The k-Distance degree index of a Graph

Ahmed Mohammed Naji and Soner Nandappa D

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C07; Secondary 05C12, 05C76, 05C31.

Keywords and phrases: Degrees (of vertices), distance in graphs, k-degrees, topological index, k-distance degree index.

The authors wishes to express his gratitude to referees and the Editor Professor Ayman Badawi for their useful comments and suggestions that certainly improved the original manuscript.

Abstract In this paper, we introduce a new distance-based topological index of a graph G, called a k-distance degree index. It is defined as $N_k(G) = \sum_{k=1}^{diam(G)}(\sum_{v \in V(G)} d_k(v))k$, where $d_k(v) = |N_k(v)| = |\{u \in V(G) : d(v, u) = k\}|$ is the k-distance degree of a vertex v in G, $d(v, u)$ is the distance between vertices u and v in G and $diam(G)$ is the diameter of G. Exact formulas of the N_k-index for some well-known graphs are presented. Bounds for N_k-index and some other interesting results are established. It is shown that, N_k-index of any graph G is an even integer number. In addition, an explicit formulae of a cartesian product of graphs are presented and we apply this result to compute the N_k-index of some graphs (of chemical and computer science interest) like hypercube Q_d, Hamming graphs $H(d, n)$, nanotube $R = P_n \square C_m$ and nanotori $S = C_n \square C_m$, etc.

1 Introduction

Throughout this paper, we consider only simple connected graphs, i.e., finite and connected graph without loops, multiple and directed edges. A graph $G = (V, E)$ is said to be connected if there is a path between every pair of its vertices. As usual, we denote by $n = |V|$ and $m = |E|$ to the number of vertices and edges in a graph G, respectively. The distance $d(u, v)$ between any two vertices u and v of G is equal to the length (number of edges in) a shortest path connecting them. For a vertex $v \in V$ and a positive integer k, the open k-neighborhood of v in a graph G, denoted by $N_k(v)$ (or simply $N_k(v)$), is defined as $N_k(v) = \{u \in V(G) : d(u, v) = k\}$ and the closed k-neighborhood of v is $N_k[v] = N_k(v) \cup \{v\}$. The k-degree of a vertex v in G, denoted $d_k(v)$ (or simply d_v if no misunderstanding), is defined as $d_k(v) = |N_k(v)|$. It is clearly that $d_1(v) = d(v)$ for every $v \in V$. A vertex of degree equals to zero in G is called an isolated vertex and a vertex of degree one is called a pendant vertex. The graph with no vertices (and hence no edges) is the null graph. Any graph with just one vertex is referred to as trivial graph and denoted K_1. The complement \overline{G} of a graph G is a graph with vertex set $V(G)$ and two vertices of \overline{G} are adjacent if and only if they are not adjacent in G. A totally disconnected graph K_n is one in which no two vertices are adjacent (that is, one whose edge set is empty). If a graph G consists of $p \geq 2$ disjoint copies of a graph H, then we write $G = pH$. For a vertex v of G, the eccentricity $e(v) = \max\{d(v, u) : u \in V(G)\}$. The radius of G is $rad(G) = \min\{e(v) : v \in V(G)\}$ and the diameter of G is $diam(G) = \max\{e(v) : v \in V(G)\}$.

A topological index of a graph G is a numerical parameter mathematically derived from the graph structure. It is a graph invariant thus it does not depend on the labeling or pictorial representation of the graph and it is the graph invariant number calculated from a graph representing a molecule. The topological indices of molecular graphs are widely used for establishing correlations between the structure of a molecular compound and its physic-chemical properties or biological activity. The topological indices which are definable by a distance function $d(\cdot, \cdot)$ are called a distance-based topological index. All distance-based topological indices can be derived
from the distance matrix or some closely related distance-based matrix, for more information on this matter see [2] and a survey paper [18] and the references therein.

There are many examples of such indices, especially those based on distances, which are applicable in chemistry and computer science. The Wiener index (1947), defined as

\[W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u, v) \]

is the first and most studied of the distance based topological indices [17]. The hyper-Wiener index,

\[WW(G) = \frac{1}{2} \sum_{\{u,v\} \subseteq V} (d(u, v) + d^2(u, v)) \]

was introduced in (1993) by M. Randic [13]. The Harrary index

\[H(G) = \sum_{\{u,v\} \subseteq V} \frac{1}{d^2(u, v)} \]

was introduced in (1992) by Mihalic et al. [10]. In spite of this, the Harary index is nowadays defined as [8, 11]

\[H(G) = \sum_{\{u,v\} \subseteq V} \frac{1}{d(u, v)} \]

