is an ideal ofk. Then

(i) Let G be an induced subgraph of REGR)), and letz andy be distinct vertices of that
are connected by a pathd Then there is a path of length at most two betweemdy in
G. In particular, if Regl" (R)) is connected, then diaiRed ' (R))) < 2.

(i) Let z andy be distinct regular elements &fthat are connected by a pathzlf-y ¢ Z(R)
, thenz — (—z) —y andz — (—y) —y are paths of length two betweerandy in RegT (R)).

Theorem 3.3.[8], Let R be a commutative ring such thzit R) is not an ideal oz andT'(I' (R))
is connected, ifi is the least integer such th&t= (z, ..., z,,) for somezy, ..., z, € Z(R). then

(i) diam(T'(F'(R))) = n. In particular, ifR is finite, then dianiZ’ (I (R))) = 2.
(i) Ifdiam(7T'(F'(R))) = n, then dianjRegT (R))) > n — 2.
(i) diam(T'(F'(R))) =d(0,1).
Theorem 3.4.[31] Let R be a commutative ring such th&t R) is not an ideal of2 andT'(I' (R))

is connected, if: is the least integer such th&t= (z, ..., z,,) for somezy, ..., z, € Z(R). then
diam(T' (I (R[z]))) = n. In particular, ifR is finite, then dianir’ (I (R[z]))) = 2.

Corollary 3.5. [8] Let {R, }aca be a family of commutative rings witl\| > 2, and letR =
MaeaRo. ThenT (I'(R)) is connected with diafT’ (I (R))) = 2.

Akbari et. [6] studied the relation between the diameter of the total graph and the diameter
of the regular graph of a commutative Noetherian ring. for this purgbsg gave the following
theorem.

Theorem 3.6.[6] Let R be a commutative Noetherian ring. For any to two regular elments
andb, the distance betweenandb in ReqT'(R)) is equal to the distance betweerandb in
T(T(R)).

Corollary 3.7. [6] Let R be a commutative Noetherian ring such th&f (R)) is connected and
diam(T'(I' (R))) = n, then dianfRed" (R))) < n.

Combining part (ii) of Theorem 3.2 and Cor 3.7 , we get

Theorem 3.8.Let R be a commutative Noetherian ring such tidl (R)) is connected and
diam(T'(I'(R))) = n thenn — 2 < diam(Red ' (R))) < n.

Theorem 3.9.[31] Let R be a commutative ring such thaf R) is not an ideal o2 andT'(I' (R))
is connected. Then i is the least integer such th&t= (zy, ..., z,,) for somezy, ..., z, € Z(R).
Thenr(T(F'(R))) = n. In particular, ifR is finite, thenr(T'(F (R))) = 2.

The above results show that for a conneci&d (R)), if n is the least integer such that
R = (z1,...,2,) fOr somezy, ..., z, € Z(R), we have

(i) diam(7(T(R))) = r(T(T(R))) = n.
(ii) diam(7 (" (R[z]))) = r(T (T (R[z]))) = n.
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The center of~ is the set of all vertices aff with minimum eccentricity. A grapky is said
to be self centered if center) = G.

Theorem 3.10.[22] Let R be a finite commutative ring. TheR(I'(R)) is self centered if and
only if Z(R) is not an ideal of?.

Theorem 3.11[9] Let R be a commutative ring withR| > 2. Then dian(Tp(I'(R))) =
diam(7(T"(R)))

Theorem 3.12[9] Let R be a finite commutative ring. Then digay (I (R))) € {0,1,2,00}.
Moreover,

(i) Zo(I(R)) is the empty graph if and only R is a field,
(

(ii) diam(Zo(T'(R))) = 0 if and only if R is isomorphic tdZ4 or Z,[X]/(X?),
(iii) diam(Zo(I'(R))) = 1ifand only if R is a local ring with maximal ideal/ and|M| > 3,
(iv) diam(Zo(T'(R))) = 2 if and only if either|Maz(R)| > 3 or R is not reduced with
|Max(R)| = 2, and
)

(v) diam(Zo(T (R

Theorem 3.13[9] Let R be a commutative ring that is not an integral domain, Let (Vin
be the set of all minimal ideals af. Then there is a zero-divisor path framto y for every
x,y € R* if and only if one of the following two statements holds.

