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Abstract In this paper strong convergence and ∆-convergence theorem is established for the
SP-iterative scheme for three multivalued nonexpansive mappings in CAT (κ) spaces for any
κ > 0. Our results extend and improve the recent ones announced by [6, 20].

1 Introduction

The study of fixed points for multivalued contraction mappings using the Hausdorff metric was
initiated by Nadler [15]. The Banach contraction principle has been extended in different di-
rections either by using generalized contractions for multivalued mappings and hybrid pairs of
single and multivalued mappings, or by using more general spaces. The terminology CAT (κ)
spaces was introduced by M. Gromov to denote a distinguished class of geodesic metric spaces
with curvature bounded above by κ ∈ R. In recent years, CAT (κ) spaces have attracted the
attention of many authors as they have played a very important role in different aspects of ge-
ometry. A very thorough discussion on these spaces and the role they play in geometry can be
found in the book by M.R. Bridson and A. Haefliger [1]. As it was noted by W.A. Kirk in his
fundamental works [8, 9], the geometry of CAT (κ) spaces is rich enough to develop a very con-
sistent theory on fixed point under metric conditions. These works were followed by a series of
new works by different authors (see for instance [2, 4, 10, 11, 17, 18, 21].

Also, since any CAT (κ) space is a CAT (κ′) space for κ′ > κ, all results for CAT (0) spaces
immediately apply to any CAT (κ) with κ > 0.

Recently B. Pia̧tek in [20] proved that an iterative sequence generated by the Halpern algo-
rithm converges to a fixed point in the complete CAT (κ) spaces.

Very recently, J.S. He et al. in [6] proved that the sequence defined by Mann’s algorithm
∆-converges to a fixed point in complete CAT (κ) spaces.

2 Preliminaries

Let (E, d) be a bounded metric space, then for D,K ∈ E nonempty, set
rx(D) = sup{d(x, y) : y ∈ D}, x ∈ E,
radK(D) = inf{rx(D) : x ∈ K},
diam(D) = sup{d(x, y) : x, y ∈ D}.

Let x, y ∈ E. A geodesic path joining x to y (or, more briefly, a geodesic from x to y) is a
map c : [0, l]→ E such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry between [0, l] and c([0, l]), and d(x, y) = l. Usually, the image c([0, l])
of c is called a geodesic segment (or metric segment) joining x and y. A metric segment joining
x and y is not necessarily unique in general. In particular, in the case when the geodesic segment
joining x and y is unique, we use [x, y] to denote the unique geodesic segment joining x and y,
this means that z ∈ [x, y] if and only if there exists t ∈ [0, 1] such that d(z, x) = (1 − t)d(x, y)
and d(z, y) = td(x, y). In this case, we will write z = tx ⊕ (1 − t)y for simplicity. For fixed
D ∈ (0,+∞), the space (E, d) is called a D-geodesic space if any two points of E with their
distance smaller than D are joined by a geodesic segment. An Ą∞-geodesic space is simply
called a geodesic space. Recall that a geodesic triangle 4 := 4(x, y, z) in the metric space
(E, d) consists of three points in E (the vertices of 4) and three geodesic segments between
each pair of vertices (the edges of 4). For the sake of saving printing space, we write p ∈ 4
when a point p ∈ E lies in the union of [x, y], [x, z] and [y, z].

The triangle 4 is called a comparison triangle for 4 if d(x, y) = d(x, y), d(x, z) = d(x, z)
and d(z, y) = d(z, y). By [[1], Lemma 2.14, page 24], a comparison triangle for4 always exists
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provided that the perimeter d(x, y) + d(y, z) + d(z, x) < 2Dκ (where Dκ = π√
κ

if κ > 0 and
∞ otherwise). A point P ∈ [x, y] ⊂ 4 is called a comparison point for p ∈ [x, y] ⊂ 4 if
d(p, x) = d(p, x). Recall that a geodesic triangle4 in E with perimeter less than 2Dκ is said to
satisfy the CAT (κ) inequality if, given4 a comparison triangle in M2

k for4, one has that

d(p, q) ≤ d(p, q), ∀p, q ∈ 4,

where p and Ąq are respectively the comparison points of p and q.
The model spaces M2

κ are defined as follows.

