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Abstract In this paper, we introduce a new distance-based topological index of a graph G,

called a k-distance degree index. It is defined as Nk(G) =

diam(G)∑
k=1

(
∑

v∈V (G)

dk(v))k, where

dk(v) = |Nk(v)| = |{u ∈ V (G) : d(v, u) = k}| is the k-distance degree of a vertex v in G,
d(u, v) is the distance between vertices u and v in G and diam(G) is the diameter of G. Ex-
act formulas of the Nk-index for some well-known graphs are presented. Bounds for Nk-index
and some other interesting results are established. It is shown that, Nk-index of any graph G
is an even integer number. In addition, an explicit formulae of a cartesian product of graphs
are presented and we apply this result to compute the Nk-index of some graphs (of chemical and
computer science interest) like hypercube Qd, Hamming graphs H(d, n), nanotube R = Pn2Cm

and nanotori S = Cn2Cm, etc.

1 Introduction

Throughout this paper, we consider only simple connected graphs, i.e., finite and connected
graph without loops, multiple and directed edges. A graph G = (V,E) is said to be connected if
there is a path between every pair of its vertices. As usual, we denote by n = |V | and m = |E|
to the number of vertices and edges in a graph G, respectively. The distance d(u, v) between any
two vertices u and v of G is equal to the length (number of edges in) a shortest path connecting
them. For a vertex v ∈ V and a positive integer k, the open k-neighborhood of v in a graph G,
denoted by Nk(v/G) or simply Nk(v), is defined as, Nk(v/G) = {u ∈ V (G) : d(u, v) = k} and
the closed k-neighborhood of v is Nk[v/G] = Nk(v/G) ∪ {v}. The k-degree of a vertex v in G,
denoted dk(v/G) (or simply dk(v) if no misunderstanding), is defined as dk(v/G) = |Nk(v/G)|.
It is clearly that d1(v/G) = d(v/G) for every v ∈ V . A vertex of degree equals to zero in G is
called an isolated vertex and a vertex of degree one is called a pendant vertex. The graph with
no vertices (and hence no edges) is the null graph. Any graph with just one vertex is referred
to as trivial graph and denoted K1. The complement G of a graph G is a graph with vertex set
V (G) and two vertices of G are adjacent if and only if they are not adjacent in G. A totally
disconnected graph Kn is one in which no two vertices are adjacent (that is, one whose edge set
is empty). If a graph G consists of p ≥ 2 disjoint copies of a graph H , then we write G = pH .
For a vertex v of G, the eccentricity e(v) = max{d(v, u) : u ∈ V (G)}. The radius of G is
rad(G) = min{e(v) : v ∈ V (G)} and the diameter of G is diam(G) = max{e(v) : v ∈ V (G)}.

A topological index of a graph G is a numerical parameter mathematically derived from
the graph structure. It is a graph invariant thus it does not depend on the labeling or pictorial rep-
resentation of the graph and it is the graph invariant number calculated from a graph representing
a molecule. The topological indices of molecular graphs are widely used for establishing cor-
relations between the structure of a molecular compound and its physic-chemical properties or
biological activity. The topological indices which are definable by a distance function d(., .) are
called a distance-based topological index. All distance-based topological indices can be derived
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from the distance matrix or some closely related distance-based matrix, for more information on
this matter see [2] and a survey paper [18] and the references therein.

There are many examples of such indices, especially those based on distances, which are
applicable in chemistry and computer science. The Wiener index (1947), defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v)

is the first and most studied of the distance based topological indices [17]. The hyper-Wiener
index,

WW (G) =
1
2

∑
{u,v}⊆V

(d(u, v) + d2(u, v))

was introduced in (1993) by M. Randic [13]. The Harrary index

H(G) =
∑

{u,v}⊆V

1
d2(u, v)

was introduced in (1992) by Mihalic et al. [10]. In spite of this, the Harary index is nowadays
defined as [8, 11]

