SOME MULTIPLE INTEGRAL RELATIONS INVOLVING GENERAL CLASS OF POLYNOMIALS AND I-FUNCTION

Naseem A. Khan* and Yashwant Singh**

Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: 33C60.

Keywords and phrases: General class of polynomials, Multiple integral, I-function.

Abstract In the present paper, we obtain a finite integral involving general class of polynomials and I-function. Next with the application of this and the lemma due to Srivastava et al. [12], we obtain two general multiple integrals relation involving general class of polynomials, I-function and two arbitrary function f and g. By suitably specializing the functions f and g occurring in the main integral relation, a number of multiple integrals are evaluated which are new and quite general in nature.

1. Introduction:

The I-function introduced and studied by Saxena occurring in this paper is defined as follows [10]:

\[
I[z] = I_{p_1, q_1, r}^{m, n}[z] = \int_{L} \frac{\prod_{j=1}^{n} \Gamma(b_j - \beta_j \xi) \prod_{j=1}^{n} \Gamma(1 - a_j + \alpha_j \xi)}{\prod_{j=1}^{r} \Gamma(1 - b_{ji} + \beta_{ji} \xi)} \prod_{j=m+1}^{q_1} \Gamma(a_j - \alpha_j \xi) dz
\]

where \(\omega = \sqrt{-1} \).

\[
\chi(\xi) = \frac{\prod_{j=1}^{n} \Gamma(b_j - \beta_j \xi) \prod_{j=1}^{n} \Gamma(1 - a_j + \alpha_j \xi)}{\prod_{j=1}^{r} \Gamma(1 - b_{ji} + \beta_{ji} \xi)} \prod_{j=m+1}^{q_1} \Gamma(a_j - \alpha_j \xi)
\]

\(p_i (i = 1, \ldots, r), \quad q_i (i = 1, \ldots, r), \quad m, n \) are integers satisfying \(0 \leq n \leq p_i, \quad 0 \leq m \leq q_i, (i = 1, \ldots, r) \), \(r \) is finite, \(\alpha_j, \beta_j, \alpha_{ji}, \beta_{ji} \) are real and positive and \(a_j, b_j, a_{ji}, b_{ji} \) are complex numbers such that

\[
\alpha_j(b_h + v) \neq \beta_h(a_j - v - k); h = 1, \ldots, m; j = 1, \ldots, n.
\]

Srivastava [11] has introduced the general class of polynomial

\[
S_n^m[x] = \sum_{k=0}^{[n/m]} \frac{(-n)_m}{k!} A_{n, k} x^k, \quad n = 0, 1, 2, \ldots
\]

where \(m \) is arbitrary positive integer and coefficients \(A[n, k (n, k > 0)] \) are arbitrary constant, real or complex.

we shall use the following notations: \(A^* = (a_j, \alpha_j)_{1, n}, (a_{ji}, \alpha_{ji})_{n+1, p_i}; \quad B^* (b_j, \beta_j)_{1, m}, (b_{ji}, \beta_{ji})_{m+1, q_i}. \)

Agarwal and Chaubey [2], (see also Srivastava and Manocha [13], p.447, eq(16)) studied the following general sequence of function:
The following results will be required in establishing our main integral relations:

2. Results Required:

Easily obtainable for the sequence of functions defined by (1.4). Agarwal, Pareek and Saigo [1]. Moreover, the explicit series form similar to (1.7) may not be Srivastava [15] etc. Some of special cases of (1.6) are given by Saigo, Goyal and Saxena [9] and research workers such as Chatterjea [3], Gould and Hopper [5], Krall and Frink [7], Singh and it unifies and extends a number of classical polynomials introduced and studied by various

It may be pointed out here that through the polynomial set defined by (1.6) is a special case of

\(R_n^{(\alpha, s)}[x; a, b, s, d; p, q; \gamma, \delta; \omega(x)] = \frac{(ax^p + b)^{-\alpha}(sx^q + d)^{-s}}{k_n\omega(x)} \times T_n^{k,l}[(ax^p + b)^{\alpha+\gamma}(sx^q + d)^{s+\delta}\omega(x)] \) (1.4)

with the differential operator \(T_{k,l} \), being defined as

\[T_{k,l} = x^l(k + xD_x) \text{ where } D_x = \frac{d}{dx} \] (1.5)