The Schultz index

\[S(G) = \sum_{\{u,v\} \subseteq V} (d(u) + d(v))d(u, v) \]

was introduced in (1989) by H. P. Schultz [14]. A. Dobrynin et al. in (1994) also proposed the Schultz index and called it the degree distance index and denoted DD(G) [1]. S. Klavzar and I Gutman, motivated by Schultz index, introduced in (1997) the second kind of Schultz index

\[S^*(G) = \sum_{\{u,v\} \subseteq V} d(u)d(v)d(u, v) \]

called modified Schultz (or Gutman) index of G [9]. The eccentric connectivity index

\[\xi = \sum_{v \in V} d(v)e(v) \]

was proposed by Sharma et al. [15]. For more details and examples of distance-based topological indices, we refer the reader to [2, 18, 12, 6] and the references therein.

For any terminology or notation not mention here, we refer to books [3, 5].

In this paper, we introduce a new distance-based topological index of a graph \(G = (V, E)\), called a \(k\)-distance degree index (shortly \(N_k\)-index). It is defined as

\[N_k(G) = \sum_{k=1}^{\text{diam}(G)} \left(\sum_{v \in V(G)} d_k(v) \right) k. \]

We present the exact formulas of the \(N_k\)-index for some well-known graphs as the complete graph \(K_n\), the path \(P_n\), the cycle \(C_n\), the star \(K_{1,n-1}\), the complete bipartite \(K_{r,s}\) and the wheel \(W_n = K_1 + C_{n-1}\). Upper and lower bounds on \(N_k\)-index of \(G\) and other some interesting results are established. In addition, an explicit formula for the cartesian product of graphs are computed. Finally, the \(N_k\)-index formula of the cartesian product applied to some graphs like hypercube \(Q_n\), Hamming graphs \(H(r, s)\), nanotube \(R = P_r \square C_s\) and nanotori \(S = C_r \square C_s\), etc.

2 The \(N_k\)-index of graphs

Definition 2.1. For a connected graph \(G\) with \(n\) vertices, the \(N_k\)-index of \(G\), is defined as

\[N_k(G) = \sum_{k=1}^{\text{diam}(G)} \left(\sum_{v \in V(G)} d_k(v) \right) k. \]
To illustrate the N_k-index of a graph, firstly, we consider the following remarks.

Remark 2.2. Let G be a connected graph. Then for a vertex $v \in V(G)$

(i) Since, $d(v, u) = 0$, for $u \in V(G)$, if and only if $v = u$, it follows that $d_0(v) = |N_0(v)| = 1$.

(ii) If $k > e(v)$, then $d_k(v) = 0$.

Then, we discuss the following example.

Example 2.3. Let G be a graph with four vertices v_1, v_2, v_3, v_4 as in Figure 1.

![Figure 1](image)

It is clear that $diam(G) = 2$. Hence,

$$N_k(G) = \sum_{k=1}^{diam(G)} \left(\sum_{v \in V(G)} d_k(v) \right) k$$

$$= \left(\sum_{v \in V(G)} d_1(v) \right) 1 + \left(\sum_{v \in V(G)} d_2(v) \right) 2$$

$$= (d_1(v_1) + d_1(v_2) + d_1(v_3) + d_1(v_4)).1 + (d_2(v_1) + d_2(v_2) + d_2(v_3) + d_2(v_4)).2$$

$$= (1 + 3 + 2 + 2) + 2(2 + 0 + 1 + 1) = 16.$$

Since, for any two vertices u and v in a graph G, either u and v are adjacent and then $u \in N_1(v/G)$ (also $v \in N_1(u/G)$) or u and v are not adjacent in G, then $u \notin N_1(v/G)$ and $v \notin N_1(u/G)$. If, without loss of the generality, $u \notin N_1(v/G)$, then $u \in N_k(v/G)$, for some $2 \leq k \leq diam(G)$. Using the definition of the complement \overline{G} of G, if $u \notin N_1(v/G)$, then $u \in N_1(v/\overline{G})$.

Thus, $\sum_{k=2}^{diam(G)} N_k(v/G) = N_1(v/\overline{G})$. That means $\sum_{k=2}^{diam(G)} \sum_{v \in V(G)} d_k(v/G) = \sum_{v \in V(G)} d_1(v/\overline{G})$.

Then, by using the well-known result $d_1(v/\overline{G}) = n - 1 - d_1(v/G)$, the following result follows.

Lemma 2.4. Let G be a connected graph with $n \geq 2$ vertices. Then

(i) $\sum_{k=1}^{diam(G)} \sum_{v \in V(G)} d_k(v) = n(n - 1)$.