H(G) =
∑

{u,v}⊆V

1
d(u, v)

The Schultz index
S(G) =

∑
{u,v}⊆V

(d(u) + d(v))d(u, v)

was introduced in (1989) by H. P. Schultz [14], A. Dobrynin et al. in (1994) also proposed the
Schultz index and called it the degree distance index and denoted DD(G) [1]. S. Klavzar and I
Gutman, motivated by Schultz index, introduced in (1997) the second kind of Schultz index

S∗(G) =
∑

{u,v}⊆V

d(u)d(v)d(u, v)

called modified Schultz (or Gutman) index of G [9]. The eccentric connectivity index

ξc =
∑
v∈V

d(v)e(v)

was proposed by Sharma et al. [15]. For more details and examples of distance-based topological
indices, we refer the reader to [2, 18, 12, 6] and the references therein.

For any terminology or notation not mention here, we refer to books [3, 5].

In this paper, we introduce a new distance-based topological index of a graph G = (V,E),
called a k-distance degree index (shortly Nk-index). It is defined as Nk(G) =

∑diam(G)
k=1 (

∑
v∈V (G) dk(v))k.

We present the exact formulas of the Nk-index for some well-known graphs as the complete
graph Kn, the path Pn, the cycle Cn, the star K1,n−1, the complete bipartite Kr,s and the wheel
Wn = K1 + Cn−1. Upper and lower bounds on Nk-index of G and other some interesting
results are established. In addition, an explicit formula for the cartesian product of graphs are
computed. Finally, the Nk-index formula of the cartesian product applied to some graphs like
hypercube Qn, Hamming graphs H(r, s), nanotube R = Pr2Cs and nanotori S = Cr2Cs, etc.

2 The Nk-index of graphs

Definition 2.1. For a connected graph G with n vertices, the Nk-index of G, is defined as

Nk(G) =

diam(G)∑
k=1

(
∑

v∈V (G)

dk(v)) k.
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To illustrate the Nk-index of a graph, firstly, we consider the following remarks.

Remark 2.2. Let G be a connected graph. Then for a vertex v ∈ V (G)

(i) Since, d(v, u) = 0, for u ∈ V (G), if and only if v = u, it follows that d0(v) = |N0(v)| = 1.

(ii) If k > e(v), then dk(v) = 0.

Then, we discuss the following example.

Example 2.3. Let G be a graph with four vertices v1, v2, v3, v4 as in Figure 1.

w w
w
wv1 v2

v4

v3

Figure 1

It is clear that diam(G) = 2.
Hence,

Nk(G) =

e(v)∑
k=1

(∑
v∈V

dk(v)

)
k

= (
∑
v∈V

d1(v)).1 + (
∑
v∈V

d2(v)).2

= (d1(v1) + d1(v2) + d1(v3) + d1(v4)).1 + (d2(v1) + d2(v2) + d2(v3) + d2(v4)).2

= (1 + 3 + 2 + 2) + 2(2 + 0 + 1 + 1) = 16.

Since, for any two vertices u and v in a graph G, either u and v are adjacent and then u ∈
N1(v/G) (also v ∈ N1(u/G)) or u and v are not adjacent in G, then u /∈ N1(v/G) and v /∈
N1(u/G). If, without loss of the generality, u /∈ N1(v/G), then u ∈ Nk(v/G), for some 2 ≤ k ≤
diam(G). Using the definition of the complement G of G, if u /∈ N1(v/G), then u ∈ N1(v/G).

Thus,
diam(G)∪

k=2

Nk(v/G) = N1(v/G). That means
diam(G)∑

k=2

∑
v∈V (G)

dk(v/G) =
∑

v∈V (G)

d1(v/G).

Then, by using the well-known result d1(v/G) = n− 1− d1(v/G), the following result follows.

Lemma 2.4. Let G be a connected graph with n ≥ 2 vertices. Then

(i)
diam(G)∑

k=1

∑
v∈V (G)

dk(v) = n(n− 1).