Definition 2.1. Given a real number κ, we denote by M2
κ the following metric spaces:

(i) if κ = 0 then M2
κ is Euclidean space En;

(ii) if κ > 0 then M2
κ is obtained from the sphere Sn by multiplying the distance function by

the constant 1√
κ

.

(iii) if κ < 0 thenM2
κ is obtained from hyperbolic space Hn by multiplying the distance function

by 1√
−κ ..

The metric space (E, d) is called a CAT (κ) space if it is Dκ-geodesic and any geodesic
triangle in E of perimeter less than 2Dκ satisfies the CAT (κ) inequality.

Proposition 2.2. M2
κ is a geodesic metric space. If κ ≤ 0, then M2

κ is uniquely geodesic and all
balls in M2

κ are convex. If κ > 0, then there is a unique geodesic segment joining x, y ∈ M2
κ if

and only if d(x, y) < π√
κ

. If κ > 0, closed balls in M2
κ of radius smaller than π

2
√
κ

are convex.

Proposition 2.3. Let E be a CAT (κ) space. Then any balls in E of radius smaller than π
2
√
κ

are
convex.

In a geodesic space E with unique metric segments, the metric d is said to be convex if for
p, x, y ∈ E, t ∈ (0, 1) and a point m ∈ [x, y] such that d(x,m) = td(x, y) and d(y,m) =
(1 − t)d(x, y), then d(p,m) ≤ (1 − t)d(p, x) + td(p, y). And for all x, y, z ∈ E and t ∈ [0, 1]
then,

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z) (2.1)

R-trees are a particular class of CAT (κ) spaces for any real κ which will be named at certain
points of our exposition (see [1], pg. 167] for more details).

Definition 2.4. An R-tree is a metric space E such that:

(i) it is a uniquely geodesic metric space,

(ii) if x, y and z ∈ T are such that [y, x]
⋂
[x, z] = {x}, then [y, x]

⋃
[x, z] = [y, z].

Therefore the family of all closed convex subsets of a CAT (κ) space has uniform normal
structure in the usual meteric (or Banach space) sense.

A subsetK ofE is said to be convex ifK includes every geodesic segment joining any two of
its points. We will denote by P (E) the family of nonempty proximinal subsets of E, by CC(E)
the family of nonempty closed convex subsets of E, and by KC(E) the family of nonempty
compact convex subsets of E. Let H be the Hausdorff distance on CC(E), that is

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

for every A,B ∈ CC(E), where d(x,B) = inf{d(x, y) : y ∈ B} is the distance from the point x
to the subset B.

A multivalued mapping T : E → CC(E), is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, ∀x, y ∈ E.

A point x ∈ E is said to be a fixed point for a multivalued mapping T if x ∈ Tx. We use the
notation F (T ) standing for the set of fixed points of a mapping T .

Let us recall the following definitions.
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Definition 2.5. Three of multivalued nonexpansive mappings T, S,R : K → CC(K), whereK a
subset ofE, are said to satisfy condition (I) if there exists a nondecreasing function f : [0,∞)→
[0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F ) or d(x, Sx) ≥
f(d(x, F ) or d(x,Rx) ≥ f(d(x, F ) for all x ∈ K, where F = F (T )

⋂
F (S)

⋂
F (R), the set of

all common fixed points of the mappings T , S and R

Definition 2.6. The mapping T : E → CC(E), is called hemicompact if, for any sequence {xn}
in E such that d(xn, Txn) → 0 as n → ∞, there exists a subsequence {xnr} of {xn} such that
xnr
→ p ∈ E.

Proposition 2.7. The modulus of convexity for CAT (κ) space E (of dimension ≥2) and number
r < π√

κ
and letm denote the midpoint of the segment [x, y] joining x and y define by the modulus

δr by sitting

δ(r, ε) = inf{1− 1
r
d(a,m)},

where the infimum is taken over all points a, x, y ∈ E satisfying d(a, x) ≤ r, d(a, y) ≤ r and
ε ≤ d(x, y) < π√

κ

Next we state the following useful lemmas.

Lemma 2.8. [see [13], Lemma 7]. Let (E, d,W ) be a uniformly convex hyperbolic with modulus
of uniform convexity δ. For any r > 0, ε ∈ (0, 2), λ ∈ [0, 1] and a, x, y ∈ X , if d(x, a) ≤ r,
d(y, a) ≤ r and d(x, y) ≤ εr then d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)δ(r, ε)r.

