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Abstract. Ayache has recently proved that if R is an integrally closed domain such that each
overring of R is treed, then R is a locally pseudo-valuation domain. We investigate the extent
to which the analogue (in which one concludes that R is a locally pseudo-valuation ring) holds
if R is generalized to a commutative ring. A positive result is obtained if R is an idealization
D(+)K where D is an integrally closed LPVD each of whose overrings is treed (for instance,
a Prüfer domain) with quotient field K. However, the analogue fails in general for (quasi-local)
idealizations of the form R = A(+)A where A = Z/pnZ with p a prime number and n ≥ 3. A
positive result for the analogue is obtained for certain reduced rings R (namely, weak Baer rings
that are integrally closed), but an example using the A+B construction shows that the analogue
fails in general for reduced rings that are total quotient rings.

1 Introduction

All rings considered below are commutative, unital and nonzero. Our starting point is the fol-
lowing recent result of A. Ayache [5, Theorem 3.10]: if R is an integrally closed (commutative
integral) domain such that each overring of R is treed, then R is an LPVD, that is, a locally
pseudo-valuation domain, in the sense of [17]. (As usual, by an overring of a ring A, we mean
an A-subalgebra of the total quotient ring tq(A) of A, that is, a ring B such that A ⊆ B ⊆tq(A);
and a ring is said to be treed if its prime spectrum, as a poset under inclusion, is a tree.) Our
main interest here is to study the extent to which the analogue of the above results holds if R is
replaced by an arbitrary commutative ring which is integrally closed (in tq(R)) and one seeks
to determine whether such R must be an LPVR, that is, a locally pseudo-valuation ring, in the
sense of [8]. For motivation, note that a domain is an LPVR if and only if it is an LPVD. It is
also important to record that a quasi-local domain is a PVR (pseudo-valuation ring, in the sense
of [1], [2]) if and only if it is a PVD (pseudo-valuation domain, in the sense of [22]).

This paragraph and the next paragraph may be skipped or skimmed quickly on a first reading,
as their sole purpose is to provide further motivation for the question of whether a domain-
theoretic result extends to a ring-theoretic setting. We begin by recalling the result of McAdam
[26, Corollary 11] that any integrally closed quasi-local going-down domain must be a divided
domain. It follows easily that any integrally closed going-down domain must be a locally divided
domain. One was led to ask whether, more generally, any integrally closed going-down ring
must be a locally divided ring. (For the purpose of this motivation, one need not be concerned
with the definitions of these kinds of domains or rings. It is important, however, to know the
following facts: the concept of “going-down domain" from [13] and [19] was generalized to
“going-down ring" in [16]; the concept of “locally divided domain" from [14] was generalized
to “locally divided ring" in [7] (cf. also [6], where the concept of “divided domain" from [14]
was generalized to “divided ring"); each LPVD is a locally divided domain [17, Corollary 2.3];
each locally divided domain is a going-down domain, but not conversely [14, Proposition 2.1,
Example 2.9]; each going-down domain is treed [13, Theorem 2.2]; and each locally divided
ring is a treed going-down ring [7, Proposition 3.1].) Although any integrally closed going-down
domain must be a locally divided ring (thanks to McAdam’s result and the fact that a domain is
a locally divided ring if and only if it is a locally divided domain), Badawi and the author were
able to answer the above question in the negative, by constructing, for each n, 1 ≤ n ≤ ∞, an
example of a quasi-local integrally closed treed going-down ring that has Krull dimension n and



Results on Zero-divisors of a domain-theoretic result of Ayache 401

is not a (locally) divided ring [7, Example 3.10].
Despite counter-examples of the kind in [7, Example 3.10], one can also find in [7] general-

izations of several results on locally divided domains and going-down domains to the context of
locally divided rings and going-down rings (often for rings R such that either Z(R) = Nil(R)
or R is reduced.) Our work here is meant in that spirit of [7], where, to echo a phrase from the
first paragraph of [7], we seek “connections, some with the flavor of domain-theoretic studies
and others differing from such phenomena in the presence of zero-divisors."