(ii) $\sum_{k=0}^{diam(G)} \sum_{v \in V(G)} d_k(v) = n^2$.

Note that we can rewrite N_k-index of a graph G as $N_k(G) = \sum_{v \in V(G)} \left(\sum_{k=1}^{diam(G)} d_k(v).k \right)$.

Theorem 2.5. For any a connected graph G of order n, size m and $diam(G) = 2$

$$N_k(G) = 2n(n - 1) - 2m.$$
Proof. Let G be a connected graph of order n, size m and diameter $diam(G) = 2$ and let \overline{G} be the size of \overline{G}. Since for any two distinct vertices v and u in G, either $uv \in E(G)$ or $uv \in E(\overline{G})$, it follows that $d_2(v/G) = d_1(v/\overline{G})$, for every $v \in V(G)$. Hence,

$$N_k(G) = \sum_{k=1}^{2} \left(\sum_{v \in V(G)} d_k(v/G) \right) \cdot k$$

$$= \left(\sum_{v \in V(G)} d_1(v/G) \right) \cdot 1 + \left(\sum_{v \in V(G)} d_2(v/G) \right) \cdot 2$$

$$= \left(\sum_{v \in V(G)} d_1(v/G) \right) \cdot 1 + \left(\sum_{v \in V(G)} d_1(v/\overline{G}) \right) \cdot 2$$

$$= 2m + (2m) \cdot 2 = 2m + 4m$$

$$= 2m + 4\left(\frac{n(n-1)}{2} - m\right) = 2n(n - 1) - 2m.$$

□

We need the following definition to prove the next result.

Definition 2.6. [3] Power of a Graph: For a positive integer number k, k^{th} power of a simple graph $G = (V, E)$ is the graph G^k whose vertex set is $V(G)$, two distinct vertices being adjacent in G^k if and only if their distance in G is at most k.

Theorem 2.7. For a positive integer number k and a connected nontrivial graph G, N_k-index is an even integer number.

Proof. Let G be a connected nontrivial graph. Of order $n \geq 2$, size m and diameter $diam(G)$. Since $V(G) = V(G^k)$ for every $1 \leq k \leq diam(G)$ and $G = G^1$, it follows that $d_k(v/G) = d_1(v/G^k)$, for every $v \in V(G)$. By the well-known results, for any graph G, $\sum_{v \in V(G)} d_1(v/G) = 2|E(G)|$, we obtain $\sum_{v \in V(G)} d_k(v/G) = \sum_{v \in V(G)} d_1(v/G^k) = 2|E(G^k)|$. Hence,

$$N_k(G) = \sum_{k=1}^{diam(G)} \left(\sum_{v \in V(G)} d_k(v/G) \right) \cdot k = \sum_{k=1}^{diam(G)} \left(2|E(G^k)| \right) \cdot k = 2 \sum_{k=1}^{diam(G)} \left(|E(G^k)| \right) \cdot k.$$

Since $|E(G^k)|$ and k are integer numbers for every $1 \leq k \leq diam(G)$, it follows that $\sum_{v \in V(G)} |E(G^k)| \cdot k$ is an integer number. Therefore, N_k-index is an even integer number. □

3 The N_k-index of some standard graphs

In this section, we compute the N_k-index of some well-known graphs such as complete graphs K_n, paths P_n, cycles C_n, wheel $W_{1,n}$, complete bipartite $K_{r,s}$ and multipartite graphs K_{n_1,n_2,\ldots,n_t}, $t \geq 3$.

Proposition 3.1. For $n \geq 2$,

$$N_k(K_n) = n(n - 1).$$

Proof. Consider a complete graph K_n of order $n \geq 2$. Since $diam(K_n) = 1$, it follows that

$$N_k(K_n) = \sum_{k=1}^{diam(K_n)} \left(\sum_{v \in V(K_n)} d_k(v) \right) \cdot k = \sum_{k=1}^{1} \sum_{v \in V(K_n)} d(v) = n(n - 1).$$

□

Proposition 3.2. For $n \geq 2$,

$$N_k(P_n) = \frac{n^3 - n}{3}.$$
Proof. Consider a path graph P_n of order $n \geq 2$. We prove the result of N_k-index of P_n only for n is even. The proof for n is odd is analogous. Since $\text{diam}(P_n) = n - 1$, it follows that

$$N_k(P_n) = \sum_{k=1}^{n-1} \left(\sum_{v \in V(P_n)} d_k(v) \right) \cdot k$$

$$= (\sum_{v \in V(P_n)} d_1(v) \cdot 1 + (\sum_{v \in V(P_n)} d_2(v) \cdot 2 + \cdots + (\sum_{v \in V(P_n)} d_i(v) \cdot i + \cdots + (\sum_{v \in V(P_n)} d_{n-1}(v) \cdot (n-1)$$

