AN IMPLICIT ITERATION PROCESS FOR I-NONEXPANSIVE MAPPINGS IN KOHLENBACH HYPERBOLIC SPACES

Birol GUNDUZ

Communicated by Hichem Ben-El-Mechaiekh

MSC 2010 Classifications: 47H09, 47H10, 49M05.

Keywords and phrases: Hyperbolic space, I-nonexpansive map, common fixed point, iteration process, condition (A), semi-compactness, Δ-convergence.

Abstract The first goal of this paper is to propose a composite implicit iteration process for a finite family of I-nonexpansive mappings in hyperbolic spaces. Next, some strong and Δ-convergence theorems are established using the proposed iteration process. New results are obtained as corollaries to the convergence theorems. Finally, we exhibit two finite families of the mappings under consideration.

1 Introduction and Preliminaries

Let K be a nonempty subset of a metric space X. The mapping $T: K \to K$ is said to be nonexpansive if $d(Tx, Ty) \leq d(x, y)$ for all $x, y \in K$.

In [1], Shahzad defines I-nonexpansive mappings in Banach spaces essentially as follows: given two mappings $T, I: K \to K$, T is called I-nonexpansive if $d(Tx, Ty) \leq d(Ix, Iy)$ for all $x, y \in K$.

In what follows, we set $J = \{1, 2, \ldots, N\}$ for the set of first N natural numbers and take $\{\alpha_n\}, \{\beta_n\}$ sequences in $(0, 1)$.

Given x_0 in K (a subset of Banach space), the Mann iteration process defined for a nonexpansive mapping as follows:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) Tx_{n-1}, \quad n \geq 1.$$ \hspace{1cm} (1.1)

Xu and Ori [19] introduced the following implicit iteration process for a finite family of nonexpansive mappings $\{T_i: i \in J\}$.

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \quad n \geq 1,$$ \hspace{1cm} (1.2)

where $T_n = T_{n(modN)}$ and the $modN$ function takes values in J.

In 2007, Su and Li [20] introduced the composite implicit iteration process for finite family of strictly pseudocontractive maps defined as follows:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n [\beta_n x_{n-1} + (1 - \beta_n) T_n x_{n-1}] , \quad n \geq 1,$$ \hspace{1cm} (1.3)

where $T_n = T_{n(modN)}$.

In [2], Rhoades and Temir showed that the Mann iteration process converges weakly to a common fixed point of T and I in a Banach space by taking the map T to be I-nonexpansive. Actually, they proved the following theorems.

Theorem 1.1. (Rhoades and Temir [2]) Let K be a closed convex bounded subset of a uniformly convex Banach space X which satisfies Opial’s condition, and let T, I be self-mappings of K with T be an I-nonexpansive mapping, I be a nonexpansive on K. Then, for $x_0 \in K$, the sequence $\{x_n\}$ of Mann iterates converges weakly to common fixed point of $F(T) \cap F(I)$.

There are numerous papers dealing with the convergence of different iterative techniques for these mappings and generalization of the class of I-nonexpansive mappings in Banach spaces (see, for example, [3, 4, 5, 6, 7] and the references therein).
Motivated by the iteration process (1.3) of Su and Li [20], in this paper we define a new modified composite implicit iteration process for a finite family of \(I_i \)-nonexpansive mappings \(\{T_i: i \in J\} \) and a finite family of nonexpansive mappings \(\{I_i: i \in J\} \) in hyperbolic spaces as follows:

\[
\begin{align*}
x_n &= W(x_{n-1}, T_n y_n, \alpha_n), \\
y_n &= W(x_{n-1}, I_n x_n, \beta_n), \quad n \geq 1
\end{align*}
\]

where \(T_n = T_n^{(\text{mod}N)} \) and \(I_n = I_n^{(\text{mod}N)} \).

Different notions of hyperbolic space \([12, 13, 14, 15]\) can be found in the literature. We work in the setting of hyperbolic spaces as introduced by Kohlenbach [11], which are slightly more restrictive than the spaces of hyperbolic type \([12]\) by (W4), but more general than the concept of hyperbolic space from \([15]\).