(ii)
diam(G)∑

k=0

∑
v∈V (G)

dk(v) = n2.

Note that we can rewrite Nk-index of a graph G as Nk(G) =
∑

v∈V (G)

e(v)∑
k=1

dk(v).k

.

Theorem 2.5. For any a connected graph G of order n, size m and diam(G) = 2

Nk(G) = 2n(n− 1)− 2m.
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Proof. Let G be a connected graph of order n, size m and diameter diam(G) = 2 and let m be
the size of G. Since for any two distinct vertices v and u in G, either uv ∈ E(G) or uv ∈ E(G),
it follows that d2(v/G) = d1(v/G), for every v ∈ V (G). Hence,

Nk(G) =
2∑

k=1

(
∑

v∈V (G)

dk(v/G)).k

= (
∑

v∈V (G)

d1(v/G)).1 + (
∑

v∈V (G)

d2(v/G)).2

= (
∑

v∈V (G)

d1(v/G)).1 + (
∑

v∈V (G)

d1(v/G)).2

= 2m+ (2m).2 = 2m+ 4m

= 2m+ 4(
n(n− 1)

2
−m) = 2n(n− 1)− 2m.

We need the following definition to prove the next result.

Definition 2.6. [3] Power of a Graph: For a positive integer number k, kth power of a simple
graph G = (V,E) is the graph Gk whose vertex set is V (G), two distinct vertices being adjacent
in Gk if and only if their distance in G is at most k.

Theorem 2.7. For a positive integer number k and a connected nontrivial graph G, Nk-index is
an even integer number.

Proof. Let G be a connected nontrivial graph Of order n ≥ 2, size m and diameter diam(G).
Since V (G) = V (Gk) for every 1 ≤ k ≤ diam(G) and G = G1, it follows that dk(v/G) =

d1(v/Gk), for every v ∈ V (G). By the well-known results, for any graph G,
∑

v∈V (G)

d1(v/G) =

2|E(G)|, we obtain
∑

v∈V (G)

dk(v/G) =
∑

v∈V (G)

d1(v/G
k) = 2|E(Gk)|. Hence,

Nk(G) =

diam(G)∑
k=1

(
∑

v∈V (G)

dk(v/G)).k =

diam(G)∑
k=1

(2|E(Gk)|).k = 2(
diam(G)∑

k=1

(|E(Gk)|).k).

Since |E(Gk)| and k are integer numbers for every 1 ≤ k ≤ diam(G), it follows that
∑

v∈V (G)

|E(Gk)|.k

is an integer number. Therefore, Nk-index is an even integer number.

3 The Nk-index of some standard graphs

In this section, we compute the Nk-index of some well-known graphs such as complete graphs
Kn, paths Pn, cycles Cn, wheel W1,n, complete bipartite Kr,s and multipartite graphs Kn1,n2,...,nt ,
t ≥ 3.

Proposition 3.1. For n ≥ 2,
Nk(Kn) = n(n− 1).

Proof. Consider a complete graph Kn of order n ≥ 2. Since diam(Kn) = 1, it follows that

Nk(Kn) =

diam(Kn)∑
k=1

 ∑
v∈V (Kn)

dk(v)

 .k =
1∑

k=1

∑
v∈V (Kn)

d(v) = n(n− 1).

Proposition 3.2. For n ≥ 2,

Nk(Pn) =
n3 − n

3
.
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Proof. Consider a path graph Pn of order n ≥ 2. We prove the result of Nk-index of Pn only for
n is even. The proof for n is odd is analogous. Since diam(Pn) = n− 1, it follows that

Nk(Pn) =

n−1∑
k=1

 ∑
v∈V (Pn)

dk(v)

 .k

= (
∑

v∈V (Pn)

d1(v)).1 + (
∑

v∈V (Pn)

d2(v)).2 + ...+ (
∑

v∈V (Pn)

di(v)).i+ ...+ (
∑

v∈V (Pn)

dn−1(v)).(n− 1)

= (1 +

n-2 times︷ ︸︸ ︷
2 + 2 + ...+ 2+1).1 + (1 + 1 +

n-4 times︷ ︸︸ ︷
2 + 2 + ...+ 2+1 + 1).2 + ...