In (1.4), \(\{k_n\} \), \((n = 0, 1, \cdots, \infty) \) is a sequence of constants, \(\omega(x) \) is independent of \(n \) and differentiable an arbitrary number of times. The definition (1.4) was motivated essentially by an earlier work of Srivastava and Panda [14] (see also Srivastava and Manocha [13]). On taking \(\omega(x) = 1, p = d = 1, s = -r \) in (1.4) and replaying \(s \) by \(\frac{r}{\tau} \) therein we arrive at the following polynomial set after making some obvious changes in parameters (see Gupta et. al. [4]):

\[S_n^{(\alpha, s, r)}[x; r, s, q, A, B, k, l] = (Ax + b)^{-\alpha}(1 - \tau x^r)^{s/r} \times T_n^{k,l}[(Ax + B)^{\alpha+q_n}(1 - \tau x^r)^{s/r+qn}] \] (1.6)

The explicit form of the generalized polynomial set given by (1.6) is

\[S_n^{(\alpha, s, r)}[x; r, s, q, A, B, k, l] = B^{-q_n}x^{\alpha}x^r(s - r)^{s + \alpha + q_n} \sum_{e,p,u,v} \frac{(-1)^p(-v)u(-p)e(-\alpha - qn)e}{u!v!e!p!} \] (1.7)

where

\[\sum_{e,p,u,v} = \sum_{u=0}^{n} \sum_{v=0}^{n} \sum_{p=0}^{n} \sum_{e=0}^{n} \] (1.8)

Taking \(r \to 0 \) in (1.7), we get the following

\[S_n^{(\alpha, s, 0)}[x; r, q, A, B, k, l] = (Ax + b)^{-\alpha} \exp(sx^r) = \frac{1}{(1 - \alpha - p)e} \] (1.9)

where

\[\phi(e, p, u, v) = B^{-q_n}x^{\alpha}x^r(s - r)^{s + \alpha + q_n} \exp(-sx^r) \] (1.10)

and

\[L = ln + p + rv, \quad (p, v = 0, 1, \cdots, n) \] (1.11)

It may be pointed out here that through the polynomial set defined by (1.6) is a special case of the general sequence of functions (1.4), yet this polynomial set is sufficiently general in nature and it unifies and extends a number of classical polynomials introduced and studied by various research workers such as Chatterjea [3], Gould and Hopper [5], Krall and Frink [7], Singh and Srivastava [15] etc. Some of special cases of (1.6) are given by Saigo, Goyal and Saxena [9] and Agarwal, Pareek and Saigo [1]. Moreover, the explicit series form similar to (1.7) may not be easily obtainable for the sequence of functions defined by (1.4).

2. Results Required:

The following results will be required in establishing our main integral relations:
(i) Lemma (Srivastava et al. [12]): Let the function \(f(x) \) and \(g(x) \) be integrable over the semi infinite integral \((0, \infty)\) and define

\[
F(R) = \int_{0}^{\pi/2} h(R, \theta) d\theta
\]

(2.1)

where \(h(R, \theta) \) is an integrable function of two variables in the rectangular region \(0 \leq R < \infty, 0 \leq \theta \leq 1 \). Then

\[
\int_{0}^{\infty} \int_{0}^{\infty} f(x^2 + y^2) h(x^2 + y^2)^{1/2} \tan^{-1}(y/x) \, dx \, dy = \frac{1}{2} \int_{0}^{\infty} f(t) F(\sqrt{t}) \, dt
\]

(2.2)

and

\[
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x^2 + y^2 + z^2) g(x^2 + y^2 + z^2) \tan^{-1}(x^2 + y^2 + z^2)^{1/2} \tan^{-1}(y/x) \, dx \, dy \, dz
\]

\[
= \int_{0}^{\infty} \int_{0}^{\infty} f(u^2 + v^2) g[u/v] F[(u^2 + v^2)^{1/2}] \, du \, dv
\]

(2.3)

Provided that the various integral involved are absolutely convergent.