Definition 1.2. (Kohlenbach [11]) A hyperbolic space is a triple \((X, d, W)\) where \((X, d)\) is a metric space and \(W: X^2 \times [0, 1] \to X\) is a mapping such that

\[
\begin{align*}
&W1. \quad d(u, W(x, y, \alpha)) \leq (1 - \alpha) d(u, x) + \alpha d(u, y) \\
&W2. \quad d(W(x, y, \alpha), W(x, y, \beta)) = |\alpha - \beta| d(x, y) \\
&W3. \quad W(x, y, \alpha) = W(y, x, (1 - \alpha)) \\
&W4. \quad d(W(x, z, \alpha), W(y, w, \beta)) \leq (1 - \alpha) d(x, y) + \alpha d(z, w)
\end{align*}
\]

for all \(x, y, z, w \in X\) and \(\alpha, \beta \in [0, 1]\).

If \((X, d, W)\) satisfies only (W1), then it coincides with the convex metric space introduced by Takahashi [16]. A subset \(K\) of a hyperbolic space \(X\) is convex if \(W(x, y, \alpha) \in K\) for all \(x, y \in K\) and \(\alpha \in [0, 1]\).

Definition 1.3. A hyperbolic space \((X, d, W)\) is said to be uniform convex [17] if for all \(u, x, y \in X, r > 0\) and \(\varepsilon \in (0, 2]\), there exists a \(\delta \in (0, 1]\) such that

\[
\begin{align*}
&d(x, u) \leq r \\
&d(y, u) \leq r \\
&d(x, y) \geq \varepsilon r
\end{align*}
\]

\(\Rightarrow\)

\[
\begin{align*}
&W \left(x, y, \frac{1}{2} \right), u \leq (1 - \delta) r.
\end{align*}
\]

A map \(\eta: (0, \infty) \times (0, 2] \to (0, 1]\) which provides such a \(\delta = \eta(r, \varepsilon)\) for given \(r > 0\) and \(\varepsilon \in (0, 2]\) is called modulus of uniform convexity. We call \(\eta\) monotone if it decreases with \(r\) (for a fixed \(\varepsilon\)).

The notion of \(\Delta\)-convergence in general metric spaces was introduced by Lim [8] in 1976. Kirk and Panyanak [9] specialized this concept to CAT(0) spaces and showed that many Banach space results involving weak convergence have precise analogs in this setting.

To give the definition of \(\Delta\)-convergence, we first recall some notations.

Let \(\{x_n\}\) be a bounded sequence in a hyperbolic space \(X\). For \(x \in X\), define a continuous functional \(r(\cdot, \{x_n\}): X \to [0, \infty)\) by \(r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n)\).

Then the asymptotic radius \(\rho = r(\{x_n\})\) of \(\{x_n\}\) is defined by \(\rho = \inf \{r(x, \{x_n\}): x \in X\}\) and the asymptotic center of a bounded sequence \(\{x_n\}\) with respect to a subset \(K\) of \(X\) is defined by \(A_K(\{x_n\}) = \{x \in X: r(x, \{x_n\}) \leq r(y, \{x_n\})\} \text{ for any } y \in K\). If the asymptotic center is taken with respect to \(X\), then it is simply denoted by \(A(\{x_n\})\).

A sequence \(\{x_n\}\) in \(X\) is said to \(\Delta\)-converge to \(x \in X\) if \(x\) is the unique asymptotic center of \(\{u_n\}\) for every subsequence \(\{u_n\}\) of \(\{x_n\}\). In this case, we write \(\Delta\)-lim_{\{x_n\}} x = x and call \(x\) as \(\Delta\)-limit of \(\{x_n\}\).

The proofs of the following lemmas can be found in Leustean [18] and Khan et al. [10].