+ (

i times︷ ︸︸ ︷
1 + 1 + ...+ 1+

n-2i times︷ ︸︸ ︷
2 + 2 + ...+ 2+

i times︷ ︸︸ ︷
1 + 1 + ...+ 1).i+ ...+ (

n times︷ ︸︸ ︷
1 + 1 + ...+ 1).

n

2
+

(

n
2 −1 times︷ ︸︸ ︷

1 + 1 + ...+ 1+0 + 0 +

n
2 −1 times︷ ︸︸ ︷

1 + 1 + ...+ 1).(
n

2
+ 1) + ...+ (1 + 1 +

n−4 times︷ ︸︸ ︷
0 + 0 + ...+ 0+1 + 1).(n− 2)+

(1 +

n−2 times︷ ︸︸ ︷
0 + 0 + ...+ 0+1).(n− 1)

= 2(n− 1).1 + 2(n− 2).2 + ...+ 2(n− i).i+ ...+ 2(
n

2
).
n

2
+ ...+ 2(n− (n− 2)).(n− 2)+

2(n− (n− 1)).(n− 1)

= 2(n− 1).1 + 2(n− 2).2 + ...+ 2(n− i).i+ ...+ 2(2).(n− 2) + 2(1).(n− 1)

=

n−1∑
k=1

2(n− k).k = 2n
n−1∑
k=1

k − 2
n−1∑
k=1

k2

=
n3 − n

3
.

Proposition 3.3. For n ≥ 3,

Nk(Cn) =

{
n3

4 , if n even;
n(n2−1)

4 , if n odd.

Proof. Consider a cycle graph Cn of order n ≥ 3. Since diam(Cn) = ⌊n
2 ⌋ then we consider the

following cases

Case 1: If n is even, then diam(Cn) =
n
2 and dk(v) = 2, v ∈ V (Cn) and for every 2 ≤ k ≤

n
2 − 1 and dn

2
(v) = 1, for every v ∈ V (Cn). sequentially,

Nk(Cn) =

n
2∑

k=1

 ∑
v∈V (Cn)

dk(v)

 .k

=

n
2 −1∑
k=1

 ∑
v∈V (Cn)

2

 .k +

 ∑
v∈V (Cn)

1

 .
n

2

=

n
2 −1∑
k=1

(2n) .k +
n2

2

= 2n

n
2∑

k=1

k +
n2

2
=

n3

4
.
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Case 2: If n is odd, then diam(Cn) =
n−1

2 and dk(v) = 2, v ∈ V (Cn). sequentially,

Nk(Cn) =

n−1
2∑

k=1

 ∑
v∈V (Cn)

dk(v)

 .k

=

n−1
2∑

k=1

 ∑
v∈V (Cn)

2

 .k

=

n−1
2∑

k=1

(2n) .k

= 2n

n−1
2∑

k=1

.k =
n(n2 − 1)

4
.

Thus, Nk(Cn) =

{
n3

4 , if n even;
n(n2−1)

4 , if n odd.

A graph G is said to be a complete t-partite graph if there is a partition V1∪V2∪...∪Vt = V (G)
of the vertex set, such that uv ∈ E(G), if and only if u and v are in different parts of the partition.
If |Vi| = ni, for every 1 ≤ i ≤ t, then G is denoted by Kn1,n2,...,nt .

Corollary 3.4. [16] For any complete k-partite graph Kni,n2,...,nk
, the number of its edge is

m =
1
2

[( k∑
i=1

ni

)2

−
k∑

i=1

n2
i

]
.

From Theorem 2.5 and Corollary 3.4, the following results are immediately follows .