(i) Risreduced|Min(R)| > 3, andR = (z1, z2) for somezy, 2, € Z(R)*.

)) = oo if and only if R is reduced witHMax(R)| = 2.

(i) Risnotreduced an® = (z1, z2) for somezy, 2, € Z(R)*.

Moreover, if there is a zero-divisor path framto y for everyz, y € R*, thenR is not quasilocal
and diam; (R) € {2, 3}.
Theorem 3.14[9]

() Let R = R; x R, for commutative quasilocal ringB1, R, with maximal idealshM1, M,
respectively. If there are; € U(R;) anday, € U(Ry) with (2a3,2a;) € U(R) and
(3a1,3a2) ¢ Z(R), then diany(R) € {3,00}. Moreover, diam(R) = 3 if either R;
or R, is not reduced.

(i) Let R = Ry x Ry x R, for commutative ringsk, ..., R, with n > 3. Then diam (R) = 2.
Theorem 3.15[9] Let R be a commutative ring with diaffip(M(R))) = n < oo.

(i) Letu € U(R),s € R*, andP be a shortest path fromto u of lengthn — 1 in To(I'(R)).
ThenP is a regular path from to u.

(i) Let w € U(R),s € R*,andP : s —a; — ---a, = u be a shortest path fromto v of
lengthn in To(T(R)) . Then eitherP is a regular path froms to u, ora; € Z(R)* and
a; — -+ — a, = uis aregular path from; to v of lengthn — 1 = dg,(aq, u).

Theorem 3.16.[9] Let R be a commutative ring

(i) If s € RegR)andw € Nil(R)*, then there is no regular path fronto w.

(i) If Risreduced and quasilocal, then there is no regular path from any uniy tocaizero
nonunit inR.

Theorem 3.17[9] Let R be a commutative ring. Then there is a regular path frota y for
everyz,y € R* if and only if R is reduced, Red (R) is connected, and for everye Z(R)*
there is av € Z(R)* such thatiz(z,w) > 1 (possibly withd (z, w) = o).

A commutative ringR is a p.p. ring if and only if every if every principal ideal is projective.

Theorem 3.18[9] Let R be a commutative p.p. ring that is not an integral domain. Then there
is a regular path from: to y for everyz,y € R*. Moreover, diamg(R) = diam(To(I' (R))) =
diam(T (T (R))) = 2.



Total Graphs Associated to a Commutative Ring 119

Theorem 3.19.[8] Let R be a commutative ring such th&{ R) is an ideal ofR. Then
(i) (@ gr(Redgl(R))) =3ifandonlyif2¢ Z(R) and|Z(R)| > 3.
(b) gr(RedT (R))) = 4ifand only if 2¢ Z(R) and|Z(R)| > 2.
(c) Otherwise, giRegT (R))) = oo.
(i) @ or(T(r(Rr)))=3ifandonlyif|Z(R)| > 3.
(b) gr(T’(T'(R))) =4 ifand only if 2¢ Z(R) and|Z(R)| = 2.
(c) Otherwise, gIT' (M (R))) = oo.
Theorem 3.20.[8] Let R be a commutative ring such th&{ R) is not an ideal of2. Then
(i) gr(Z(F(Zy x Z3))) = o, otherwise gfZ ("' (R))) = 3.
(i) gr(T(F'(R))) =3ifand only if R % Zy x Zy.
(iii) gr(T(F'(R)))=4ifand only if R = Zy x Zy.
Theorem 3.21.[9] Let R be a commutative ring which is not an integral domain. Théagl (R))) =

oo if and only if R is isomorphic taZq, Z,[X|/(X?), Zy x 72, Ze, Ly, Z3 x Z3 Of Z3[X]/(X?).
Otherwise, gtZo(I(R))) = 3.

Theorem 3.22.[9] Let R be a finite commutative ring. Then(@%(I'(R))) € {3,4,00}. More-
over,

(i) gr(To(F'(R))) = oo if and only if R is an integral domain or is isomorphic 4 or
Zz[X]/(XZ), Of Zo X Zo.
(ii) gr(To(r(R))) = 4 if and only if R is isomorphic tdZg or Z3[X]/(X?) and
(iii) gr(To(I(R))) = oo otherwise.

Theorem 3.23[22] Let R be a commutative ring. Then @ (' (R))) € {3,4,6,c0}. In partic-
ular

(i) gr(T(T(R))) = cc if and only if R = Z3 or R = Zj for any natural number.