Recall that if A is a ring and E is an A-module, the idealization R := A(+)E is the ring
whose additive structure is that of A⊕E and whose multiplication is given by (a1, e1)(a2, e2) :=
(a1a2, a1e2 + a2e1) for all a1, a2 ∈ A and all e1, e2 ∈ E. One views A as a subring of this
idealization R via the canonical injective (unital) ring homomorphism A→ R, a 7→ (a, 0). The
above-mentioned construction in [7, Example 3.10] made use of a particular idealization. For
this reason, we begin the next section by asking whether the idealization construction sustains a
generalization of the motivating result of Ayache [5, Theorem 3.10]. In the spirit of the above
quotation from [7], we find both positive answers and negative answers. In detail, Proposition
2.1 gives a positive answer in case R = D(+)K where D is a particular kind of integrally closed
locally divided domain (for instance, a Prüfer domain) with quotient field K. On the other hand,
Proposition 2.3 gives a negative answer in case R = A(+)A where A := Z/pnZ, with p any
prime number and n any integer such that n ≥ 3.

Recall that a ring R is said to be reduced if R has no nonzero nilpotent elements. Perhaps
the most obvious example of a reduced ring is given by any domain. However idealizations
R = A(+)E, which are the context for the first three results in Section 2, are never reduced
rings (when E 6= 0). So, as we continue to consider the question whether a ring R must be an
LPVR, given that R is integrally closed and each overring of R is treed, we sharpen the focus
by restricting to reduced rings. As was the case for idealizations, we find both positive answers
and negative answers. Indeed, Proposition 2.4 gives a positive answer in case R is also assumed
to be a weak Baer ring. (Background on weak Baer rings is recalled as needed in Section 2.) A
family of rings that illustrates Proposition 2.4 is given in Corollary 2.5. However, the context of
reduced rings also supports a negative answer to our basic question. Indeed, in what is probably
the most complicated work in this note, Proposition 2.6 gives an example of an integrally closed
reduced treed ring R such that tq(R) = R (so, trivially, each overring of R is treed) and R is not
an LPVR. This result is achieved with the help of the A + B construction (in the sense of [25,
Section 8]; cf. also [23]). To make Proposition 2.6 more self-contained, we summarize some of
the required background about the A+B construction prior to Proposition 2.6.

As usual, if R is a ring, then Z(R) denotes the set of zero-divisors of R, Nil(R) the set of
nilpotent elements of R, Spec(R) the set of prime ideals of R, and Max(R) the set of maximal
ideals of R. Any unexplained material is standard, as in [21], [23], [24].

2 Results

We begin with a positive result by showing that certain idealizations satisfy an analogue of the
motivating domain-theoretic result of Ayache.

Proposition 2.1. Let D be an integrally closed LPVD each of whose overrings is treed (for
instance, let D be a Prüfer domain) with quotient field K. Then the idealization R := D(+)K
is an integrally closed ring, but not a domain, such that each overring of R is treed and R is an
LPVR.