Proposition 3.5. For t ≥ 2, n = n1 + ...+nt and n1 ≥ n2 ≥ ... ≥ nt the Nk-index of a complete
t-partite Kn1,...,nt graph is

Nk(Kn1,n2,...,nt) = n(n− 2) +
t∑

i=1

n2
i .

Proposition 3.6. For 2 ≤ r ≤ s, the Nk-index of a complete bipartite graph Kr,s is

Nk(Kr,s) = 2(r + s)(r + s− 1)− 2rs.

Proposition 3.7. For n ≥ 2, the Nk-index of a star graph is

Nk(K1,n−1) = 2(n− 1)2.

Proposition 3.8. For n ≥ 4 the nk-index of a wheel W1,n = K1 + Cn with n+ 1 vertices is

Nk(W1,n) = 2n(n− 1).

4 Bounds for Nk-index of graphs

In this section, upper and lower bounds for Nk-index of a graph G and some interesting result
are established.

Theorem 4.1. Let G be a connected graph with n ≥ 2 vertices. Then

n(n− 1) ≤ Nk(G) ≤ n(n− 1)2.

The lower bound attains on complete graphs Kn, for n ≥ 2, whereas the upper bound attains on
K2.



682 Ahmed Mohammed Naji and Soner Nandappa D

Proof. Let G be a connected graph with n ≥ 2 vertices. Then for 1 ≤ k ≤ diam(G),

diam(G)∑
k=1

 ∑
v∈V (G)

dk(v)

 . 1 ≤
diam(G)∑

k=1

 ∑
v∈V (G)

dk(v)

 .k ≤
diam(G)∑

k=1

 ∑
v∈V (G)

dk(v)

 . diam(G).

Then by Theorem 2.4, n(n− 1) ≤ Nk(G) ≤ n(n− 1)diam(G). Since for any connected graph
G, diam(G) ≤ n− 1, it follows that n(n− 1) ≤ Nk(G) ≤ n(n− 1)2.

Theorem 4.2. Let G be a connected graph with n ≥ 2 vertices. Then Nk(G) = n(n− 1), if and
only if G = Kn.

Proof. If G = Kn, for n ≥ 2, then Nk(G) = n(n − 1). Conversely, Suppose, to the contrary,
that G ̸= Kn. Then diam(G) ≥ 2 and m = |E(G)| < n(n−1)

2 . Thus by Theorem 2.5,

Nk(G) ≥
2∑

k=1

(
∑

v∈V (G)

dk(v)G).k = 2n(n− 1)− 2m > n(n− 1).

Corollary 4.3. Let G be a graph with n vertices and diameter diam(G). Then

(diam(G) + 1) diam(G) ≤ Nk(G) ≤ n(n− 1) diam(G).

In a connected graph G, a cut edge is an edge e ∈ E(G) that when removed (the vertices stay
in place) from a graph creates more components than previously in G or an if G− e results in a
disconnected graph.

Theorem 4.4. Let G be a connected graph and let e be not a cut edge of G. Then

Nk(G) ≤ Nk(G− e).

Proof. The proof is immediately consequences of the result diam(G−e) ≥ diam(G) and Corol-
lary 4.3.

Corollary 4.5. Let G be a connected graph with n vertices such that G ̸= Kn. Then

Nk(Kn) < Nk(G).

Corollary 4.6. Let G be a connected graph and let H be a connected spanning subgraph of G.
Then

Nk(G) ≤ Nk(H).

5 Cartesian product

Definition 5.1. [4] For given graphs G and H their Cartesian product, denoted by G�H , is
defined as the graph on the vertex set V (G)× V (H), and vertices u = (u1, v1) and v = (u2, v2)
of V (G)× V (H) are connected by an edge if and only if either (u1 = u2 and v1v2 ∈ E(H)) or
(v1 = v2 and u1u2 ∈ E(G)).