(ii) A result due to Kalla et al. [6]:

\[
H'[at, bt] = 1_{0, n_i; 1, n_i}^{0_n, a_i; 1_n, a_i} \begin{bmatrix}
at & (a'_j; A'_j, A'^{\prime}_{j1}, p_j, (j, E_j)_{1}, p_j, (j, G_i)_{1}, p_j)\\bt & (b'_j; B'_j, B'^{\prime}_{j1}, q_j, (j, F_j)_{1}, q_j, (j, h_j, H_j)_{1}, q_j)
\end{bmatrix}
\]

\[
= \sum_{M^\prime = 0}^{\infty} \phi(M^\prime) \frac{(-at)^{M^\prime}}{M^\prime!}
\]

(2.4)

where

\[
\phi(M^\prime) = \sum_{N^\prime = 0}^{M^\prime} \phi'(M^\prime - N^\prime, N^\prime) \theta'_1(M^\prime - N^\prime) \theta'_2(N^\prime) (b/a)^{N^\prime} \left(\frac{M^\prime}{N^\prime} \right)
\]

(2.5)

3. A Useful Integral:

We obtain the following integral, which will be required in the next section:

\[
\int_{0}^{\pi/2} e^{i(\alpha + \beta) \theta} (\sin \theta)^{\alpha - 1} (\cos \theta)^{\beta - 1} e^{-\mu R S_n^{\alpha} y_1 R^{\omega^j \Gamma} e^{i(\lambda + \omega) \theta} (\sin \theta)^{\lambda} (\cos \theta)^{\omega}} S_n^{\alpha, \beta, 0} y_2 R^{2} e^{i(\zeta + \eta) \theta}
\]

\[
= r' \cdot q, A, B, k, l \] \[
H\left[a e^{i(\sigma + \rho) \theta} (\sin \theta)^{\sigma} (\cos \theta)^{\rho}, b e^{i(\sigma + \rho) \theta} (\sin \theta)^{\sigma} (\cos \theta)^{\rho} \right]
\]

\[
I_{[y G R^{2} e^{i(\sigma + \delta) \theta} (\sin \theta)^{\sigma} (\cos \delta)] d\theta} = \sum_{k = 0}^{[\frac{\pi}{\theta}]} \sum_{M^\prime = 0}^{\infty} \sum_{i, j, p, r} \frac{(-\eta)^{mk}}{k! M^\prime!} y_1 y_2 R^{2} e^{i(\omega' k + L)}
\]

\[
e^{-\mu R} (-a)^{M^\prime} \phi(i, j, p, \phi(M^\prime) A_{n, k} \exp \left[\frac{\pi i (\alpha + \lambda k + \zeta L + \sigma M^\prime)}{2} \right]
\]
The following double and triple integral relations will be established in this section.

4. The Main Integral

Result (3.1) following known result Mac Robert [8].

\[
\begin{align*}
\int_{\nu+1}^{\nu+2} \int_{\eta+1}^{\eta+2} \left[z R^2 \exp (i \pi \sigma_1 / 2) \right] (1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1) \\
(1 - \beta - \omega k - \eta L - \rho M', \delta_1), \quad A^* \\
(1 - \alpha - (\lambda + \omega) k - (\zeta + \eta) L - (\sigma + \rho) M', \sigma_1 + \delta_1) \\
\end{align*}
\]

(3.1)

The integral (3.1) is valid under the following set of conditions:

(i) \(\sigma_1 > 0, \delta_1 > 0, \text{Re}(\alpha) > 0, \text{Re}(\beta) > 0 \)

(ii) \[\text{Re}(\alpha) + \sigma_1 \min_{1 \leq j \leq m} \text{Re}(b_j / \beta_j) > 0, \text{Re}(\beta) + \delta_1 \min_{1 \leq j \leq m} \text{Re}(b_j / \beta_j) > 0. \]

(iii) \(m \) is an arbitrary positive integer and the coefficients \(n, k(n, k \geq 0) \) are arbitrary constants, real or complex.

(iv) The series occurring on the right hand side of (3.1) is absolutely convergent.

Proof:

To prove (3.1), we first express the general classes of polynomials and the I-function of two variable occurring on the left hand side of (3.1) in series form given by (1.3), (1.8) and (2.4) interchange the orders of summations and integration (which is permissible under the conditions stated). Now, we express the I-function in Mellin-Barnes contour representation given by (1.1), interchange the orders of \(\theta \) and \(\xi \), integrals and evaluate the \(\theta \) integral with the help of the following known result Mac Robert [8].

\[
\int_0^{\pi/2} e^{i(\alpha + \beta)\theta} (\sin \theta)^{\alpha-1} (\cos \theta)^{\beta-1} d\theta = \exp(i\pi\alpha/2) \frac{\Gamma \alpha \Gamma \beta}{\Gamma \alpha + \beta}
\]

(3.2)

Finally we interpret the result thus obtained with the help of (1.1) and easily arrive at the desired result (3.1).

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]

4. The Main Integral

The following double and triple integral relations will be established in this section.