(i) gr(T(r(R))) = 6ifand only if R = Z} x Z3 for any natural numbet.

(R))) =
(iiy gr(T(T(R))) = 4 if and only if RedR) + Reg R) C Z(R) and for anyzy, 25, z3 € Z(R),
zi + zj € Z(R) for somei # j,1 < 4,5 < 3.

The genus of a graph is the minimal integesuch that the graph can be drawn without
crossing itself on a sphere withhandles (i.e. an oriented surface of gen)isThus, a planar
graph has genus 0, because it can be drawn on a sphere withocrossifag.

Theorem 3.24.[28] Let R be a finite ring such th&t (" (R)) is planar. Then the following hold:

(i) If Ris local ring, then R is a field oR is isomorphic to the one of the 9 following rings:
La, ZZ[X]/<X2)a ZZ[X}/(Xs)a Zz[Xa Y}/(Xa Y)Za Z4[X}/(2X7 Xz)v Z4[X]/<2Xa X2_2>’ Zsg,
F4[X]/(X?), Z4[X]/ (X% + X + 1), whereF, is a field with exactly four elements.

(ii) If Ris notlocal ring, therk is an infinite integral domain aR is isomorphic tdZ, x Z, or
Zs.
Theorem 3.25[28] Let R be a finite ring such thaf' (I (R)) is toroidal. Then the following
statements hold:
(i) If Rislocal ring, thenR is isomorphic tdZg, or Z3[X]/(X?).

(ii) If Ris not local ring, thenr is isomorphic to one of the following ringsZ, x Fy, Z3 x
Zg, Zz X Z4, Zz X Zg[x}/(xz), Zz X Zz X Zz.

Theorem 3.26[28] For any positive integeg, There are finitely many finite ringg® whose total
graph has genug
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Theorem 3.27[21] Let R be a finite commutative ring with identity,be an ideal contained in
Z(R),|I| =X >3,|R/I| = p. then

() 1f2 € I, theng(T (T (R))) > pu[ A=203=47;
(i) 12 ¢ I, theng(T(T(R))) > [A=30=47 | (u-1)1 (=27

Theorem 3.28.[21] Let R be a finite commutative ring with identity, be a annihilator ideal
with maximal cardinality among the proper annihilator idealskin|/| = A, |R/I| = p and
2 < X #5,9(modl12). If Z(R) is not an ideal of? and 2¢ I, Then

M], if uiseven;

Ly=2 ()\_3 147 31(2)‘_4)] if wis odd.

o(T(T(R)) > {<

Theorem 3.29.[21] Let R be a finite commutative ring and( R) = U™, P, whereP/ s are ideals
of R. Let|P;| = o; and|R;/P;| = ; fori =1,2...m. Suppose that 2 P, forall 1 <t < j,
and 2¢ P, forall j +1 <t <m,wherej =0if2 ¢ Z(R). Then

g(T(F(R)) < (m-D)(RI-)+30y B, [=gpetlysnr  f(E) [log2l] o [lomgot] |

H (17‘,—3 ()(7;—4
(If a; = 2 for some i, then we takg!® =3 )W =0).

Theorem 3.30.[21] Let R be a finite commutative ring, the genusoff (R)) is 2 if and only if
R is isomorphic tdZyg or Z3 x Fy.

Let G = (V, F) be a graph. A subset of V(G) is called a dominating set if every vertex
in V'\ S is adjacent to at least one vertexdn The domination number af is defined to be
minimum cardinality of a dominating set id and is denoted by/(G). A set of edgesV/ of
E(G) is called an edge dominating set if every edge“dt+) \ M is adjacent to an element of
M. The number of elements of a minimum edge dominating set is the edgeat@mninumber
and is denoted by(G). The domination number of (I'(R)) is determined byZ0] and [34]
independently.

Theorem 3.31[20] [34] Let R be a finite ring,/ be a maximum annihilator ideal dg¢ and
|R/I| = uthen

(i) if Ris afield of odd order the®(I'(R)) = “;1
(i) T(T(R)) = p, otherwise.

Conjecture 1.[20] Let R be a commutative ring with identity which is not an Artin ring(R)
be not an ideal of? andI}s are maximal annihilator ideals @t. If |R/I;| is finite for some,
theny(T'(F(R))) = min{|R/L;|}, I; is a maximal annihilator ideal ak, where the minimum is
taken over alll; for which |R/I;| is finite.

