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Abstract An attempt has been made in this paper to decompose the real line R into two
complementary sets whose ratio sets have empty interior. Another decomposition of the real
line has been made into uncountable pairwise disjoint sets {Xα}α<ωc , where ωc is the smallest
uncountable ordinal, i.e.

∪
α<ωc

Xα = R and Xα ∩Xβ = ∅ for all α < ωc, β < ωc such that ratio

sets of Xα (α < ωc) have non-empty interior.

1 Introduction

First we recall a classical result on decomposition of real line R as follows:

Theorem 1.1. ([8] page 4) The real line can be decomposed into two complementary sets A and
B such that A is of first category and B is of measure zero.

Several authors ([5], [6], [9]) generalized the above result in different ways. Also, Miller [7]
decomposed the real line in the sense of Difference set, where the Difference set of a linear set
A, written as D(A), is defined by D(A) = {a− b : a, b ∈ A}.
Motivated by the result of Miller [7], we are interested to decompose the real line in terms of
ratio sets. The notion ratio set of linear set was introduced by N.C. Bose Majumder [1] in the
following way:

Definition 1.2. The Ratio set of a linear set A of nonzero abscissa denoted by R(A), is defined
by R(A) = {a

b or b
a : a, b ∈ A}.

Also ratio of two linear sets A and B is defined by R(A,B) = {a
b : a ∈ A, b ∈ B \ {0}}.

Bose Majumder [1] established that ratio set R(A) of a linear set A with nonzero abscissa
having positive Lebesgue measure contains an interval with left hand end point 1.

Definition 1.3. ([8]) A set A is said to have the property of Baire if it can be expressed as
symmetric difference of an open set and a set of first category.

The category analogue of Bose Majumder’s result was established by Ganguly and Basu [3]
in the following way:
If A is a subset of nonzero reals with second category having the property of Baire, then the set
R(A,A) contains an interval of the form [1, ξ) (ξ > 1).
Bose Majumder’s result was improved by Ganguly and Bandopadhyay [2] as follows:
If A is a linear set with positive abscissa having positive Lebesgue measure then there exists an
interval I such that R(A ∩ I) = R(I).
Now we consider following three classes of subsets of R:

(i) M+ denotes the collection of all Lebesgue measurable subset of R with positive measure.

(ii) B+ denotes the collection of all Baire second category subset of R with property of Baire.
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(iii) A = {A ⊆ R : R(A) has non-empty interior }.

Then by the result of Bose Majumder [1] and the result of Ganguly and Basu [3] the above
classes can be summarized by the following formula:

M+ ∪ B+ ⊂ A (1.1)

It is interesting to see that the Ratio set of Cantor ternary set C contains an interval ( [4]). Thus

C ∈ A but C /∈ M+
∪
B+

A linear set B is said to be ‘big’ in sense of measure if B ∈ M+ and B is said to be ‘big’ in
sense of category if B ∈ B+. On the other hand a linear set X is said to be ‘big’ in sense of ratio
if X ∈ A. So, Cantor set C is ‘small’ both in sense of measure and category but ‘big’ in sense
of ratio.

Our intention in this paper is to decompose the real line into two complementary sets A and
B such that both the sets R(A) and R(B) have empty interior. Additionally we show that the
real line can be decomposed into uncountable pairwise disjoint sets {Xα}α<ωc , where ωc is the
smallest uncountable ordinal, i.e.

∪
α<ωc

Xα = R and Xα ∩Xβ = ∅ for all α < ωc, β < ωc such

that ratio sets of Xα (α < ωc) have non-empty interior.

2 Results

Theorem 2.1. There exist two complementary subsets A and B of R i.e. R = A ∪B, A ∩B = ∅
such that R(A) and R(B) have empty interior.

Proof. P = {xi /∈ {0, 1} : i ∈ N, the set of natural numbers} be the dense subset of R such that
x ∈ P implies 1

x ∈ P . Clearly such dense set exists. Let {yα : α < ωc} be a well ordering of R∗

(= R \{0}), where ωc is the smallest ordinal which is equal to that of R. Now A and B will be
constructed by the following way:

Place y0, the smallest real with respect to our well ordering in A0. Put all numbers of the form
y0.xn in B0 for n ∈ N. Put all numbers of the form y0.xn.xm in A0 such that xn.xm /∈ P ∪{1} for
n,m ∈ N. Put all the number of the form y0.xn.xm.xp in B0, (n,m, p ∈ N) such that products
of two and more xn, (n ∈ N) are not in P ∪ {1}. Continue this process of alternatively putting
elements in A0 and B0 using the ordinary induction, countably many times.
Clearly A0 and B0 are disjoint countable sets. So, there exists a smallest element say y1 relative
to our well ordering that has not been put in either A0 or B0. Put y1 in A1 with A0 ∩A1 = ∅ and
B0 ∩A1 = ∅. Put all numbers of the form y1.xn in B1 for n ∈ N with A0 ∩B1 = ∅, B0 ∩B1 = ∅
and A1 ∩ B1 = ∅. Put all numbers of the form y1.xn.xm in A1 such that xn.xm /∈ P ∪ {1} for
n,m ∈ N. Put all numbers of the form y1.xn.xm.xp in B1, (n,m, p ∈ N) such that products of
two and more xn, (n ∈ N) are not in P ∪ {1}.
Continuing this procedure again by ordinary induction countably many times. Clearly A0, B0, A1
and B1 are pairwise mutually disjoint countable sets. So, there exist a smallest element yα1 in
our well ordering that has not been put in

∪
β<α1

Aβ or
∪

β<α1

Bβ .