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp \{ i (\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu (x^2 + y^2)^{1/2} \} f(x^2 + y^2) \\
\]
(1 - \beta - \omega k - \eta L - \rho M : \delta_1) A^* \\
(1 - \alpha - \beta - (\lambda + \omega)k - (\zeta + \eta)L - (\sigma + \rho)M', \sigma_1 + \delta_1) \\
\int f(t) dt \quad (4.1)

\textbf{Proof}:

\int_0^\infty \int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{(1 - \alpha + \beta)/2} \exp\{i(\alpha + \beta)\tan^{-1}\left(\frac{y}{x}\right)\} - \mu(x^2 + y^2 + z^2)^{1/2} f(x^2 + y^2 + z^2)

S_n^{m, \beta, \sigma_1}[y_1(x^2 + y^2 + z^2)^{\alpha} \exp\{i(\lambda + \omega)\tan^{-1}\left(\frac{y}{x}\right)\} y^\lambda x^\omega (x^2 + y^2)^{-(\lambda + \omega)/2}

H[x^{\alpha} \exp\{i(\sigma + \rho)\tan^{-1}\left(\frac{y}{x}\right)\} y^\sigma x^\rho (x^2 + y^2)^{-(\sigma + \rho)/2}, b \exp\{i(\sigma + \rho)\tan^{-1}\left(\frac{y}{x}\right)\} y^\sigma x^\rho (x^2 + y^2)^{-(\sigma + \rho)/2}]

\textbf{I}[z_1(x^2 + y^2 + z^2)^{\alpha} \exp\{i(\sigma_1 + \delta_1)\tan^{-1}\left(\frac{y}{x}\right)\} z^\delta_1 x^{\sigma_1} (x^2 + y^2)^{-(\sigma_1 + \delta_1)/2}

= \frac{1}{2} \sum_{\substack{n \leq n_0 M^m = 0 \lambda, \eta, \alpha, p}} \sum_{k=0}^{\infty} \sum_{M' \leq 1} \frac{(-1)^{n_0} k^p_1 y_1^{M'} k^p_2 (-\alpha)^{M'} \phi(\alpha, \gamma, t', p) \phi(M') A_n, k \exp\{i\pi(\alpha + \lambda k + \zeta L + \sigma M')}}{2}

\int_0^\infty \int_0^\infty f(u^2 + v^2) g\{\tan^{-1}\left(\frac{u}{v}\right)\} (u^2 + v^2)^{\omega k + pL} \exp\{-\mu(u^2 + v^2)\}

\textbf{I}[z_1(u^2 + v^2)^{\alpha} \exp(i\pi\sigma_1/2) (1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1) \\
(1 - \beta - \omega k - \eta L - \rho M', \delta_1) A^* \\
(1 - \alpha - \beta - (\lambda + \omega)k - (\zeta + \eta)L - (\sigma + \rho)M', \sigma_1 + \delta_1) \\
\int du dv \quad (4.2)

where sets of conditions (1), (ii), (iii) and (iv) mentioned with (3.1) are satisfied.

\textbf{Proof}:

To establish the integral relations (4.1) and (4.2) we take in (2.1)

\[\int_0^{\pi/2} h(R, \theta) d\theta = L.H.S.o.f(3.1) \quad (4.3) \]

we obtain \(F(R) = R.H.S. \) of (3.1)

Now substituting the values of \(h(R, \theta) \) and \(F(R) \) in (2.2) and (2.3) in succession, we obtain the integral relations (4.1) and (4.2) after little simplification.
5. Special Cases:

The integral relations (4.1) and (4.2) are quite general in nature on account of the arbitrary nature of the functions f and g and also on account of the presence of H-function of two variables, the I-function and general classes of polynomials. A very large number of (known and new) integrals can be derived as special cases. We mention below a special case of our result.

If we set \(\omega = \lambda = \zeta = \eta = 0 \) and max \((\sigma_1, \delta_1) = 0 \) in (4.1), we get

\[
\int_0^\infty \int_0^\infty \frac{(-1)^{n} y^{\alpha - 1} x^{\beta - 1} (x^2 + y^2)^{\beta - 1} - (\alpha + \beta) / 2} {\exp\{i(\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right) - \mu(x^2 + y^2)^{1/2}\}} f(x^2 + y^2) S_n^\alpha \left(y_1 x^2 + y^2 \right)^{\omega} \]

\[
S_n^\alpha,\beta,0 \left[y_2 (x^2 + y^2)^{\rho} \right] \text{H}'[a \exp\{i(\sigma + \rho) \tan^{-1} \left(\frac{y}{x} \right)\} y^\sigma (x^2 + y^2)^{-(\sigma + \rho)/2}]
\]