Proof. First, for the parenthetical assertion, it is well known that any Prüfer domain is an LPVD
[17, page 149] and each of its overrings is also a Prüfer domain [21, Theorem 26.1 (1)] and,
hence, treed. Next, it is easy to check that the set of non-zero-divisors of R is R \ Z(R) =
{(d, b) ∈ R | d 6= 0, b ∈ K} (cf. [23, Theorem 25.3]). It follows (cf. [23, Corollary 25.5
(3)]) that tq(R) (= RR\Z(R)) can be identified, as an R-algebra, with K(+)K. (In detail, the
R-algebra homomorphism tq(R)→ K(+)K, (δ, β)/(d, b) 7→ (δ/d,−δb/d2+β/d) for all δ ∈ D,
0 6= d ∈ D and β, b ∈ K, is both injective and surjective.) In particular, if 0 6= d ∈ D and b ∈ K,
the multiplicative inverse of (d, b) is identified with (1/d,−b/d2). Consequently, the overrings
of R are the rings of the form E(+)K, where E ranges over the set of overrings of D. In view
of the standard order-isomorphism of posets under inclusion Spec(E) → Spec(E(+)K) (given
by P 7→ P (+)E) [23, Theorem 25.1], we see that E(+)K is treed since (in fact, if and only if)
E is treed. Thus, each overring of R is treed. Moreover, since D is an integrally closed domain
with quotient field K, it follows from [23, Theorem 25.6] (or from [23, Corollary 25.8]) that R
is integrally closed (in tq(R)). Of course, R is not a domain (since, for instance, 0 6= (1, 0) ∈
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Nil(R)). Finally, to see that R is an LPVR, we need only check the conditions in [8, Proposition
3.4 (g)]: Z(D) (= {0}) =Nil(D); D is an LPVR (since it is an LPVD); K = tq(D); and D is a
domain.

In the next remark, it will be useful to recall that a ring (resp., domain) is a quasi-local LPVR
(resp., a quasi-local LPVD) if and only if it is a PVR (resp., a PVD).

Remark 2.2. (a) It is natural to ask if an example of the kind constructed in Proposition 2.1 can
be quasi-local. In fact, that ring R (:= D(+)K) in Proposition 2.1 is quasi-local if and only if D
is quasi-local. (This follows from the fact [23, Theorem 25.1] that for any idealization A(+)E,
the assignment P 7→ P (+)E gives an order-isomorphism Spec(A) → Spec(A(+)E).) In other
words, the ring R in Proposition 2.1 is quasi-local if and only if D is an integrally closed PVD
each of whose overrings is treed (for instance, a valuation domain) with quotient field K.

(b) We next give an example showing that a pseudo-valuation domain D of the kind in (a)
need not be a valuation domain. (The following example also shows that an LPVD satisfying
the hypotheses of Proposition 2.1 need not be a Prüfer domain.) Indeed, consider D := k +
Y k(X)[[Y ]], where k is a field, X is an indeterminate over k, and Y is an analytic indeterminate
over k(X). By [22, Example 2.1],D is a PVD but not a valuation domain. In fact, the canonically
associated valuation overring of D is V := k(X)[[Y ]] (cf. [22, Theorem 2.10], [3, Proposition
2.6]). Of course, D is integrally closed (since k is algebraically closed in k(X)), by the lore of
the classical D+M construction [21, Exercise 11 (2), page 202]. Moreover, each ring contained
between D and V is treed, by [12, Theorem 2.5]. (To apply the cited result, one needs to know
that each PVD is a going-down domain, in the sense of [13], [19]; this, in turn, follows by
combining [15, page 560] and [14, Proposition 2.1].) Since each overring of D is comparable
under inclusion with V (by the first part of the proof of [9, Theorem 3.1]) and each overring of a
valuation domain is treed, it follows that each overring of D is treed.

Despite hopes that may have been raised by Proposition 2.1, we show next that some ideal-
izations, such as R = Z/8Z(+)Z/8Z, do not satisfy an analogue of Ayache’s result.

Proposition 2.3. Let p be a prime number and let n be an integer such that n ≥ 3. Put A :=
Z/pnZ. Then R := A(+)A is an integrally closed ring (but not a domain) such that each
overring of R is treed, but R is not an LPVR. Moreover, R is quasi-local and tq(R) = R.

Proof. As n ≥ 3, it follows from [8, Corollary 3.3] that R is not a PVR. Also, by [23, Theorem
25.1], R inherits the “quasi-local" property from the first coordinate A in A(+)A (= R). Thus,
R is not an LPVR. The order-isomorphism Spec(A)→ Spec(R) also shows that R inherits from
A the property of having only one prime ideal. As R then has Krull dimension 0, it follows that
tq(R) = R (cf. [24, Theorem 84]). Then, a fortiori, R is integrally closed; and each overring of
R (namely, R itself) is treed. Finally, R is not a domain, since 0 6= (0, 1) ∈ Nil(R).