Lemma 1.4. [18] Let \((X, d, W)\) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity. Then every bounded sequence \(\{x_n\}\) in \(X\) has a unique asymptotic center with respect to any nonempty closed convex subset \(K\) of \(X\).
Thus the implicit iteration process (point. Thus the existence of y is established. Similarly, the existence of x_2, x_3, \ldots is established. Thus the implicit iteration process (1.4) is well defined.

We need the following lemma in order to prove our main theorems.

Lemma 2.1. Let K be a nonempty closed convex subset of a hyperbolic space X. Let $\{T_i : i \in I\}$ be a finite family of nonexpansive mappings on K such that $F \neq \emptyset$. Then for the sequence $\{x_n\}$ defined in (1.4), we have $\lim_{n \to \infty} d(x_n, p) \geq 0$ exists for $p \in F$.

Proof. Let $p \in F$. From (1.4), we have

$$d(y_n, p) = d(W(x_{n-1}, I_n x_n, \beta_n), p) \leq (1 - \beta_n) d(x_{n-1}, p) + \beta_n d(I_n x_n, p) \leq (1 - \beta_n) d(x_{n-1}, p) + \beta_n d(x_n, p). \quad (2.1)$$

By (2.1) and (1.4), we obtain

$$d(x_n, p) = d(W(x_{n-1}, T_n y_n, \alpha_n), p) \leq (1 - \alpha_n) d(x_{n-1}, p) + \alpha_n d(T_n y_n, p) \leq (1 - \alpha_n) d(x_{n-1}, p) + \alpha_n d(I_n y_n, p) \leq (1 - \alpha_n) d(x_{n-1}, p) + \alpha_n d(y_n, p) \leq (1 - \alpha_n) d(x_{n-1}, p) + \alpha_n [d(I_n y_n, p)] \leq (1 - \alpha_n) d(x_{n-1}, p) + \alpha_n \beta_n d(x_n, p).$$

Consequently, we have

$$d(x_n, p) \leq d(x_{n-1}, p). \quad (2.2)$$

Thus $\lim_{n \to \infty} d(x_n, p)$ exists for each $p \in F$. \hfill \Box

2 Main Results

Denote by F the set of common fixed points of the finite families of mappings $\{T_i : i \in J\}$ and $\{I_i : i \in J\}$.

Let X be a hyperbolic space, K be a nonempty closed convex subset of X. Let $\{I_i : i \in J\}$ be a finite family of I_i-nonexpansive mappings and $\{I_i : i \in J\}$ be a finite family of nonexpansive mappings. Let $\{x_n\}$ be defined by (1.4). Then $x_1 = W(x_0, T_1 W(x_0, I_1 x_1, \beta_1), \alpha_1)$. Define a mapping $G_1 : K \to K$ by: $G_1 x = W(x_0, T_1 W(x_0, I_1 x, \beta_1), \alpha_1)$ for all $x \in K$. Existence of x_1 is guaranteed if G_1 has a fixed point. Now for any $u, v \in K$, we have

$$d(G_1 u, G_1 v) = d(W(x_0, T_1 W(x_0, I_1 u, \beta_1), \alpha_1), W(x_0, T_1 W(x_0, I_1 v, \beta_1), \alpha_1)) \leq \alpha_1 d(T_1 W(x_0, I_1 u, \beta_1), T_1 W(x_0, I_1 v, \beta_1)) \leq \alpha_1 d(I_1 W(x_0, I_1 u, \beta_1), I_1 W(x_0, I_1 v, \beta_1)) \leq \alpha_1 \beta_1 d(I_1 u, I_1 v) \leq \alpha_1 \beta_1 d(u, v)$$

Since $\alpha_1 \beta_1 < 1$, G_1 is a contraction. By Banach contraction principle, G_1 has a unique fixed point. Thus the existence of x_1 is established. Similarly, the existence of x_2, x_3, \ldots is established. Thus the implicit iteration process (1.4) is well defined.

We need the following lemma in order to prove our main theorems.