$$= (1 + 2 + 2 + \cdots + 2 + 1 + (1 + 1 + 2 + 2 + \cdots + 2 + 1 + 1).2 + \cdots + \underbrace{1 + \cdot \cdot \cdot + 1}_{\text{i times}} + \underbrace{1 + 2 + 2 + \cdots + 2 + 1 + 1 + \cdot \cdot \cdot + 1}_{\text{t times}} + i + \cdots + \underbrace{(1 + 1 + \cdot \cdot \cdot + 1) \cdot \frac{n}{2}}_{\text{t times}} + \underbrace{(1 + 0 + \cdot \cdot \cdot + 0 + 1 + 1 + \cdot \cdot \cdot + 1)}_{\text{n times}} + \underbrace{(n - 1)}_{\text{(n - 1)}}$$

$$= 2\cdot(n - 1) \cdot 1 + 2\cdot(1 + 2 + 2 \cdot \cdot \cdot + 2 + (n - i) \cdot i + \cdots + 2\cdot\frac{n}{2}) + 2\cdot(1 + 0 + \cdot \cdot \cdot + 0 + 1 + 1 + \cdot \cdot \cdot + 1). (n - 2) + 2\cdot(1 + 0 + \cdot \cdot \cdot + 0 + 1 + 1 + \cdot \cdot \cdot + 1). (n - 1)$$

$$= 2\cdot(n - 1) \cdot 1 + 2\cdot(2(n - 2) + 2(n - i) \cdot i + \cdots + 2\cdot(2) \cdot (n - 2) + 2\cdot(1) \cdot (n - 1)$$

$$= \sum_{k=1}^{n-1} 2(n - k) \cdot k = 2n \sum_{k=1}^{n-1} k - 2 \sum_{k=1}^{n-1} k^2$$

$$= \frac{n^3 - n}{3}.$$

\[\square\]

Proposition 3.3. For $n \geq 3$,

$$N_k(C_n) = \begin{cases} \frac{n^3}{4}, & \text{if } n \text{ even;} \\ \frac{n^3}{4(n^2 - 1)}, & \text{if } n \text{ odd.} \end{cases}$$

Proof. Consider a cycle graph C_n of order $n \geq 3$. Since $\text{diam}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor$ then we consider the following cases

Case 1: If n is even, then $\text{diam}(C_n) = \frac{n}{2}$ and $d_k(v) = 2$, $v \in V(C_n)$ and for every $2 \leq k \leq \frac{n}{2} - 1$ and $d_2(v) = 1$, for every $v \in V(C_n)$. Sequentially,

$$N_k(C_n) = \sum_{k=1}^{\frac{n}{2}} \left(\sum_{v \in V(C_n)} d_k(v) \right) \cdot k$$

$$= \frac{n}{2} \sum_{k=1}^{\frac{n}{2} - 1} \left(\sum_{v \in V(C_n)} 2 \right) \cdot k + \left(\sum_{v \in V(C_n)} 1 \right) \cdot \frac{n}{2}$$

$$= \frac{3}{2} \sum_{k=1}^{\frac{n}{2} - 1} (2n) \cdot k + \frac{n^2}{2}$$

$$= 2n \sum_{k=1}^{\frac{n}{2}} k + \frac{n^2}{2} = \frac{n^3}{4}.$$
The N_k-index of Graphs

Case 2: If n is odd, then $diam(C_n) = \frac{n-1}{2}$ and $d_k(v) = 2$, $v \in V(C_n)$. Sequentially,

\[
N_k(C_n) = \sum_{k=1}^{\frac{n-1}{2}} \left(\sum_{v \in V(C_n)} d_k(v) \right).k
= \sum_{k=1}^{\frac{n-1}{2}} \left(\sum_{v \in V(C_n)} 2 \right).k
= \sum_{k=1}^{\frac{n-1}{2}} (2n).k
= 2n \sum_{k=1}^{\frac{n-1}{2}} k = \frac{n(n^2 - 1)}{4}.
\]

Thus, $N_k(C_n) = \begin{cases} \frac{n^3}{4}, & \text{if } n \text{ even;} \\ \frac{n(n^2-1)}{4}, & \text{if } n \text{ odd.} \end{cases}$

A graph G is said to be a complete t-partite graph if there is a partition $V_1 \cup V_2 \cup \ldots \cup V_t = V(G)$ of the vertex set, such that $uv \in E(G)$, if and only if u and v are in different parts of the partition. If $|V_i| = n_i$, for every $1 \leq i \leq t$, then G is denoted by K_{n_1,n_2,\ldots,n_t}.