Proposition 2.3 is best possible in the following sense. If n is 1 or 2, then Z/pnZ(+)Z/pnZ
is a PVR [8, Corollary 3.3] and, hence, an LPVR.

Note that idealizations are intuitively very “far" from being domains, sinceE2 = 0 inA(+)E.
This leads to the question whether an analogue of Ayache’s result holds for rings in which one
rules out the existence of non-zero nilpotent elements, that is, for reduced rings. In the spirit
of Proposition 2.1, we begin to answer this question by giving a positive result: see Proposition
2.4. First, recall that a ring R is said to be a weak Baer ring if, for each r ∈ R, the annihilator
of r in R is generated by an idempotent element of R. Since any domain is a weak Baer ring,
Proposition 2.4 generalizes the motivating result of Ayache beyond the context of domains (but
one should note that the proof of Proposition 2.4 uses that result of Ayache).

Proposition 2.4. Let R be an integrally closed weak Baer ring such that each overring of R is
treed. Then R is an LPVR.

Proof. Let S be any multiplicatively closed subset ofR. Then, sinceR is a weak Baer ring, there
is a canonical isomorphism tq(RS) ∼= tq(R)S , so that the overrings of RS may be identified
with the rings BS as B ranges over the set of overrings of R [27, Lemme 2.5 and Corollaire
2.6]. Let M ∈ Max(R). It follows that each overring of R is of the form BR\M for some
(uniquely determined) overring B of R. As each such B is assumed to be treed, each overring
of RM must be treed. Also, RM inherits the “integrally closed" property from R, since relative
integral closure commutes with the formation of rings of fractions [10, Proposition 16, page
314]. Therefore, if RM is a weak Baer ring for each M ∈ Max(R), we can (replace R with some
RM and thus) assume also that R is quasi-local. In fact, since R is a weak Baer ring, each RM
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is a domain (and hence a weak Baer ring). Thus, we have reduced to proving the assertion in
case R is a (quasi-local) domain. Therefore, an appeal to the result of Ayache [5, Theorem 3.10]
completes the proof.

The next result gives an explicit family of rings R that satisfy the hypotheses of Proposition
2.4 (and are not domains).

Corollary 2.5. For some n ≥ 3, let R1, . . . , Rn be a finite list of integrally closed PVDs, each
of which has the property that each overring is treed. Then R := R1 × . . . ×Rn is an integrally
closed weak Baer ring (but not a domain) such that each overring of R is treed (and R is an
LPVR).

Proof. Since n > 1, R is not a domain. It is well known that

tq(R) ∼= tq(R1)× · · · × tq(Rn)

(cf. the proof of [20, Proposition 4.4]). Since each Ri is assumed to be integrally closed, it
follows easily that R is integrally closed. It also follows (cf. [18, Lemma III.3 (d)]) that each
overring of R is of the form S1 × · · · × Sn for some suitable overrings Si of Ri (i = 1, . . . , n).
As each Si is assumed to be treed, it follows that each overring of R must be treed.

There are several ways to show that R is a weak Baer ring. We will do so by using the
criterion that (i) tq(R) is a von Neumann regular ring and (ii) each prime ideal of R contains
only one minimal prime ideal of R. Of course, (i) holds since tq(R) is a direct product of fields.
As for (ii), write any P ∈ Spec(R) as

P = R1 × · · · ×Ri−1 ×Qi ×Ri+1 × · · · ×Rn

for some uniquely determined i and Qi ∈ Spec(Ri), and note that (since Ri is a domain) the
only minimal prime ideal of R that P can contain is

R1 × · · · ×Ri−1 × {0} ×Ri+1 × · · · ×Rn.