Theorem 3.32.[29] Let R be a finite. Then
(i) the domination number aReg(I" (R)) isy(Reg(l'(R)) =pu—1
(i) the domination number of (I'(R))is~(Z(T'(R))) = 1.
Theorem 3.33[29] Let R be a finite ring with unity. Then

(i) If |R] = 2r for some odd integer, then the edge domination number Bl (R)) is
AT (R)) =r-1.

(i) If |R| # 2r for some odd integer, then the edge domination number BfI'(R)) is
AT(T(R) = 1Z).
(iii) the edge domination number dfeg(I' (R)) is ¥(Reg(T'(R))) = URLZ(R)‘J.
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(iv) the edge domination number &I (R)) is 4(Z(I'(R))) = [ £ .

The chromatic number of a grajgh x(G), is the minimumk such thatG is k-colorable (i.e
can be colored using different colors such that no two adjacent vertices have the samg.color
The clique numbery(G), of a graphG is the maximum order among the complete subgraphs
of G. Itis easy to see that(G) > w(G), because every vertex of a clique should get a different
colour. A graph G is called weakly perfect providets) = w(G).

For a noncommutative rin§ the graphs’ (I (R)) and Reg(I" (R)) are defined the same way
as for the commutative case. L&f,(R), GL,(R), andT,,(R) denote the set of x n matrices
over R, the set of: x n invertible matrices oveR, and the set of. x n upper triangular matrices
over R, respectively. The chromatic number and the clique numbehéaiotal graph and the
regular graphs of such rings are studiedsp Where the authors obtained the following results

Theorem 3.34[5] Let F' be a field with chafF’) # 2, andn be a positive integer. Then
w(RegT (M, (F)))) < co. Moreoverw(Reql (M, (F)))) < Yi_o k! [(})]?

The authors in%], conjectured that the above result is also true if we replace field byialivis
ring.

Conjecture 2.[5] Let D be a division ring, chdi) # 2 andn be a natural number. Then
w(Regl (M, (D)))) < oo

Theorem 3.35[5] Let F' be a field with chalF') # 2. Thenw(Redl (M(F)))) =5

Theorem 3.36[3] Let F' be a field with chafF’) # 2, andn be a positive integer. Then
Redl(7,,(F))) is weakly perfect ang/(Redq " (7,,(F)))) = w(Red [ (T},(F)))) = 2"

Aalipour and Akbari 1] considered the the chromatic number and the the cligue number for
the total graph and the regular graph of any commutative ring.

Theorem 3.37[1] Let R be a finite ring such that one of the following conditions holds:
(i) The residue field o2 of minimum size has even characteristic,

(i) Every residue field ofR has odd characteristic anﬁ% has no summand isomorphic to
Z3 x Zz. Then bothl'(I' (R)) andZ (T (R) are weakly perfect. Moreoverer, we have:

X(T(F(R))) = w(T(T(R))) = x(2(T(R))) = w(Z(T(R))) = max{|m| : m € Max(R)}

Theorem 3.38[4] Let R be aring and 2¢ Z(R). If Z(R) = U P, wherePy, P, ..., P, are
prime ideals ofR and Z(R) # U, P;, for j = 1,2,...,n, then Regl (R)) is weakly perfect.
Moreoverer, we have:

x(Redl(R))) = w(Redl (R))) = 2"

Corollary 3.39. [1] Let R be a finite ring. If every residue field ¢t has odd characteristic, then
RedTl (R)) is weakly perfect. Moreoverer, we have:
x(RegT (R))) = w(RegT (R))) = 2M)

Theorem 3.40[1] Let R be a finite ring andn be a maximal ideal of? of maximum size. I££
has characteristic 2, then
x(RegT (R))) = w(RedT (R))) = P41

I3
L1

The results of Aalipour and Akbari motivated the following conjecture.

Conjecture 3.[1] Let R be a finite ring. The total graph at, T'(I'(R)), is weakly perfect.
Moreover

47 if R~ Z3 X 13,
max{|m| : m € Max(R)}, otherwise

V(T(F(R))) = w(T(T(R))) = {

Theorem 3.41[27] If R is a finite commuatative ring, then the unit graglir) is weakly
perfect.
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An independent set of vertices (also called a coclique) in a graph isa pairwise non-
adjacent vertices. The independence number of a grapH G), is the greatest integer such
that K, is a subgraph of;.