Lemma 1.5. Let (X, d, W) be a uniformly convex hyperbolic space with monotone modulus of uniform convexity η. Let $x \in X$ and $\{\alpha_n\}$ be a sequence in $[b, c]$ for some $b, c \in (0, 1)$. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $\limsup_{n \to \infty} d(x_n, x) \leq r$, $\limsup_{n \to \infty} d(y_n, x) \leq r$ and $\lim_{n \to \infty} d(W(x_n, y_n, \alpha_n), x) = r$ for some $r \geq 0$, then $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Lemma 1.6. Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space and $\{x_n\}$ a bounded sequence in K such that $A(\{x_n\}) = \{y\}$ and $r(\{x_n\}) = \rho$. If $\{y_n\}$ is another sequence in K such that $\lim_{n \to \infty} r(y_n, \{x_n\}) = \rho$, then $\lim_{n \to \infty} y_n = y$.
Lemma 2.2. Let \(K \) be a nonempty closed convex subset of a uniformly convex hyperbolic space \(X \) with monotone modulus of uniform convexity \(\eta \). Let \(\{ T_i : i \in I \} \) be a finite family of \(I \)-nonexpansive mappings and \(\{ I_i : i \in J \} \) be a finite family of nonexpansive mappings on \(K \) such that \(F \neq \emptyset \). Then for the sequence \(\{ x_n \} \) defined in (1.4), we have

\[
\lim_{n \to \infty} d(x_n, T_l x_n) = \lim_{n \to \infty} d(x_n, I_l x_n) = 0 \quad \text{for each} \quad l = 1, 2, \ldots, N.
\]

Proof. In view of Lemma 2.1, we obtain that the limit of the sequence \(\{ d(x_n, p) \} \) exits for each \(p \in F \). Next, we assume that \(\lim_{n \to \infty} d(x_n, p) = c \), for some \(c > 0 \). It follows from (1.4) that

\[
\lim_{n \to \infty} d(x_n, p) = \lim_{n \to \infty} d(W(x_{n-1}, T_n y_n, \alpha_n), p) = c.
\]

(2.3)

By means of \(\lim_{n \to \infty} d(x_n, p) = c \) and nonexpansivity of \(T_i \), we get

\[
\limsup_{n \to \infty} d(T_n y_n, p) \leq \limsup_{n \to \infty} d(I_n y_n, p) \leq \limsup_{n \to \infty} d(y_n, p)
\]

\[
= \limsup_{n \to \infty} d(W(x_{n-1}, I_n x_n, \beta_n), p)
\]

\[
\leq \limsup_{n \to \infty} [(1 - \beta_n) d(x_{n-1}, p) + \beta_n d(I_n x_n, p)]
\]

\[
\leq \limsup_{n \to \infty} [(1 - \beta_n) d(x_{n-1}, p) + \beta_n d(x_n, p)]
\]

\[
\leq c.
\]

(2.4)

Now using (2.4) with \(\lim_{n \to \infty} d(x_n, p) = c \) and applying Lemma 1.5 to (2.3), we get

\[
\lim_{n \to \infty} d(x_{n-1}, T_n y_n) = 0.
\]

(2.5)

From (1.4) and (2.5) we obtain

\[
d(x_n, x_{n-1}) = d(W(x_{n-1}, T_n y_n, \alpha_n), x_{n-1})
\]

\[
\leq (1 - \alpha_n) d(x_{n-1}, x_{n-1}) + \alpha_n d(T_n y_n, x_{n-1})
\]

\[
\to 0 \quad (n \to \infty),
\]

which implies that

\[
\lim_{n \to \infty} d(x_n, x_{n+l}) = 0, \quad \forall l = 1, 2, \ldots, N.
\]

(2.6)

Note that

\[
d(x_n, T_n y_n) \leq d(x_n, x_{n-1}) + d(x_{n-1}, T_n y_n).
\]

Next, taking limit on both sides in the above inequality we get

\[
\lim_{n \to \infty} d(x_n, T_n y_n) = 0.
\]

(2.7)