Lemma 2.9. Let E be a complete CAT (κ) space with modulus of convexity δ(r, ε) and let
x ∈ E. Suppose that δ(r, ε) increases with r (for a fixed ε) and suppose {tn} is a sequence
in [b, c] for some b, c ∈ (0, 1) and {xn}, {yn} are sequences in E such that lim sup

n→∞
d(xn, x) ≤ r,

lim sup
n→∞

d(yn, x) ≤ r and lim
n→∞

d((1−tn)xn⊕tnyn, x) = r for some r = 0. Then lim
n→∞

d(xn, yn) =

0.

Proof. The proof similar as in lemma 9 in [12].

For scaler valued case, we state the following iterative processes as the following:
In 1953, W. R. Mann defined the Mann iteration [14] as

xn+1 = (1− αn)xn + αnTxn, (2.2)

where {αn} is a sequences of positive numbers in [0, 1].
In 1974, S. Ishikawa defined the Ishikawa iteration [5] as

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, (2.3)

where {αn} and {βn} are sequences of positive numbers in [0, 1].
In 2008, S. Thianwan defined the new two step iteration [22] as

xn+1 = (1− αn)yn + αnTyn,

yn = (1− βn)xn + βnTxn, (2.4)

where {αn} and {βn} are sequences of positive numbers in [0, 1].
In 2001, M. A .Noor defined the three step Noor iteration [16] as

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn, (2.5)

zn = (1− γn)xn + γnTxn,

where where {αn}, {βn} and {γn} are sequences of positive numbers in [0, 1].
Recently, Phuengrattana and Suantai defined the SP-iteration [19] as

xn+1 = (1− αn)yn + αnTyn,

yn = (1− βn)zn + βnTzn, (2.6)

zn = (1− γn)xn + γnTxn,
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where where {αn}, {βn} and {γn} are sequences of positive numbers in [0, 1]. clearly the Mann
and Ishikawa iteration are special cases of the Noor iteration.

In the following definition, we extend the SP -iteration process (2.6) to the case of three
multivalued nonexpansive mappings on closed and convex subset of E modifying the above
ones.

Definition 2.10. Let E be a CAT (κ) space, K be a nonempty closed and convex subset of E
and T, S,R : K → CC(K), be three multivalued nonexpansive mappings. The sequence {xn}
of the modified SP -iteration is defined by:

x1 ∈ K,

xn+1 = (1− αn)yn ⊕ αnun, n ∈ N,
yn = (1− βn)zn ⊕ βnvn, (2.7)

zn = (1− γn)xn ⊕ γnwn,

where un ∈ Tyn, vn ∈ Szn, wn ∈ Rxn and {αn}, {βn}, {γn} ∈ [0, 1].

Remark 2.11. (i) If γn = 0 then we have

x1 ∈ K,

xn+1 = (1− αn)yn ⊕ αnun, n ∈ N, (2.8)

yn = (1− βn)xn ⊕ βnvn,

where un ∈ Tyn, vn ∈ Sxn and {αn}, {βn} ∈ [0, 1].

(ii) If γn = βn = 0 then we obtain

x1 ∈ K,

xn+1 = (1− αn)xn ⊕ αnun, n ∈ N, (2.9)

(2.10)

where un ∈ Txn,and {αn} ∈ [0, 1].

In this paper, we study the strong convergence and ∆-convergence of SP-iterative scheme
for three multivalued nonexpansive mappings in CAT (κ) spaces for any κ > 0 under some
conditions. Our results extend and improve the some results in [6, 20].

3 Strong convergence theorems

First of all, we prove the following lemmas, which play very important rule in the latter.

Lemma 3.1. Let K be a nonempty closed and convex subset of a complete CAT (κ) space E
with rad(K) < π

2
√
κ

, let T, S,R : K → CC(K) be three multivalued nonexpansive mappings
and {xn} be the sequence as defined in (2.7). If F 6= ∅ and Tp = Sp = Rp = {p} for any p ∈ F
then lim

n→∞
d(xn, p) exists for all p ∈ F .