Corollary 3.4. [16] For any complete k-partite graph K_{n_1,n_2,\ldots,n_k}, the number of its edge is

\[
m = \frac{1}{2} \left(\sum_{i=1}^{k} n_i \right) - \sum_{i=1}^{k} n_i^2.
\]

From Theorem 2.5 and Corollary 3.4, the following results are immediately follows.

Proposition 3.5. For $t \geq 2$, $n = n_1 + \ldots + n_t$ and $n_1 \geq n_2 \geq \ldots \geq n_t$ the N_k-index of a complete t-partite K_{n_1,\ldots,n_t} graph is

\[
N_k(K_{n_1,\ldots,n_t}) = n(n-2) + \sum_{i=1}^{t} n_i^2.
\]

Proposition 3.6. For $2 \leq r \leq s$, the N_k-index of a complete bipartite graph $K_{r,s}$ is

\[
N_k(K_{r,s}) = 2(r+s)(r+s-1) - 2rs.
\]

Proposition 3.7. For $n \geq 2$, the N_k-index of a star graph is

\[
N_k(K_{1,n-1}) = 2(n-1)^2.
\]

Proposition 3.8. For $n \geq 4$ the n_k-index of a wheel $W_{1,n} = K_1 + C_n$ with $n + 1$ vertices is

\[
N_k(W_{1,n}) = 2n(n-1).
\]

4 Bounds for N_k-index of graphs

In this section, upper and lower bounds for N_k-index of a graph G and some interesting result are established.

Theorem 4.1. Let G be a connected graph with $n \geq 2$ vertices. Then

\[
n(n-1) \leq N_k(G) \leq n(n-1)^2.
\]

The lower bound attains on complete graphs K_n, for $n \geq 2$, whereas the upper bound attains on K_2.

Proof. Let G be a connected graph with $n \geq 2$ vertices. Then for $1 \leq k \leq \text{diam}(G)$,

$$\sum_{k=1}^{\text{diam}(G)} \left(\sum_{v \in V(G)} d_k(v) \right). 1 \leq \sum_{k=1}^{\text{diam}(G)} \left(\sum_{v \in V(G)} d_k(v) \right). k \leq \sum_{k=1}^{\text{diam}(G)} \left(\sum_{v \in V(G)} d_k(v) \right). \text{diam}(G).$$

Then by Theorem 2.4, $n(n-1) \leq N_k(G) \leq n(n-1)\text{diam}(G)$. Since for any connected graph G, $\text{diam}(G) \leq n-1$, it follows that $n(n-1) \leq N_k(G) \leq n(n-1)^2$. \hfill \qed

Theorem 4.2. Let G be a connected graph with $n \geq 2$ vertices. Then $N_k(G) = n(n-1)$, if and only if $G = K_n$.

Proof. If $G = K_n$, for $n \geq 2$, then $N_k(G) = n(n-1)$. Conversely, Suppose, to the contrary, that $G \neq K_n$. Then $\text{diam}(G) \geq 2$ and $m = |E(G)| < \frac{n(n-1)}{2}$. Thus by Theorem 2.5,

$$N_k(G) \geq \sum_{k=1}^{2} \left(\sum_{v \in V(G)} d_k(v) \right). k = 2n(n-1) - 2m > n(n-1).$$

Corollary 4.3. Let G be a graph with n vertices and diameter $\text{diam}(G)$. Then

$$(\text{diam}(G) + 1) \text{diam}(G) \leq N_k(G) \leq n(n-1) \text{diam}(G).$$

In a connected graph G, a cut edge is an edge $e \in E(G)$ that when removed (the vertices stay in place) from a graph creates more components than previously in G or an if $G - e$ results in a disconnected graph.

Theorem 4.4. Let G be a connected graph and let e be not a cut edge of G. Then

$$N_k(G) \leq N_k(G-e).$$

Proof. The proof is immediately consequences of the result $\text{diam}(G-e) \geq \text{diam}(G)$ and Corollary 4.3. \hfill \qed

Corollary 4.5. Let G be a connected graph with n vertices such that $G \neq K_n$. Then

$$N_k(K_n) < N_k(G).$$

Corollary 4.6. Let G be a connected graph and let H be a connected spanning subgraph of G. Then

$$N_k(G) \leq N_k(H).$$

5 Cartesian product

Definition 5.1. [4] For given graphs G and H, their Cartesian product, denoted by $G \square H$, is defined as the graph on the vertex set $V(G) \times V(H)$, and vertices $u = (u_1, v_1)$ and $v = (u_2, v_2)$ of $V(G) \times V(H)$ are connected by an edge if and only if either $(u_1 = u_2$ and $v_1v_2 \in E(H))$ or $(v_1 = v_2$ and $u_1u_2 \in E(G))$.