We next give three proofs of the parenthetical assertion. In view of the information assembled
above, the first of these is by an application of Proposition 2.4. For a second, and more direct,
proof of the parenthetical assertion, combine [8, Proposition 3.4 (e)] with the fact that each PVD
is an LPVR. For the third (and most basic) proof, consider any P ∈ Spec(R), as above write

P = R1 × · · · ×Ri−1 ×Qi ×Ri+1 × · · · ×Rn

for some uniquely determined i and Qi ∈ Spec(Ri), and note that RP is ring-isomorphic to
(Ri)Qi

, which is a PVR (by [22, Proposition 2.6] or [1, Theorem 12, Corollary 4]).

Next, we show that even reduced rings can fail to exhibit an analogue of Ayache’s result. The
construction of a suitable culprit in Proposition 2.6 below depends on the A+B construction, in
the sense of [25, Section 8]. For the sake of completeness, we pause to review that construction.
(In the proof of Proposition 2.6, we will cite results onA+B rings as needed from [25, Theorems
8.3 and 8.4], for convenience as formulated in [11, Theorem 6.1]; the reader is cautioned that the
notation and results given below for the A + B rings vary somewhat from those for the A + B
construction that was introduced in [23].)

Let D be a domain and let P be a nonempty subset of Spec(D). (In our application below,
we will take P := Max(D).) Let A be an index set for P , and let I = A× N (where N denotes
the set of natural numbers). For each i = (α, n) in I, let Ki be the quotient field of D/Pα.
Next, let B :=

∑
Ki and form the ring R := D+B from the direct sum of D and B by defining

multiplication by (r, b)(s, c) = (rs, rc+sb+bc). One refers toR as theA+B ring corresponding
to D and P . It is easy to see that R has no nonzero elements whose square is 0, and so R is a
reduced ring. Moreover, B is an ideal of R and R/B ∼= D. Thus, B ∈ Spec(R).

Proposition 2.6. There exists an A + B ring R such that R = tq(R), R is an integrally closed
reduced ring but not a domain, and (each overring of) R is treed, but R is not an LPVR.

Proof. It was pointed out in [4, Remark 3.8 (b)] that the ring A0 constructed by Ribenboim
in [28, page 165] is a quasi-local integrally closed domain of Krull dimension 1 which is not
a PVD. (The “quasi-local integrally closed’ aspect of A0 is interesting but will not be needed
below.) Take this ring (or any other ring with similar properties) to be an ambient domain D,
take P := Max(D), and let R be the A+B ring corresponding to D and P . We proceed to verify
that this ring R has all the asserted properties.
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We noted above that any A+ B ring is reduced. Moreover, no A+ B ring can be a domain
(since KiKj = 0 whenever i 6= j). Next, because we have used P := Max(D), it follows from
[25, Theorem 6.1 (3)] that tq(R) = D + B (= R). Thus, the only overring of R is R itself, and
so R is integrally closed. Next, if M denotes the unique maximal ideal of D, it follows from the
description of Spec(R) in [25, Theorem 6.1 (4), (5)] that the only proper containment of prime
ideals of R is B ⊂ M + B. It follows easily that R (and hence each overring of R) is treed.
It remains only to prove that R is not an LPVR. This, in turn, follows from the fact that the
class of LPVRs is stable under formation of homomorphic images [8, Proposition 3.4 (d)], since
R/B ∼= D is a quasi-local domain which is not a PVD (and hence is not an LPVR). The proof is
complete.

In closing, we point out one reason that the domain A0 of Ribenboim [28] was used in the
proof of Proposition 2.6. Recall that the following are some of the properties that were required
of such a domain, namely, that it be a domain of Krull dimension 1 which is not a PVD. Any
such domain needs to be somewhat esoteric. For instance, one can see via [21, Exercise 12 (4),
pages 202-203] and [15, Proposition 4.9 (i)] that the classical D+M construction (with M 6= 0)
cannot produce such a domain.
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