Clearly,

\[
d(x_n, p) \leq d(x_n, x_{n-1}) + d(x_{n-1}, T_n y_n) + d(T_n y_n, p)
\]

\[
\leq d(x_n, x_{n-1}) + d(x_{n-1}, T_n y_n) + d(I_n y_n, p)
\]

\[
\leq d(x_n, x_{n-1}) + d(x_{n-1}, T_n y_n) + d(y_n, p).
\]

Taking \(\liminf \) on both sides in the above estimate, from (2.5) and (2.6) we have

\[
c \leq \liminf_{n \to \infty} d(y_n, p).
\]

(2.8)

Also, we get from (2.1)

\[
\limsup_{n \to \infty} d(y_n, p) \leq c
\]

so that (2.8) gives

\[
\lim_{n \to \infty} d(y_n, p) = c.
\]

(2.9)
Thus \(c = \lim_{n \to \infty} d(y_n, p) = \lim_{n \to \infty} d(W(x_{n-1}, I_n x_n, \beta_n), p) \) gives by

\[
\lim_{n \to \infty} d(I_n x_n, p) \leq c
\]

and Lemma 1.5 that

\[
\lim_{n \to \infty} d(x_{n-1}, I_n x_n) = 0
\tag{2.10}
\]

On the other hand,

\[
d(x_n, I_n x_n) \leq d(x_n, x_{n-1}) + d(x_{n-1}, I_n x_n).
\]

Thus we have

\[
\lim_{n \to \infty} d(x_n, I_n x_n) = 0.
\tag{2.11}
\]

Further, observe that

\[
d(y_n, x_{n-1}) = d(W(x_{n-1}, I_n x_n, \beta_n), x_{n-1}) \\
\leq \beta_n d(I_n x_n, x_{n-1}).
\]

By (2.10), we have

\[
\lim_{n \to \infty} d(y_n, x_{n-1}) = 0.
\tag{2.12}
\]

Thus

\[
d(x_n, T_n x_n) \leq d(x_n, T_n y_n) + d(T_n y_n, T_n x_{n-1}) + d(T_n x_{n-1}, T_n x_n) \\
\leq d(W(x_{n-1}, T_n y_n, \alpha_n), T_n x_{n-1}) + d(y_n, x_{n-1}) + d(x_{n-1}, x_n) \\
\leq (1 - \alpha_n) d(x_{n-1}, T_n y_n) + d(y_n, x_{n-1}) + d(x_{n-1}, x_n)
\]

together with (2.5), (2.6) and (2.12) implies that

\[
\lim_{n \to \infty} d(x_n, T_n x_n) = 0.
\tag{2.13}
\]

Since, for each \(l = 1, 2, \cdots, N \), we have

\[
d(x_n, T_{n+l} x_n) \leq d(x_n, x_{n+l}) + d(x_{n+l}, T_{n+l} x_{n+l}) + d(T_{n+l} x_{n+l}, T_{n+l} x_n) \\
\leq d(x_{n+l}, x_{n+l}) + d(x_{n+l}, T_{n+l} x_{n+l}) + d(I_{n+l} x_{n+l}, I_{n+l} x_n) \\
\leq 2d(x_n, x_{n+l}) + d(x_{n+l}, T_{n+l} x_{n+l})
\tag{2.14}
\]

it follows from (2.6) and (2.13) that

\[
\lim_{n \to \infty} d(x_n, T_{n+l} x_n) = 0
\]

for all \(l \in J \). Thus we get

\[
\lim_{n \to \infty} d(x_n, I_l x_n) = 0 \quad \text{for any} \quad l \in J.
\tag{2.15}
\]

Replacing \(T_{n+l} \) by \(I_{n+l} \) in the inequality (2.14), we get

\[
\lim_{n \to \infty} d(x_n, I_l x_n) = 0
\tag{2.16}
\]

for all \(l \in J \).

For further developments, we need the following concepts and technical result.