It is a well known fact that the Cartesian product of graphs is commutative and associative up to isomorphism, $|V(G \square H)| = |V(G)||V(H)|$, the distance between any two vertices $u = (u_1, v_1)$ and $v = (u_2, v_2)$ in $G \square H$ is given by $d_{G \square H}(u, v) = d_G(u_1, u_2) + d_H(v_1, v_2)$. The eccentricity $e(u, v)$ is obtained in the same way. Also, $\text{diam}(G \square H) = \text{diam}(G) + \text{diam}(H)$. Let $\text{diam}(G) \leq \text{diam}(H)$. If $1 \leq i \leq \text{diam}(H) - \text{diam}(G) - 1$ and $1 \leq j \leq \text{diam}(G) - 1$, then $d_{\text{diam}(G)+i(u/G)} = 0$ and $d_{\text{diam}(H)+j(v/H)} = 0$. For more details on cartesian product properties, see [4].

The following result is required to prove the next our main result.
Theorem 5.2. [16] Let G and H be connected graphs of orders n_G and n_H, respectively. Then for any vertex $w = (u, v) \in G \square H$,

$$d_k(w/G \square H) = \sum_{i=1}^{k} d_i(u/G) d_{k-i}(v/H).$$

Theorem 5.3. Let G and H be nontrivial connected graphs. Then

$$N_k(G \square H) = |V(H)|^2 N_k(G) + |V(G)|^2 N_k(H).$$

Proof. Let G and H be connected graphs of orders $|V(G)| \geq 2$ and $|V(H)| \geq 2$, respectively and let $D_1 = \text{diam}(G)$ and $D_2 = \text{diam}(H)$. Then $G \square H$ is connected graph with $|V(G)||V(H)|$ vertices. Let $w = (u, v) \in V(G \square H)$ and suppose, without loss of generality, that $D_1 \leq D_2$. Then by Theorem 5.2, and properties of summation notion, we get

$$N_k(G \square H) = \sum_{k=1}^{\text{diam}(G \square H)} \left(\sum_{w \in V(G \square H)} d_k(w/G \square H) \right) k$$

$$= \sum_{k=1}^{D_1+D_2} \left(\sum_{(u, v) \in V(G \square H)} d_k((u, v)/G \square H) \right) k$$

$$= \sum_{k=1}^{D_1+D_2} \left(\sum_{(u, v) \in V(G \square H)} \sum_{i=0}^{k} d_i(u/G) d_{k-i}(v/H) \right) k$$