Proof. Assume that F 6= ∅. Let p ∈ F . Then from (2.7) we have,

d(xn+1, p) = d((1− αn)yn ⊕ αnun, p)
≤ (1− αn)d(yn, p) + αnd(un, p)

≤ (1− αn)d(yn, p) + αnH(Tyn, Tp)

≤ (1− αn)d(yn, p) + αnd(yn, p)

= d(yn, p), (3.1)

and

d(yn, p) = d((1− βn)zn ⊕ βnvn, p)
≤ (1− βn)d(zn, p) + βnd(vn, p)

≤ (1− βn)d(zn, p) + βnH(Szn, Sp)

≤ (1− βn)d(zn, p) + βnd(zn, p)

= d(zn, p), (3.2)
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and

d(zn, p) = d((1− βn)xn ⊕ βnwn, p)
≤ (1− βn)d(xn, p) + βnd(wn, p)

≤ (1− βn)d(xn, p) + βnH(Rxn, Rp)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p). (3.3)

From (3.2) and (3.3) we obtain,

d(yn, p) ≤ d(xn, p) (3.4)

From (3.3) and (3.4) we have,

d(xn+1, p) ≤ d(xn, p).

Thus lim
n→∞

d(xn, p) exists for each p ∈ F , hence {xn} is bounded.

Lemma 3.2. LetK be a nonempty closed and convex subset of a complete CAT (κ) spaceE with
rad(K) < π

2
√
κ

and let T, S,R : K → CC(K), be three multivalued nonexpansive mappings
and {xn} be the sequence as defined in (2.7). If F 6= ∅ and Tp = Sp = Rp = {p} for any p ∈ F
then lim

n→∞
d(xn, T yn) = lim

n→∞
d(xn, Szn) = lim

n→∞
d(xn, Rxn) = 0.

Proof. Let p ∈ F 6= ∅. By lemma (3.1), lim
n→∞

d(xn, p) exists, {xn} is bounded. Put

lim sup
n→∞

d(xn, p) = c. (3.5)

From (3.4) we have

lim sup
n→∞

d(yn, p) ≤ c, (3.6)

also

d(un, p) ≤ d(yn, p),

for all n ≥ 1. so

lim sup
n→∞

d(un, p) ≤ c. (3.7)

From (3.3) we have

lim sup
n→∞

d(zn, p) ≤ c, (3.8)

also

d(vn, p) ≤ d(zn, p),

thus

lim sup
n→∞

d(vn, p) ≤ c. (3.9)

Further,

c = lim
n→∞

d(xn+1, p) = lim
n→∞

d((1− αn)yn ⊕ αnun, p)

≤ lim
n→∞

[(1− αn)d(yn, p) + αnd(un, p)]

≤ lim
n→∞

[(1− αn) lim sup
n→∞

d(yn, p) + αn lim sup
n→∞

d(un, p)]

≤ lim
n→∞

[(1− αn)c+ αnc] = c,

this gives

lim
n→∞

((1− αn)d(yn, p) + αnd(un, p)) = c. (3.10)
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Applying lemma (2.9) we obtain

lim
n→∞

d(yn, un) = 0. (3.11)

Noting that

d(xn+1, p) = d((1− αn)yn ⊕ αnun, p)
≤ d((1− βn)yn + βn(un, p)

≤ (1− αn)d(yn, p) + αnd(un, p)

≤ (1− αn)d(yn, un) + d(un, p),

which yields that

c ≤ lim inf
n→∞

d(un, p),

then from (3.7) we have,

c = lim
n→∞

d(un, p).

In turn

d(vn, p) ≤ d(yn, p),

this implies that

c ≤ lim inf
n→∞

d(yn, p). (3.12)

By (3.6) and (3.14), we obtain

c = lim
n→∞

d(yn, p).

Further,

d(vn, p) ≤ d(zn, p),

this gives

lim sup
n→∞

d(vn, p) ≤ c

Moreover,

c = lim
n→∞

d(yn, p) = lim
n→∞

d((1− βn)zn ⊕ βnvn, p)

≤ lim
n→∞

[(1− βn) lim sup
n→∞

d(zn, p) + βn lim sup
n→∞

d(vn, p)]

≤ lim
n→∞

[(1− βn)c+ βnc] = c

≤ lim
n→∞

d(xn, p) = c,

hence

lim
n→∞

d((1− βn)zn ⊕ βnvn, p) = c.