A sequence \(\{x_n\} \) in a metric space \(X \) is said to be \textit{Fejér monotone} with respect to \(K \) (a subset of \(X \)) if \(d(x_{n+1}, p) \leq d(x_n, p) \) for all \(p \in K \) and for all \(n \geq 1 \). A map \(T : K \to K \) is semi-compact if any bounded sequence \(\{x_n\} \) satisfying \(d(x_n, T x_n) \to 0 \) as \(n \to \infty \) has a convergent subsequence.

\textbf{Lemma 2.3.} [21] \textit{Let} \(K \) \textit{be a nonempty closed subset of a complete metric space} \((X, d) \) \textit{and} \(\{x_n\} \) \textit{be Fejér monotone with respect to} \(K \). \textit{Then} \(\{x_n\} \) \textit{converges to some} \(p \in K \) \textit{if and only if} \(\lim_{n \to \infty} d(x_n, K) = 0 \).
Lemma 2.4. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η. Let $\{T_i : i \in I\}$ be a finite family of I_i-nonexpansive mappings and $\{I_i : i \in J\}$ be a finite family of nonexpansive mappings on K such that $F \neq \emptyset$. Then the sequence $\{x_n\}$ defined in (1.4) converges strongly to $p \in F$ if and only if $\lim_{n \to \infty} d(x_n, F) = 0$.

Proof. It follows from (2.2) that $\{x_n\}$ is Fejér monotone with respect to F and $\lim_{n \to \infty} d(x_n, F)$ exists. Now applying the Lemma 2.3, we obtain the result.\qed

A mappings $T : K \to K$ with $F(T) \neq \emptyset$ is said to satisfy the Condition (A) [24] if there exists a nondecreasing function $f : (0, \infty) \to [0, \infty]$ with $f(0) = 0, f(r) > 0$ for all $r \in (0, \infty)$ such that $d(x, Tx) \geq f(d(x, F(T)))$ for all $x \in K$.

Khan and Fukhar-ud-din [22], introduced the so-called Condition (A') and gave a slightly improved version of it in [23] as follows:

Two mappings $T, I : K \to K$ with $F(T) \cap F(I) \neq \emptyset$ are said to satisfy the Condition (A') if there exists a nondecreasing function $f : (0, \infty) \to [0, \infty)$ with $f(0) = 0, f(r) > 0$ for all $r \in (0, \infty)$ such that either $d(x, Tx) \geq f(d(x, F(T) \cap F(I)))$ or $d(x, Tx) \geq f(d(x, F(T) \cap F(I)))$ for all $x \in K$.

We can modify this definition for two finite families of mappings as follows. Let $\{T_i : i \in I\}$ and $\{I_i : i \in J\}$ be two finite families of nonexpansive mappings of K with nonempty fixed points set F. These families are said to satisfy Condition (B) on K if there exists a nondecreasing function $f : (0, \infty) \to [0, \infty)$ with $f(0) = 0, f(r) > 0$ for all $r \in (0, \infty)$ such that either $\max_{i \in J} d(x, T_ix) \geq f(d(x, F(T)))$ or $\max_{i \in J} d(x, I_ix) \geq f(d(x, F(I)))$ for all $x \in K$.

Note that the Condition (A') is weaker than both the semicompactness of the mapping $T : K \to K$ and the compactness of its domain K, see [24]. Thus the Condition (A') is weaker than both the semicompactness of the mappings $T, I : K \to K$ and the compactness of their domain K. In this direction Condition (B) is weaker than both the semicompactness of $\{T_i : i \in I\}$ and $\{I_i : i \in J\}$ and the compactness of their domain K.

We are now ready to state and prove our strong convergence theorems.

Theorem 2.5. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η. Let $\{T_i : i \in I\}$ be a finite family of I_i-nonexpansive mappings and $\{I_i : i \in J\}$ be a finite family of nonexpansive mappings on K such that $F \neq \emptyset$. Suppose that $\{T_i : i \in I\}$ and $\{I_i : i \in J\}$ satisfy condition (B). Then the sequence $\{x_n\}$ defined in (1.4) converges strongly to $p \in F$.