$$= \sum_{(u, v) \in G \square H} \left[(d_0(u/G)d_1(v/H) + d_1(u/G)d_0(v/H)) + (d_0(u/G)d_2(v/H) + d_1(u/G)d_1(v/H) + d_2(u/G)d_0(v/H)). 2 + ...
+ (d_0(u/G)d_{D_1}(v/H) + d_1(u/G)d_{D_1-1}(v/H) + ... + d_{D_1}(u/G)d_0(v/H)). D_1 + ...
+ (d_0(u/G)d_{D_1+i}(v/H) + d_1(u/G)d_{D_1+i-1}(v/H) + ... + d_{D_1+i}(u/G)d_0(v/H)). (D_1 + i) + ...
+ (d_0(u/G)d_{D_2}(v/H) + d_1(u/G)d_{D_2-1}(v/H) + ... + d_{D_2}(u/G)d_0(v/H)). D_2 + ...
+ (d_0(u/G)d_{D_2+i}(v/H) + d_1(u/G)d_{D_2+i-1}(v/H) + ... + d_{D_2+i}(u/G)d_0(v/H)). (D_2 + i) + ...
+ (d_0(u/G)d_{D_1+D_2}(v/H) + d_1(u/G)d_{D_1+D_2-1}(v/H) + ... + d_{D_1+D_2}(u/G)d_0(v/H)). (D_1 + D_2) \right].$$
\[N_k(G \square H) = \sum_{(u,v) \in V(G \square H)} \left[\left(d_0(u/G)d_1(v/H) + d_1(u/G)d_0(v/H) \right) \right] \\
+ 2 \left(d_0(u/G)d_2(v/H) + d_1(u/G)d_1(v/H) + d_2(u/G)d_0(v/H) \right) + ... \\
+ D_1 \left(d_0(u/G)d_{D_1}(v/H) + d_1(u/G)d_{D_1-1}(v/H) + ... + d_{D_1}(u/G)d_0(v/H) \right) + ... \\
+ (D_1 + i) \left(d_0(u/G)d_{D_1+i}(v/H) + d_1(u/G)d_{D_1+i-1}(v/H) + ... \\
+ d_{D_1}(u/G)d_i(v/H) \right) + ... \\
+ D_2 \left(d_0(u/G)d_{D_2}(v/H) + d_1(u/G)d_{D_2-1}(v/H) + ... \\
+ d_{D_1}(u/G)d_{D_2-D_1}(v/H) \right) \\
+ (D_2 + j) \left(d_j(u/G)d_{D_2}(v/H) + d_{j+1}(u/G)d_{D_2-1}(v/H) + ... \\
+ d_{D_1}(u/G)d_{D_2+j}(v/H) \right) + ... \\
+ (D_1 + D_2 - 1) \left(d_{D_1-1}(u/G)d_{D_2}(v/H) + d_{D_1}(u/G)d_{D_2-1}(v/H) \right) \\
+ (D_1 + D_2)(d_{D_1+1}(u/G)d_{D_2}(v/H)) \right] \\
= \sum_{(u,v)} \left[\left(d_0(u/G)d_1(v/H) + 2d_0(u/G)d_2(v/H) + ... + D_2d_0(u/G)d_{D_2}(v/H) \right) \\
+ (d_1(u/G)d_0(v/H) + 2d_1(u/G)d_1(v/H) + ... + (D_2 + 1)d_1(u/G)d_{D_2}(v/H)) + \\
(2d_2(u/G)d_0(v/H) + 3d_2(u/G)d_1(v/H) + ... + (D_2 + 2)d_2(u/G)d_{D_2}(v/H)) + ... \\
+ (jD_1(u/G)d_0(v/H) + (j + 1)d_2(u/G)d_1(v/H) + ... \\
+ (D_2 + j)d_j(u/G)d_{D_2}(v/H) \right) + ... \\
+ (D_1D_2(u/G)d_0(v/H) + (D_1 + 1)d_{D_1}(u/G)d_1(v/H) + ... \\
+ (D_2 + D_1)d_{D_2}(u/G)d_{D_2}(v/H)) \right] \\
= \sum_{(u,v)} \left[\sum_{k=0}^{D_2} d_0(u/G)d_0(v/H) \right] \right] \\
= \sum_{(u,v)} \left[\sum_{k=0}^{D_2} d_1(u/G)d_0(v/H) \right] \right] \\
= \sum_{(u,v)} \left[\sum_{k=0}^{D_2} d_1(u/G)d_0(v/H) \right] \right] \\
= |V(G)|^2 N_k(H) + |V(H)|^2 N_k(G). \]
The Cartesian product of more than two graphs is defined inductively,
\[G_1 \square G_2 \square \ldots \square G_k = G_1 \square (G_2 \square \ldots \square G_k). \]
We denote by \(\prod_{i=1}^{k} G_i \) to \(G_1 \square G_2 \square \ldots \square G_k \). It is clear that \(|V(\prod_{i=1}^{k} G_i)| = \prod_{i=1}^{k} |V(G_i)| \).

Theorem 5.4. Let \(G_1, G_2, \ldots, G_t \), for \(t \geq 2 \) be nontrivial connected graphs with \(n_1, n_2, \ldots, n_t \) vertices, respectively. Then
\[N_k(\prod_{i=1}^{t} G_i) = \sum_{i=1}^{t} \left(\prod_{j=1}^{t} n_j^{\alpha_j} \right) N_k(G_i). \]

Proof. Let \(G_1, G_2, \ldots, G_t \), for \(t \geq 2 \), be connected graphs with \(n_1, n_2, \ldots, n_t \) vertices, respectively. Then we set \(\prod_{i=1}^{t} n_i = n_1 n_2 \ldots n_t \) is a usual product of integer numbers. We prove this result by mathematical induction.

(i) The result is true for \(t = 2 \), by Theorem 5.3.

(ii) Assume there is a \(t \geq 2 \) such that \(N_k(\prod_{i=1}^{t} G_i) = \sum_{i=1}^{t} \left(\prod_{j=1}^{t} n_j^{\alpha_j} \right) N_k(G_i) \).