From lemma (2.9) we have

lim
n→∞

d(zn, vn) = 0, (3.13)

and

d(yn, p) = d((1− βn)zn ⊕ βnvn, p)
≤ (1− βn)d(zn, p) + βnd(vn, p)

≤ (1− βn)[d(zn, vn) + d(vn, p)] + βnd(vn, p)

≤ (1− βn)d(zn, vn) + βnd(vn, p),
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this yields that

c ≤ lim inf
n→∞

d(vn, p),

so (3.9) gives that

c = lim
n→∞

d(vn, p).

In turn

d(vn, p) ≤ d(zn, p).

this yields

c ≤ lim inf
n→∞

d(zn, p). (3.14)

By (3.6) and (3.14), we obtain

c = lim
n→∞

d(zn, p).

Moreover,

c = lim
n→∞

d(zn, p) = lim
n→∞

d((1− γn)xn ⊕ γnwn, p)

≤ lim
n→∞

[(1− γn) lim sup
n→∞

d(xn, p) + γn lim sup
n→∞

d(wn, p)]

≤ lim
n→∞

[(1− γn)c+ γnc] = c.

Thus,

lim
n→∞

d((1− γn)xn ⊕ γnwn, p) = c.

By lemma (2.9) we have

lim
n→∞

d(xn, wn) = 0, (3.15)

lim
n→∞

d(zn, xn) = lim
n→∞

d((1− γn)xn ⊕ γnwn, xn)

≤ lim
n→∞

[(1− γn) lim sup
n→∞

d(xn, xn) + γn lim sup
n→∞

d(wn, xn)],

that is,

lim
n→∞

d(zn, xn) = 0

and

lim
n→∞

d(yn, zn) = lim
n→∞

d((1− γn)zn ⊕ γnvn, zn)

≤ lim
n→∞

[(1− γn) lim sup
n→∞

d(zn, zn) + γn lim sup
n→∞

d(vn, zn)],

then

lim
n→∞

d(yn, zn) = 0. (3.16)

Also

d(un, xn) ≤ d(un, yn) + d(yn, xn), (3.17)

then,

lim
n→∞

d(un, xn) = 0. (3.18)
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Also

d(vn, xn) ≤ d(vn, zn) + d(zn, xn), (3.19)

that is,

lim
n→∞

d(vn, xn) = 0. (3.20)

Then we have

d(xn, T yn) ≤ d(xn, un)→ 0, as n→∞ .

and

d(xn, Szn) ≤ d(xn, vn)→ 0, as n→∞ .

and

d(xn, Sxn) ≤ d(xn, wn)→ 0, as n→∞ .

The following theorems gives the strong convergence of three multivalued nonexpansive
mappings, with value in closed and convex space,

Theorem 3.3. Let K be a nonempty closed and convex subset of a complete CAT (κ) space
E with rad(K) < π

2
√
κ

, and let T, S,R : K → CC(K), be three multivalued nonexpansive
mappings satisfying condition (I), {xn} be the sequence as defined in (2.7). If F 6= ∅ and
Tp = Sp = Rp = {p} for any p ∈ F , then {xn} converges strongly to a common fixed point of
T, S,R.

Proof. Since T, S,R, satisfies condition (I), we have lim
n→∞

f(d(xn, F )) = 0. Thus there is a
subsequence {xnr

} of {xn} and a sequence {pr} ⊂ F such that

d(xnr
, pr) <

1
2r
,

for all r > 0. By lemma (3.1) we obtain that

d(xnr+1 , pr) ≤ d(xnr
, pr) <

1
2r
.

We now show that {pr} is a Cauchy sequence in K. Observe that

d(pr+1, pr) ≤ d(pr+1, xnr+1) + d(xnr+1 , pr)

<
1

2r+1 +
1
2r

<
1

2r−1 .

This shows that {pr} is a Cauchy sequence in K and thus converges to p ∈ K. Since

d(pr, Tp) ≤ H(Tp, Tpr)

≤ d(p, pr),

and pr → p as r →∞, it follows that d(p, Tp) = 0, which implies that p ∈ Tp.
Similarity

d(pr, Sp) ≤ H(Sp, Spr)

≤ d(p, pr),

and pr → p as r →∞, it follows that d(p, Sp) = 0, which implies that p ∈ Sp.
Similarity

d(pr, Rp) ≤ H(Rp,Rpr)

≤ d(p, pr),

and pr → p as r → ∞, it follows that d(p,Rp) = 0, which implies that p ∈ Rp. Consequently,
p ∈ F 6=∞. lim

n→∞
d(xn, p) exists, we conclude that {xn} converges strongly to a common fixed

point p.
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Theorem 3.4. Let K be a nonempty closed and convex subset of a complete CAT (κ) space E
with rad(K) < π

2
√
κ

, and let T, S,R : K → CC(K), be three hemicompact and continuous
multivalued nonexpansive mappings. If F 6= ∅ and Tp = Sp = Rp = {p} for any p ∈ F , then
{xn} be the sequence as defined in (2.7) converges strongly to a common fixed point of T, S,R.