Proof. Let $p \in F$. As proved in Lemma 2.1, $d(x_n, p) \leq d(x_{n-1}, p)$ for all $n \in \mathbb{N}$. This implies that $d(x_n, F) \leq d(x_{n-1}, F)$. Thus $\lim_{n \to \infty} d(x_n, F)$ exists. Since $\{T_i : i \in I\}$ and $\{I_i : i \in J\}$ satisfy Condition (B), therefore

\[\max_{i \in J} d(x_n, T_ix) \geq f(d(x_n, F)) \quad \text{or} \quad \max_{i \in J} d(x_n, I_ix) \geq f(d(x_n, F)).\]

It follows from (2.15) and (2.16) that $\lim_{n \to \infty} f(d(x_n, F)) = 0$. Since f is a nondecreasing function and $f(0) = 0$, so it follows that $\lim_{n \to \infty} d(x_n, F) = 0$. Therefore, Lemma 2.4 implies that $\{x_n\}$ converges strongly to a point $p \in F$.

Theorem 2.6. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η. Let $\{T_i : i \in I\}$ be a finite family of I_i-nonexpansive mappings and $\{I_i : i \in J\}$ be a finite family of nonexpansive mappings on K such that $F \neq \emptyset$. Suppose that either K is compact or one of the map in $\{T_i : i \in I\}$ and $\{I_i : i \in J\}$ is semi-compact. Then the sequence $\{x_n\}$ defined in (1.4) converges strongly to $p \in F$.

Proof. For any $i \in J$, we first suppose that T_i and I_i are semicompact. By (2.15) and (2.16), we have

\[\lim_{n \to \infty} d(x_n, T_ix) = \lim_{n \to \infty} d(x_n, I_ix) = 0.\]
From the semicompactness of T_i and I_i, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges strongly to a $q \in K$. Using (2.15) and (2.16), we have
\[
\lim_{i \to \infty} d(x_{n_i}, T_i x_{n_i}) = d(q, T_i q) = 0 \quad \text{and} \quad \lim_{i \to \infty} d(x_{n_i}, I_i x_{n_i}) = d(q, I_i q) = 0
\]
for all $i \in J$. This implies that $q \in F$. Since $\lim_{n \to \infty} d(x_n, q) = 0$ and $\lim_{n \to \infty} d(x_n, q)$ exists for all $q \in F$ by Lemma 2.1, therefore
\[
\lim_{n \to \infty} d(x_n, q) = 0.
\]

Next, assume the compactness of K, then again there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges strongly to a $q \in K$ and the proof follows the above lines. \(\square\)

We have proved that $\{x_n\}$ is bounded. Since $\{x_n\}$ bounded sequence in a nonempty closed convex subset of a complete uniformly convex hyperbolic space, then $\{x_n\}$ has a unique asymptotic center, that is, $A(\{x_n\}) = \{x\}$. Assume that $\{u_n\}$ is any subsequence of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. Then by (2.15) and (2.16), we have $\lim_{n \to \infty} d(u_n, T_i u_n) = \lim_{n \to \infty} d(u_n, I_i u_n) = 0$ for each $i = 1, 2, \cdots, N$. Now we prove that u is the common fixed point of $T_i : i \in J$ and $I_i : i \in J$.

Define a sequence $\{v_n\}$ in K by $v_m = T_m u$, where $T_m = T_{(m \mod N)}$. Clearly,
\[
d(v_n, u_n) \leq d(T_m u, T_m u_n) + d(T_m u_n, T_{m-1} u_n) + \cdots + d(T u_n, u_n)
\leq d(u, u_n) + \sum_{i=1}^{m-1} d(u_n, T_i u_n).
\]

Thus, we have
\[
r(v_m, \{u_n\}) = \limsup_{n \to \infty} d(v_m, u_n) \leq \limsup_{n \to \infty} d(u, u_n) = r(u, \{u_n\})
\]
This implies that $|r(v_m, \{u_n\}) - r(u, \{u_n\})| \to 0$ as $m \to \infty$. By Lemma 2.1, we obtain $T_{(m \mod N)} u = u$, which implies that u is the common fixed point of $\{T_i : i \in J\}$. Similarly, we can show that u is the common fixed point of $\{I_i : i \in J\}$. Therefore $u \in F$. Moreover, $\lim_{n \to \infty} d(x_n, u)$ exists by Lemma 2.1.