From Theorem 2.2 ofg], we have the following.

Theorem 3.42Let R be a commutative ring with unity such th&{(R) is an ideal ofR and
|Z(R)| =tand|R/Z(R)| = 5. Then

(i) If2 € Z(R), Thena(T(I'(R))) = S anda(Reg T (R))) = 5 — 1.
(i) 1f2 € RegR), Thena(T(T(R))) = t(252) + 1 anda(Red T (R))) = t(Z5).

Observe that for any gragh, o(G) = w(G), is the clique number of the complement graph
of the graphz. Combining this to the results ir2f] we get

Theorem 3.43.Let R = []!"_; R; where everyR; is local ring with maximal ideain;. If 2 €
Z(R), assume thaRy, Ry, ..., R; all have characterstic equal to 2 witR; |/|m1| < |Rz|/|m2| <
. <|Ry|/|mu), and Ry 11, Ry42, ..., R, all have characterstic not equal to 2UfR) is the set of
all unit elements ik, then
a(T(T(R))) = 2 [T (|Ril = [mil) + !f2 € U(R);
|Ral/[ma if2 ¢ U(R).

For a graphid, a mapf : E(G) — Z is called a flow. A zero-sum flow of an unoriented
graphG is a flow of G such that for every vertex € V(@) the sum of the values of all edges
incident withv is 0. For a natural numbdyr, a zero-sunk-flow is a zero-sum flow with values
fromthe se{+1,+2 ... &+ (k—1)}. A minimum zero-sunk-flow is the smallest natural number
k such that a grapty admits a zero-surh-flow, but G does not admit a zero-suf@ — 1)-flow.
Minimum flows in7'(I"(R)) for a finite commutative ring? are studied in32).

Theorem 3.44[32] Let R be a finite ring. Then
() If |R|isevenandZ(R)| > 2, thenT(I'(R)) has a zero-sum 3-flow, but no zero-sum 2-flow.

(i) If |R|is odd andZ(R) is an ideal with|Z(R)| > 2, thenT'(I'(R)) has a zero-sum 3-flow,
but no zero-sum 2-flow.

Based on their results, Sander and Nazzal gave the following conjecture

Conjecture 4.[32] Let R be a finite ring, such thatZ(R)| > 2, thenT'(I'(R)) has a zero-sum
3-flow, but no zero-sum 2-flow.

3.2 The GraphTT (M)

Theorem 3.45[3(] If every element of a modul&/ is a sum of at most torsion elements, then
diam(7T (M)) < n. If n is the smallest such number, then di@n(M)) =n

Corollary 3.46.[30] Let R be a commutative ring such that(R) is not an ideal ofkR and
(Z(R)) = R. Let M be anR-module. If dian{7T (R)) = n, then dianZT (M)) < n. In
particular, if R is finite, then diani’'T (M)) < 2

3.3 The GraphT's(R)

Theorem 3.47[17] Let R = Ry X Ry X --- X Ry, where(R;, m;) is a finite local ring such that
R;/m; = Zp, and letS = 51 x Sy x - -+ x S, be a saturated multiplicatively closed subseRof
Then diantls(R)) € {1,2, oo}

Theorem 3.48.[17] Let R be a finite ring. For a saturated multiplicatively closed sulSset R,
we have that diatit s(R)) € {1,2,3, 00} .

Theorem 3.49[17] Let R be finite andS be a saturated multiplicatively closed subsetrof
Then gkl s(R)) € {3,4,6,cc}.
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Theorem 3.50.[17] Let R be finite andS be a saturated multiplicatively closed subsetrof
Then g(I's(R)) = o if and only if one of the following statements holds:

() R=Zs.
(II) RX=7pxZy---7p and|S| =1.

3.4 The GraphT (' (R))

Theorem 3.51.[2] Let R be a commutative ring with the proper idgauch thatS(7) is an ideal
of R.

(i) Assume thaf is an induced subgraph 6{I";(R)) and letz andy be distinct vertices of
that are connected by a pathlin Then there exists a path inof length 2 between: and
y. In particular, ifS(I';(R)) is connected,then diaff(I' ; (R))) < 2.