It is a well known fact that the Cartesian product of graphs is commutative and associa-
tive up to isomorphism, |V (G�H)| = |V (G)||V (H)|, the distance between any two vertices
u = (u1, v1) and v = (u2, v2) in G�H is given by dG�H(u, v) = dG(u1, u2) + dH(v1, v2). The
eccentricity e(u, v) is obtained in the same way. Also, diam(G�H) = diam(G) + diam(H).
Let diam(G) ≤ diam(H). If 1 ≤ i ≤ diam(H)− diam(G)− 1 and 1 ≤ j ≤ diam(G)− 1, then
ddiam(G)+i(u/G) = 0 and ddiam(H)+i(v/H) = 0.
For more details on cartesian product properties, see [4].

The following result is required to prove the next our main result.
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Theorem 5.2. [16] Let G and H be connected graphs of orders nG and nH , respectively. Then
for any vertex w = (u, v) ∈ G�H ,

dk(w/G�H) =
k∑

i=1

di(u/G) dk−i(v/H).

Theorem 5.3. Let G and H be nontrivial connected graphs. Then

Nk(G�H) = |V (H)|2 Nk(G) + |V (G)|2 Nk(H).

Proof. Let G and H be connected graphs of orders |V (G)| ≥ 2 and |V (H)| ≥ 2, respectively
and let D1 = diam(G) and D2 = diam(H). Then G�H is connected graph with |V (G)||V (H)|
vertices. Let w = (u, v) ∈ V (G�H) and suppose, without loss of generality, that D1 ≤ D2.
Then by Theorem 5.2, and properties of summation notion, we get

Nk(G�H) =

diam(G�H)∑
k=1

( ∑
w∈V (G�H)

dk(w/G�H)
)
. k

=
D1+D2∑
k=1

( ∑
(u,v)∈V (G�H)

dk((u, v)/G�H)
)
. k

=
D1+D2∑
k=1

( ∑
(u,v)∈V (G�H)

k∑
i=0

di(u/G) dk−i(v/H)
)
. k

=
∑

(u,v)∈G�H

(D1+D2∑
k=1

k∑
i=0

di(u/G) dk−i(v/H)
)
. k

=
∑

(u,v)∈G�H

[
(d0(u/G)d1(v/H) + d1(u/G)d0(v/H)). 1

+ (d0(u/G)d2(v/H) + d1(u/G)d1(v/H) + d2(u/G)d0(v/H)). 2 + ...

+ (d0(u/G)dD1(v/H) + d1(u/G)dD1−1(v/H) + ...+ dD1(u/G)d0(v/H)). D1 + ...

+ (d0(u/G)dD1+i(v/H) + d1(u/G)dD1+i−1(v/H) + ...

+ dD1+i(u/G)d0(v/H)).(D1 + i) + ...

+ (d0(u/G)dD2(v/H) + d1(u/G)dD2−1(v/H) + ...+ dD2(u/G)d0(v/H)). D2

+ (d0(u/G)dD2+1(v/H) + d1(u/G)dD2(v/H) + ...

+ dD2+1(u/G)d0(v/H)). (D2 + 1) + ...

+ (d0(u/G)dD2+j(v/H) + d1(u/G)dD2+j−1(v/H) + ...

+ dD2+j(u/G)d0(v/H)). (D2 + j) + ...

+ (d0(u/G)dD1+D2(v/H) + d1(u/G)dD1+D2−1(v/H) + ...

+ dD2(u/G)d0(v/H)). (D1 +D2)
]
.
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Nk(G�H) =
∑

(u,v)∈V (G�H)

[(
d0(u/G)d1(v/H) + d1(u/G)d0(v/H)

)
+ 2
(
d0(u/G)d2(v/H) + d1(u/G)d1(v/H) + d2(u/G)d0(v/H)

)
+ ...

+D1

(
d0(u/G)dD1(v/H) + d1(u/G)dD1−1(v/H) + ...+ dD1(u/G)d0(v/H)

)
+ ...

+ (D1 + i)
(
d0(u/G)dD1+i(v/H) + d1(u/G)dD1+i−1(v/H) + ...