Assume $x \neq u$. By the uniqueness of asymptotic centers,
\[
\limsup_{n \to \infty} d(u_n, u) < \limsup_{n \to \infty} d(u_n, x) \leq \limsup_{n \to \infty} d(x_n, x) < \limsup_{n \to \infty} d(x_n, u) = \limsup_{n \to \infty} d(u_n, u)
\]
a contradiction. Thus $x = u$. Since $\{u_n\}$ is an arbitrary subsequence of $\{x_n\}$, therefore $A(\{u_n\}) = \{u\}$ for all subsequences $\{u_n\}$ of $\{x_n\}$. This proves that $\{x_n\}$ Δ-converges to a common fixed point of $\{T_i : i \in J\}$ and $\{I_i : i \in J\}$. \(\square\)

Although the followings are corollaries of our main theorems, yet they are new in themselves.
Theorem 2.8. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η. Let T be a I-nonexpansive mapping and I be a nonexpansive mapping on K such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose T and I satisfy the condition (A'). Then the sequence $\{x_n\}$ defined by

\[
x_n = W(x_{n-1}, Ty_n, \alpha_n), \\
y_n = W(x_{n-1}, Ix_n, \beta_n), \quad n \geq 1
\]

converges strongly to $p \in F$.

Proof. Choose $T_i = T$ and $I_i = I$ for all $i \in J$ in Theorem 2.5. \hfill \Box

Theorem 2.9. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η. Let T be a I-nonexpansive mapping and I be a nonexpansive mapping on K such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that either K is compact or one of the map T and I is semi-compact. Then the sequence $\{x_n\}$ defined by

\[
x_n = W(x_{n-1}, Ty_n, \alpha_n), \\
y_n = W(x_{n-1}, Ix_n, \beta_n), \quad n \geq 1
\]

converges strongly to $p \in F$.

Proof. Choose $T_i = T$ and $I_i = I$ for all $i \in J$ in Theorem 2.6. \hfill \Box

Theorem 2.10. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η. Let T be a I-nonexpansive mapping and I be a nonexpansive mapping on K such that $F = F(T) \cap F(I) \neq \emptyset$. Then the sequence $\{x_n\}$ defined by

\[
x_n = W(x_{n-1}, Ty_n, \alpha_n), \\
y_n = W(x_{n-1}, Ix_n, \beta_n), \quad n \geq 1
\]

Δ--converges to a common fixed point of T and I.

Proof. Choose $T_i = T$ and $I_i = I$ for all $i \in J$ in Theorem 2.7. \hfill \Box

Finally, we give an example to show that there do exist two finite families of mentioned mappings with a nonempty common fixed point set.

Example 2.11. Let $X = \mathbb{R}$. Define $T_n : X \to X$ and $I_n : X \to X$ as $T_n x = \frac{n^2 + 2x + 1}{2n^2}$ and $I_n x = \frac{2x + n - 1}{2n}$ for all $n \in \mathbb{N}$. Then $\{T_i : i \in J\}$ is a finite family of nonexpansive mappings and $\{I_i : i \in J\}$ is a finite family of I_i-nonexpansive mappings on X with common fixed point set $F = \{1\}$.

Remark 2.12. Our result generalize, extend and improve results of Gunduz and Akbulut [25, 26, 27, 28] and Khan et al. [10] in view of more general class of mappings.

References

520

Author information

Birol GUNDUZ, Department of Mathematics, Faculty of Science and Art, Erzincan University, Erzincan, 24000, Turkey.

E-mail: birolgunduz@gmail.com

Received: February 10, 2017.

Accepted: June 9, 2017.