Proof. From lemma (3.2) we obtain lim
n→∞

d(xn, Tyn) = lim
n→∞

d(xn, Szn) = lim
n→∞

d(xn, Rxn) =

0 and T, S and R are hemicompact, there is a subsequence {xnr} of {xn} such that xnr → p as
r →∞ for some p ∈ K. Since T, S and R are continuous, we have

d(p, Tp) ≤ d(p, xnr
) + d(xnr

, T ynr
) +H(Tynr

, Tp)

≤ 2d(p, xnr
) + d(xnr

, Tynr
)→ 0 as r →∞,

and

d(p, Sp) ≤ d(p, xnr
) + d(xnr

, Sxnr
) +H(Sxnr

, Sp)

≤ 2d(p, xnr
) + d(xnr

, Sxnr
)→ 0 as r →∞.

and

d(p,Rp) ≤ d(p, xnr
) + d(xnr

, Rxnr
) +H(Rxnr

, Rp)

≤ 2d(p, xnr) + d(xnr , Sxnr)→ 0 as r →∞.

This implies that p ∈ Tp, p ∈ Sp and p ∈ Rp. by lemma (3.1) lim
n→∞

d(xn, p) exists, thus p ∈ F
is the strong limit of the sequence {xn} itself.

Corollary 3.5. Let E be a uniformly convex Banach space and K a nonempty closed and convex
subset of E. Let T, S be two multivalued nonexpansive mappings and {xn} be the sequence as
defined in (2.8) and T and S are hemicompact and continuous. If F 6= ∅ and Tp = Sp = {p}
for any p ∈ F, then {xn} converges strongly to a common fixed point of T and S.

4 ∆-convergence of the SP-multivalued iteration

In this section, we will study the ∆-convergence of SP-iterative process (2.7) for three multival-
ued nonexpansive mappings in CAT (κ) spaces satisfying conditions (I).

Let E be a complete CAT (κ) space and {xn} a bounded sequence in E. For x ∈ E, we set

r(x, (xn)) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ E},

the asymptotic radius rC({xn}) with respect to C ⊆ E of {xn} is given by

rC(xn) = inf{r(x, {xn}) : x ∈ C,

the asymptotic center A({xn}) of {xn} is given by the set

A({xn}) = {x ∈ E : r(x, {xn}) = r({xn})}.

Therefore, the following equivalence holds for any point u ∈ E:

u ∈ A({xn})⇐⇒ lim sup
n→∞

d(u, xn) ≤ lim sup
n→∞

d(x, xn), ∀x ∈ E. (4.1)

A sequence {xn} in E is said to ∆-converge to x ∈ E if x is the unique asymptotic center of
{un} for every subsequence {un} of {xn}. In this case we write ∆ − lim

n→∞
xn = x and call

x the ∆-limit of {xn} . we denote ωw(xn) :=
⋃
A({un}), where the union is taken over all

subsequences {un} of {xn}.

Proposition 4.1. Let E be a complete CAT (κ) space and let {xn} be a sequence in E with
r({xn}) < Dκ/2. Then the following assertions hold.

• A({xn}) consists of exactly one point.
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• {xn} has a ∆-convergent subsequence.

Lemma 4.2. ([3], Lemma 2.7).

(i) Every bounded sequence in E has a ∆-convergent subsequence.

(ii) If K is a closed convex subset of E and if {xn} is a bounded sequence in K, then the
asymptotic center of {xn} is in K.

(iii) If K is a closed convex subset of E and if T : K → E is a nonexpansive mapping, then the
conditions, {xn} ∆-converges to x and d(xn, f(xn))→ 0, imply x ∈ K and f(x) = x.