(i) Supposer andy are distinct elements of(I";(R)) that are connected by a pathzlf- y ¢
S(I),thenz —(—z)—y andxz— (—y) —y are paths of length 2 betweerandy in S(I';(R)).

Theorem 3.52.[2] Let R be a commutative ring with the proper iddaduch thatS(7) is an ideal
of R.

(i) diam(S(I';(R))) =0ifand only if R = Zj.
(i) diam(S(T';(R))) = 1ifand only if R/S(I) = Z, and|S(I)| > 2 or R = Zs
(iii) diam(S(F;(R))) = 2ifand only if R/S(I) = Z3 and|S(I)| > 2

(iv) Otherwise, diamiS(I"';(R))) = oc.

Corollary 3.53.[2] Let R be a commutative ring with the proper iddakuch thatS(7) is an
ideal of R, I # {0}.Then

(i) If diam(Redgl'(R/I))) = 0, then dianiS(';(R))) =1 andl = S(I).

(i) Letdiam(RedT' (R/I))) = 1. ThendianiS(I';(R))) = 1if I C S(I)anddiam{S(I';(R))) =
2if I =5(1).
(iii) If diam (Reg " (R/I))) = 2, then dianiS(I';(R))) = 2.

(iv) diam(S(l';(R))) = oo if and only if diam(Redg ' (R/I))) = cc.

Theorem 3.54[2] Let R be a commutative ring with the proper idgasuch thatS(7) is not
an ideal ofR andR = (S(I)). Letn > 2 be the least integer such that= (x1,--- ,z,) for

somex,- - ,z, € S(I). Then diandT' (' ;(R))) = n. In particular, if R/I is a fnite ring and
I C Jac(R), then diantT'(T' ;(R))) = 2.

Theorem 3.55.[2] Let R be a commutative ring with the proper iddasuch thatS(7) is an not
ideal of R. If T'(I' ;(R)) is connected, then

(i) diam(Z(T;(R))) = d(0,1).
(i) If diam(7(T1(R))) = n then dianiS(I 1 (R))) > n — 2.

Theorem 3.56[2] Let R be a commutative ring with the proper iddasuch thatS(7) is not an
ideal of R. then dianiS(I';(R))) = 2.

Theorem 3.57.[2] Let R be a commutative ring with the proper iddalThen

(i) ogr(T(T;(R))) < gr(T(F(R/I))). If T(T'(R/I)) contains a cycle, then so do&$l ;(R)),
and therefore (I ;(R))) < gr(T(F(R/I)) < 4.
(ii) If S(I)is anideal ofR and{0} # /T c S(I), then g(S(';(R))) = 3

(iii) If S(I)is anideal ofR then gfS(I';(R))) = 3,4 orcc. In particular, g(S(I';(R))) < 4if
S(F;(R)) contains a cycle.

Theorem 3.58[2] Let R be a commutative ring. Suppose ti$4t) is an ideal ofR. Then
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(i) (@) gr(S(r;(R))) = 3ifand onlyif 2 S(I) and|S(I)| > 3.

(b) gr(S(I';(R))) =4ifand only if2¢ S(I) and|S(I)| = 2.
(c) Otherwise, gfS(I';(R))) = cc.

(i) (@) gr(7'(r;(R))) = 3ifandonly if|S(I)| > 3.
(b) gr(T'(T';(R))) =4 ifand only if 2¢ S(I) and|S(I)| = 2.
(c) Otherwise, giT' (T ;(R))) = oo.

Theorem 3.59.[2] Let R be a commutative ringwith a proper ideakuch thatS(7) is not an
ideal of R. Then

(i) If I # {0} theng(S(r;(R)))=3.
(i) gr(T(T;(R))) =3ifand only if gS(I;(R))) = 3.

(i) gr (S(r(R))) = 3 when| V7| > 3.
(iv) Ifgr(T(F;(R))) = 4 then gtS(T(R))) = oo.

(v) If2 € I, then g£S(I;(R))) = 3 or co.

(vi) If2 ¢ I,thengfS(T';(R))) = 3,4 orcc.

3.5 The Generalized Total GraphG T (R)
Theorem 3.60.[10] Let H be a prime ideal of a commutative ritig)

(i) Let G be aninduced subgraph@fl'y (R \ H), and letz andy be distinct vertices off that
are connected by a pathd Then there is a path of length at most two betweamdy in
G. In particular, ifGTH(R \ H) is connected, then diaf@T (R \ H)) < 2.