Put yα1 in Aα1 with Aβ ∩ Aα1 = ∅, Bβ ∩ Aα1 = ∅, β < α1. Put all number of the form
yα1 .xn, (n ∈ N) in Bα1 with Aβ ∩ Bα1 = ∅, Bβ ∩ Bα1 = ∅ and Aα1 ∩ Bα1 = ∅, β < α1. Put all
numbers of the form yα1 .xn.xm in Aα1 such that xn.xm /∈ P ∪{1} for n,m ∈ N. Put all numbers
of the form yα1 .xn.xm.xp in Bα1 ,(n,m, p ∈ N) such that products of two and more xn, (n ∈ N)
are not in P ∪ {1}.
By using transfinite induction we obtain two sets A∗ =

∪
α<ωc

Aα, B =
∪

α<ωc

Bα such that R∗

= A∗ ∪B. Clearly A∗ ∩B = ∅. Consider A = A∗ ∪ {0}. Then A ∪B = R with A ∩B = ∅. If
a1(= 0) and a2(̸= 0) are two elements of A, then a1

a2
= 0 /∈ P . Consider two distinct non zero



626 D.K.Ganguly and Dhananjoy Halder

elements a1 and a2 in A. If they are both in the same “hierarchy" of our process, that is if

a1 = yαi.xp1 .xp2 ..........xpn(1)

a2 = yαi .xp1 .xp2 .....xpn(1)
.xq1 .xq2 ....xqn(2)

where n(1), n(2) are both non-negative even integers. Then a2
a1

= xq1 .xq2 ....xqn(2)
/∈ P , where n(2)

is non-negative even integers. Since a2
a1

/∈ P , therefore a1
a2

/∈ P .
If a1 and a2 are not in same “hierarchy" in our construction then

a1 = yαi .xp1 .xp2 ..........xpn(1)

a2 = yαj .xq1 .xq2 .........xqn(2)

where n(1), n(2) are both non-negative even integers. Now we shall show that a2
a1

/∈ P . If possible
let a2

a1
= xi ∈ P , i ∈ N. Then

a2 = a1.xi = yαi
.xp1 .xp2 ....xpn(1)

.xi (2.1)

If xi, (i ∈ N) is not reciprocal with each of xp1 , xp2 , ...., xpn(1)
then from the relation (2.1),

a2 ∈ B, since n1 is non-negative even integer, a contradiction.
If xi, (i ∈ N) is reciprocal with each of xp1 , xp2 , ...., xpn(1)

then from the relation (2.1), a2 ∈ B,
since n1 is non-negative even integer, a contradiction.
Hence a2 = yαjxq1xq2 ....xqn(2)

∈ A ∩ B, a contradiction. Similarly a1
a2

/∈ P . Therefore R(A)

does not contain any interval. A similar argument shows that R(B) contains no interval. Hence
the result.

Remark: From the above theorem both A,B /∈ A. So, R is the union of two disjoint ‘small’
sets in sense of ratio.

Our next theorem will show that the real line can be expressed as uncountable union of pair-
wise disjoint ‘big’ sets in the sense of ratio.

Theorem 2.2. There exist a pairwise disjoint collection of sets of reals {Xα : α < ωc} such that
R(Xα) = R for every α < ωc and R =

∪
α<ωc

Xα ( Here ωc denotes the smallest ordinal whose

cardinal is equal to that of R).

Proof. We use diagonal method to construct a collection of sets {Xα : α < ωc} with desire
properties. Let {yα : α < ωc} be the well ordering of R, where ωc is the smallest ordinal whose
cardinal is equal to that of R.
For y1 ∈ R, there exist two reals a11, b11 such that b11 = a11y1; For y2 ∈ R, there exist

a12, b12 ∈ R \{a11, b11}

such that b12 = a12y2. For same y1 there exist another pair of

a21, b21 ∈ R \{a11, b11, a12, b12}

such that b21 = a21y1. Similarly for the same y2 there exist

a22, b22 ∈ R \{a11, b11, a12, b12, a21, b21}

such that b22 = a22y2.
Suppose α < ωc and all pairs (β1, β2), β1, β2 < α we have

aβ1β2 , bβ1β2 ∈ R \({aγ1γ2 , bγ1γ2 : γ1, γ2 < β2} ∪ {aδ1β2 , bδ1β2 : δ1 < β1}) such that
bβ1β2 = aβ1β2yβ2 , for all β1 < β2

and

aβ1β2 , bβ1β2 ∈ R \({aγ1γ2 , bγ1γ2 : γ1, γ2 < β1} ∪ {aδ1β1 , bδ1β1 : δ1 < β1} ∪ {aβ1δ1 , bβ1δ1 : δ1 < β2})
such that bβ1β2 = aβ1β2yβ2 , for all β1 ≥ β2.
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Let us consider A = {aβ1β2 , bβ1β2 : β1, β2 < α}. Since card(A) ≤ card α < card ωc. Therefore,
there exist

aαβ , bαβ ∈ R \({aγδ, bγδ : γ, δ < β} ∪ {aζβ , bζβ : ζ < α}) such that bαβ = aαβyβ for each
α < β < ωc

and

aαβ , bαβ ∈ R \ ({aγδ, bγδ : γ, δ < α} ∪ {aζα, bζα : ζ < α} ∪ {aαζ , bαζ : ζ < β})

such that bαβ = aαβyβ for each β ≤ α < ωc.

So, we get transfinite sequence of reals {aαβ , bαβ}α,β<ωc such that bαβ = aαβyβ for α, β < ωc.
Now we consider Xα = {aαβ , bαβ : β < ωc}, for each α < ωc. Then clearly {Xα}α<ωc is an
uncountable sequence of pairwise disjoint subsets of R with R(Xα) = R for each α < ωc. If∪
α<ωc

Xα ̸= R, put all the elements of R \
∪

α<ωc

Xα in X1 we get desired result.
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