(iii) Now we have to prove that the result is true for \(t + 1 \). So let \(\prod_{i=1}^{t+1} G_i = (\prod_{i=1}^{t} G_i) \square G_{t+1} \), where \(G_{t+1} \) is a connected graph of order \(n_{t+1} \). Then
\[N_k(\prod_{i=1}^{t+1} G_i) = N_k \left((\prod_{i=1}^{t} G_i) \square G_{t+1} \right) \]
\[= (n_{t+1}^2) N_k(\prod_{i=1}^{t} G_i) + \left(\prod_{j=1}^{t+1} n_j \right)^2 N_k(G_{t+1}) \]
\[= (\prod_{j=2}^{t+1} n_j^2) N_k(G_1) + (\prod_{j=1}^{t} n_j^2) N_k(G_2) + \ldots \]
\[+ (\prod_{j \neq t}^{t+1} n_j^2) N_k(G_t) + (\prod_{j=1}^{t+1} n_j^2) N_k(G_{t+1}) \]
\[= \sum_{i=1}^{t+1} \left(\prod_{j=1}^{t+1} n_j^{\alpha_j} \right) N_k(G_i). \]
Therefore, the result is true for every positive integer \(t \geq 2 \).

Corollary 5.5. Let \(G \) be a connected graph with \(n \geq 2 \) vertices. Then for \(t \geq 1 \)
\[N_k(\prod_{i=1}^{t} G) = t n^{2t-2} N_k(G). \]
By Theorem 5.4 and Corollary 5.5, we can compute the N_k-index for several classes of graphs which defined as a cartesian product of graphs. For examples, hypercube graph, Hamming graphs, $(n \times m)$-grid graphs, n-prism graph and nanotube graphs. etc. see[3, 7]. Such graphs appear in many applications, for instance in the theory of communication networks and in chemistry.

Definition 5.6. [7]

(i) A Hypercube graph Q_d is the Cartesian product of d copies of K_2.

(ii) The Hamming graph $H(d, n)$ is, equivalently, the Cartesian product of d complete graphs K_n.

Example 5.7. For $d \geq 1$,

(i) $N_k(Q_d) = d2^{2d-1}$.

(ii) $N_k(H(d, n)) = dn^{2d-1} \left(1 - \frac{1}{n}\right)$.

Definition 5.8. [3]

(i) The $(n \times m)$-grid graphs $G(n, m)$ is the cartesian product of the path P_n by the path P_m.

(ii) A prism graph Y_n is the Cartesian product of a cycle C_n by K_2.

(iii) The C_4 nanotube graph R is the Cartesian product of a cycle C_n by a path P_m.

(iv) The nanotori graph S is the Cartesian product of a cycle C_b by a cycle C_m.

Example 5.9. For $n \geq 3$ and $m \geq 2$,

(i) $N_k(G(n, m)) = \frac{nm(n+m)(nm-1)}{3}$.

(ii) $N_k(Y_n) = \begin{cases} n^3 + 2n^2, & \text{if } n \text{ is even;} \\ n^3 + 2n^2 - n, & \text{if } n \text{ is odd.} \end{cases}$

(iii) $N_k(R) = N_k(C_n \square P_m) = \begin{cases} \frac{n^2m(3nm+4m^2-4)}{12}, & \text{if } n \text{ is even;} \\ \frac{nm(3n^2m-3nm+4n^2-4n)}{12}, & \text{if } n \text{ is odd.} \end{cases}$

(iv) $N_k(S) = N_k(C_n \square C_m) = \begin{cases} \frac{n^2m^2(n+m)}{4}, & \text{if } n \text{ and } m \text{ are even;} \\ \frac{n^2m^2(n+m-1)}{4}, & \text{if } n \text{ is even and } m \text{ is odd;} \\ \frac{nm^2(n^2+nm-1)}{4}, & \text{if } n \text{ is odd and } m \text{ is even;} \\ \frac{nm(n+m)(nm-1)}{4}, & \text{if } n \text{ and } m \text{ are odd.} \end{cases}$

6 Conclusions

In this paper, the new distance-based topological index, called a k-distance degree index (Shortly, N_k-index), of graphs is introduced. It is shown that the N_k-index of a graph is even integer number. Bounds and interesting result for N_k-index are obtained. Exact formulaes of the N_k-index for some well-known graphs are presented. Finally, the exact formulaes of the N_k-index for Cartesian product of graphs are computed.

Open Problems

- Compute the values of N_k-index of some others families of graphs.
- Compute the values of N_k-index of some others operations on graphs, as line graph, complement of graph, corona product of graphs, etc.
- Find the relationships between N_k-index with other indices of a graph.
- Find the relationships between N_k-index of a graph with other parameters of a graph, such as maximum degree $\Delta(G)$, minimum degree $\delta(G)$, clique number $\omega(G)$, chromatic number $\chi(G)$ and etc.
- Find the relationships between N_k-index of a graph with other distance-based topological indices of a graph.
References

Author information

Ahmed Mohammed Naji and Soner Nandappa D, Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, India.
E-mail: ama.mohsen78@gmail.com & ndsoner@yahoo.co.in

Received: December 26, 2016.

Accepted: December 1, 2017.