(i) Let z andy be distinct elements ak \ H that are connected by a path@¥'y (R \ H). If
x+yé¢ H,thenz — (—z) — y andz — (—y) — y are paths of length two tweenandy in
GTu(R\ H).

Theorem 3.61[10] Let R be a commutative ring anfl a multiplicative-prime subset @t that
is not an ideal of? such tha{ H) = R (i.e. GTy (R) is connected). Let > 2 be the least integer
such thatk = (z, ..., z,,) for somezy, ..., 2z, € H. Then dianMiGTx(R)) = n. In particular, if
H is not an ideal of? and either dimiR) = 0 (e.g. R is finite) or R is an integral domain with
dim(R) = 1, then diamiGTx(R)) = 2.
Theorem 3.62[10] Let H be a prime ideal of a commutative ritigy

(i) diam(GTy(R\ H)) = 0ifand only if R = Z,.

(i) diam(GTy(R\ H)) = lifand only if R/H = Z, and R # Z.
(i) diam(GTy(R\ H)) =2ifandonly if R/H = Zz andR % Zs.

(iv) Otherwise, dian\GTy(R\ H)) = co.

Theorem 3.63.[10] Let R be a commutative ring and be a multiplicative-prime subset &
that is not an ideal of? such thatGTy (R) is connected.

(i) diam(GTy(H)) =2

(i) diam(GTy(R)) = d(0,1).
(iii) If diam (GTy(R)) = n, then dianiGTu(R\ H)) > n — 2.
Theorem 3.64.[10] Let R be a commutative ring and be a multiplicative-prime subset &
that contains two co-maximal ideals Bf ThenGTy (R) is connected with diaf@ 7y (R)) = 2.

In particular, this holds it is not an ideal ok and either difiR) = 0 or R is an integral domain
with dim(R) = 1.
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Theorem 3.65.[10] Let R be a commutative ring anH be a multiplicative-prime subset &t
that is not an ideal of. Let H = U, P, for prime idealsP, of R. Suppose that — b — cis a
path of length two irGTx (R \ H) for distinct vertices:,b,c € R\ H.
(i) If 2k € H for somek € {a,b, c} andn, P, # {0}, then g{GTx(R\ H)) = 3.
(i) If 2k = 0 for somek € {a,b,c} and chafR) # 2, gGTu(R\ H)) = 3.
(i) If 2k ¢ H for everyk € {a,b,c}, then g(GTx(R\ H)) < 4.
Theorem 3.66.[10] Let H be a prime ideal of a commutative ritig)
(i) @ or(GTy(R\ H)) =3ifandonly if 2e H and|H| > 3.
(b) gr(GTu(R\ H)) =4ifandonly if 2¢ H and|H| > 2.
(c) Otherwise, giGTy (R \ H)) = occ.
(iii) (@) gr(GTy(R)) = 3ifand onlyif|H| > 3.
(b) gr(GTu(R)) =4ifandonly if 2¢ H and|H| = 2.
(c) Otherwise, giGTH(R)) = .

Theorem 3.67.[10] Let R be a commutative ring and be a multiplicative-prime subset &
that is not an ideal oR.

(i) Either giGTwH(H)) = 3 or gMGTr(H)) = oo. Moreover, if g{GTH(H)) = oo then
R=7yx 7y andH = Z(R)

(i) gr(GTu(R)) =3ifand only if g{GTx(H)) = 3.
(i) gr(GTu(R)) =4 ifand only if gfGTH(H)) = oo
(iv) If char(R) = 2, then gtGTx(R\ H)) = 3 Oroo.
(V) or(GTu(R\ H)) = 3,4, or .

4 Conclusion

The graph?’ (' (R)) motivated the definition of the total grap#$ (M), 's(R), T(I' ;(R)) and

GTy(R). Most results obtained concerning these total graphs are extensioresresthits ob-
tained by Anderson and Badwai iB]] However, the grapi’(I'(R)) is extensively studied in
[11, 131, [5], [6], [9], [14], [20], [24], [22], [28], [29], [31], [32], and [34]. It is natural then to ask
" can we extend the results in these papers to other total graphs?" theiggsilarthe structures
of such graphs suggest analogous results. This presents tens)gdropéems to be answered.
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