+ dD1(u/G)di(v/H)
)
+ ...

+D2

(
d0(u/G)dD2(v/H) + d1(u/G)dD2−1(v/H) + ...

+ dD1(u/G)dD2−D1(v/H)
)

+ (D2 + j)
(
dj(u/G)dD2(v/H) + dj+1(u/G)dD2−1(v/H) + ...

+ dD1(u/G)dD2+i−D1(v/H)
)
+ ...

+ (D1 +D2 − 1)
(
dD1−1(u/G)dD2(v/H) + dD1(u/G)dD2−1(v/H))

+ (D1 +D2)(dD1(u/G)dD2(v/H))
]

=
∑
(u,v)

[
(d0(u/G)d1(v/H) + 2d0(u/G)d2(v/H) + ...+D2d0(u/G)dD2(v/H))

+ (d1(u/G)d0(v/H) + 2d1(u/G)d1(v/H) + ...+ (D2 + 1)d1(u/G)dD2(v/H))+

(2d2(u/G)d0(v/H) + 3d2(u/G)d1(v/H) + ...+ (D2 + 2)d2(u/G)dD2(v/H)) + ...

+ (jdj(u/G)d0(v/H) + (j + 1)d2(u/G)d1(v/H) + ...

+ (D2 + j)dj(u/G)dD2(v/H)) + ...

+ (D1dD1(u/G)d0(v/H) + (D1 + 1)dD1(u/G)d1(v/H) + ...

+ (D2 +D1)dD1(u/G)dD2(v/H))
]

=
∑
(u,v)

[
d0(u/G)(

D2∑
k=0

dk(v/H). k) + d1(u/G)(
D2∑
k=0

dk(v/H). (k + 1)) + ...

+ dj(u/G)(
D2∑
k=0

dk(v/H). (k + j)) + ...+ dD1(u/G)(
D2∑
k=0

dk(v/H). (k +D1))
]

=
∑
(u,v)

[ D1∑
i=0

di(u/G)(
D2∑
k=0

dk(v/H). (k + i))
]

=
∑
(u,v)

[ D1∑
i=0

di(u/G)(
D2∑
k=0

dk(v/H). (k)) +
D1∑
i=0

di(u/G)(
D2∑
k=0

dk(v/H). (i))
]

= (
D1∑
i=0

∑
u∈V (G)

di(u/G))(
D2∑
k=1

∑
v∈V (H)

dk(v/H). k)

+ (
D2∑
k=0

∑
v∈V (H)

dk(v/H))(
D1∑
i=1

∑
u∈V (G)

di(u/G). i)

= |V (G)|2Nk(H) + |V (H)|2Nk(G).
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The Cartesian product of more than two graphs is defined inductively,

G1�G2�...�Gk = G1�(G2�...�Gk).

We denote by
k∏

i=1

Gi to G1�G2�...�Gk. It is clear that |V (
k∏

i=1

Gi)| =
k∏

i=1

|V (Gi)|.

Theorem 5.4. Let G1, G2, ..., Gt, for t ≥ 2 be nontrivial connected graphs with n1, n2, ..., nt

vertices, respectively. Then

Nk(
t∏

i=1

Gi) =
t∑

i=1

 t∏
j=1
j ̸=i

n2
j

 Nk(Gi).

Proof. Let G1, G2, ..., Gt, for t ≥ 2, be connected graphs with n1, n2, ..., nt vertices, respectively.

Then we set
t∏

i=1

ni = n1n2....nt is a usual product of integer numbers. We prove this result by

mathematical induction.

(i) The result is true for t = 2, by Theorem 5.3.

(ii) Assume there is a t ≥ 2 such that Nk(
t∏

i=1

Gi) =
t∑

i=1

 t∏
j=1
j ̸=i

n2
j

 Nk(Gi).