Lemma 4.3. [3] If {xn} is a bounded sequence in E with A({xn}) = {x} and {un} is a subse-
quence of {xn} with A({un}) = u and the sequence {d(xn, u)} converges, then x = u.

Lemma 4.4. Let K be a closed and convex subset of E, and let T : K → CC(K) be a multi-
valued nonexpansive mapping. Suppose {xn} is a bounded sequence defined by (2.9) in K such
that lim

n→∞
d(x, Txn) = 0 and {d(xn, v)} converges for all v ∈ F , then w(xn) ∈ F . Moreover,

ωw(xn) consists of exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence un of xn such that A(un) = {u}. By
Lemma (4.2)(i) and (ii) there exists a subsequence vn of {un} such that 4 lim

n→∞
vn = v ∈ K.

By Lemma (4.2)(iii), v ∈ F (T ). By Lemma (4.3), u = v. This shows that ωw(xn) ⊂ F (T ).
Next, we show that ωw(xn) consists of exactly one point. Let un be a subsequence of {xn} with
A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊂ F (T ), {d(xn, u)} converges. By
Lemma (4.3), x = u.

Theorem 4.5. Let K be a nonempty closed convex subset of a complete CAT (κ) space E with
rad(K) < π

2
√
κ

, and let T : K → CC(K), satisfying condition (I). If {xn} be the sequence in
K defined by (2.9) such that lim

n→∞
d(xn, Txn) = 0 and ∆− lim

n→∞
xn = v, then v ∈ Tv.

Proof. Let ∆− lim
n→∞

xn = v. We note that by Lemma (4.2), v ∈ K. For each n ≥ 1, we choose

zn ∈ T (v) such that d(xn, zn) = dist(xn, T (v)). By the compactness of T (v) there exists a
subsequence {znk

} of {zn} such that lim
n→∞

znk
= w ∈ T (v). Since T satisfies the condition (I)

we have,

dist(xnk
, T (v)) ≤ dist(xnk

, T (xnk
)) + d(xnk

, v), (4.2)

Note that

d(xnk
, w) ≤ d(xnk

, znk
) + d(znk

, w) ≤ dist(xnk
, T (xnk

)) + d(xnk
, v) + d(znk

, w). (4.3)

Thus

lim sup
n→∞

d(xnk
, w) ≤ lim sup

n→∞
d(xnk

, v). (4.4)

By the uniqueness of asymptotic centers, we have v = w ∈ T (v).

Theorem 4.6. Let K be a nonempty closed and convex subset of a complete CAT (κ) space
E with rad(K) < π

2
√
κ

, and let T, S,R : K → CC(K), be three multivalued nonexpansive
mappings satisfying condition (I), {xn} be the sequence as defined in (2.7). If F 6= ∅ and
Tp = Sp = Rp = {p} for any p ∈ F , then {xn} is ∆-converges to a common fixed point of
T, S,R.

Proof. It follows from Lemma (3.2), lim
n→∞

d(xn, T yn) = lim
n→∞

d(xn, Szn) = lim
n→∞

d(xn, Rxn) =

0. Now we let ωw(xn) := ∪A({un}) where the union is taken over all subsequences un of xn.
We claim that ωw(xn) ⊆ F . Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such
that A({un}) = {u}. By Lemmas (4.2) and (4.3), there exists a subsequence {vn} of {un} such
that ∆ − lim

n→∞
vn = v. Since lim

n→∞
d(xn, T yn) = lim

n→∞
d(xn, Szn) = lim

n→∞
d(xn, Rxn) = 0, by

Theorem (4.5) we have v ∈ F , and the lim
n→∞

d(xn, v) exists by Lemma (3.1). Hence u = v ∈ F
by Lemma (4.3). This shows that ωw(xn) ⊂ F . Next we show that ωw(xn) consists of exactly
one point. Let {un} be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}.
Since u ∈ ωw(xn) ⊂ F and d(xn, v) converges, by Lemma (4.3) we have x = u.

Corollary 4.7. Let K be a nonempty closed convex subset of a complete CAT (κ) space E with
rad(K) < π

2
√
κ

, and let T, S : K → CC(K), be two multivalued nonexpansive mappings
satisfying condition (I), {xn} be the sequence as defined in (2.8). If F 6= ∅ and Tp = Sp = {p}
for any p ∈ F , then {xn} is ∆-converges to a common fixed point of T, S.
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