(iii) Now we have to prove that the result is true for t+1. So let
t+1∏
i=1

Gi = (
t∏

i=1

Gi)�Gt+1, where

Gt+1 is a connected graph of order nt+1. Then

Nk(
t+1∏
i=1

Gi) = Nk

(
(

t∏
i=1

Gi)�Gt+1

)

= (n2
t+1)Nk(

t∏
i=1

Gi) +

(
t∏

i=1

ni

)2

Nk(Gt+1)

= (
t+1∏
j=2

n2
j)Nk(G1) + (

t+1∏
j=1
j ̸=2

n2
j)Nk(G2) + ...

+ (
t+1∏
j=1
j ̸=t

n2
j)Nk(Gt) + (

t+1∏
j=1

j ̸=t+1

n2
j)Nk(Gt+1)

=
t+1∑
i=1

t+1∏
j=1
j ̸=i

n2
j

Nk(Gi).

Therefore, the result is true for every positive integer t ≥ 2.

Corollary 5.5. Let G be a connected graph with n ≥ 2 vertices. Then for t ≥ 1

Nk(
t∏

i=1

G) = tn2t−2Nk(G).
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By Theorem 5.4 and Corollary 5.5, we can compute the Nk-index for several classes of
graphs which defined as a cartesian product of graphs. For examples, hypercube graph, Ham-
ming graphs, (n × m)-grid graphs, n-prism graph and nanotube graphs. etc. see[3, 7]. Such
graphs appear in many applications, for instance in the theory of communication networks and
in chemistry.

Definition 5.6. [7]

(i) A Hypercube graph Qd is the Cartesian product of d copies of K2.

(ii) The Hamming graph H(d, n) is, equivalently, the Cartesian product of d complete graphs
Kn.

Example 5.7. For d ≥ 1,

(i) Nk(Qd) = d22d−1.

(ii) Nk(H(d, n)) = dn2d(1 − 1
n).

Definition 5.8. [3]

(i) The (n×m)-grid graphs G(n,m) is the cartesian product of the path Pn by the path Pm.

(ii) A prism graph Yn is the Cartesian product of a cycle Cn by K2.

(iii) The C4 nanotube graph R is the Cartesian product of a cycle Cn by a path Pm.

(iv) The nanotori graph S is the Cartesian product of a cycle Cn by a cycle Cm.

Example 5.9. For n ≥ 3 and m ≥ 2,

(i) Nk(G(n,m)) = nm(n+m)(nm−1)
3 .

(ii) Nk(Yn) =

{
n3 + 2n2, if n is even;
n3 + 2n2 − n, if n is odd.

(iii) Nk(R) = Nk(Cn2Pm) =

{
n2m(3nm+4m2−4)

12 , if n is even;
nm(3n2m−3m+4nm2−4n)

12 , if n is odd.

(iv) Nk(S) = Nk(Cn2Cm) =


n2m2(n+m)

4 , if n and m are even;
n2m(m2+nm−1)

4 , if n is even and m is odd;
nm2(n2+nm−1)

4 , if n is odd and m is even;
nm(n+m)(nm−1)

4 , if n and m are odd.

6 Conclusions

In this paper, the new distance-based topological index, called a k-distance degree index (Shortly,
Nk-index), of graphs is introduced. It is shown that the Nk-index of a graph is even integer num-
ber. Bounds and interesting result for Nk-index are obtained. Exact formulaes of the Nk-index
for some well-known graphs are presented. Finally, the exact formulaes of the Nk-index for
Cartesian product of graphs are computed.

Open Problems
• Compute the values of Nk-index of some others families of graphs.
• Compute the values of Nk-index of some others operations on graphs, as line graph, com-

plement of graph, corona product of graphs, etc.
• Find the relationships between Nk-index with other indices of a graph.
• Find the relationships between Nk-index of a graph with other parameters of a graph, such

as maximum degree ∆(G), minimum degree δ(G), clique number ω(G), chromatic number
χ(G) and etc.

• Find the relationships between Nk-index of a graph with other distance-based topological
indices of a graph.
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