\[
b \exp\{i(\sigma + \rho) \tan^{-1} \left(\frac{y}{x} \right)\} y^\sigma (x^2 + y^2)^{-(\sigma + \rho)/2} I[\zeta_1 (x^2 + y^2)^{\rho} \exp\{i(\eta + \sigma_1)/2\}] \]

\[
= \frac{1}{2} \sum_{k=0}^{\infty} \sum_{M', M''=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-n\mu k)}{k! M! M''!} y_1 k^2 (-a)^{M'+M''} \phi(i, \delta, \tau, p) A_{n,k} \phi(M') \phi(M'') \]

\[
\Gamma(\alpha + \sigma M' + \rho M') \Gamma(\alpha + \beta + \sigma M' + \rho M') \int_0^\infty e^{-k + \rho L} e^{-r t} I[\zeta_1 (t) \exp\{i(\eta + \sigma_1)/2\}] f(t) dt \]

If we further put \(M = 1, N = 0, K = 0, A_{0,0} = 1 \) and \(A = 1, B = 0, q = k = 0, l = r' = 1 \) and \(n = 0 \) in (4.1) and (4.2) then both the polynomials reduce to unity and we arrive at a number of results similar to those considered by Srivastava et al. [12].

6. Applications:

By suitable choosing the functions f and g in the main integral relations, a large number of interesting double and triple integrals can be evaluated. We shall however, obtain here only one double and one triple integral by way of illustration.

Thus if in (4.2), we set

\[
g(t) = e^{i(\alpha + \beta) \theta (\sin t)^{\alpha - 1} (\cos t)^{\beta - 1}} H'[ae^{i(\sigma + \rho) t (\sin t)^{\sigma}} (\cos t)^{\rho}, b e^{i(\sigma + \rho) t (\sin t)^{\sigma}} (\cos t)^{\rho}] \]

We arrive at the following integral relation on making use of (5.1)

\[
\int_0^\infty \int_0^\infty \left(xz \right)^{\beta - 1} y^{\alpha - 1} (x^2 + y^2)^{\beta / 2} (x^2 + y^2 + z^2)^{1 - (\alpha + \beta) / 2} f(x^2 + y^2 + z^2) \exp\{i(\alpha + \beta) \tan^{-1} \left(\frac{y}{x} \right)\} \]

\[
+ z^{\alpha - 1} \left(\frac{x^2 + y^2 + z^2}{x^2 + y^2} \right) \exp\{i(\lambda + \omega) \tan^{-1} \left(\frac{y}{x} \right)\} x^\omega y^{\lambda} (x^2 + y^2)^{-(\lambda + \omega) / 2} \]

\[
\cdot S_n^\alpha,\beta,0 \left[y_2 (x^2 + y^2 + z^2)^{\rho} \exp\{i(\eta + \zeta) \tan^{-1} \left(\frac{y}{x} \right)\} x^\rho y^{\sigma} (x^2 + y^2)^{-(\rho + \sigma) / 2} \]

\[
\cdot \text{H}'[a \exp\{i(\sigma + \rho) \tan^{-1} \left(\frac{y}{x} \right)\} x^\rho y^{\sigma} (x^2 + y^2)^{-(\rho + \sigma) / 2}, b \exp\{i(\sigma + \rho) \tan^{-1} \left(\frac{y}{x} \right)\} x^\rho y^{\sigma} (x^2 + y^2)^{-(\rho + \sigma) / 2}] \]

\[
\cdot I[\zeta_1 (x^2 + y^2 + z^2)^{\rho} \exp\{i(\sigma_1 + \delta_1) \tan^{-1} \left(\frac{y}{x} \right)\} x^\delta y^{\epsilon} (x^2 + y^2)^{\rho_1 -(\sigma_1 + \delta_1) / 2}] \] dx dy dz

\[
= \frac{1}{2} \sum_{k=0}^{\infty} \sum_{M', M''=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-n\mu k)}{k! M'! M''!} y_1 k^2 (-a)^{M'+M''} \phi(i, \delta, \tau, p) A_{n,k} \phi(M') \phi(M'') \]

\[
\cdot \exp\left\{ \frac{i\pi(2\alpha + \lambda k + \zeta L + \sigma M' + \sigma M'')}{2} \right\} \Gamma(\alpha + \sigma M'') \Gamma(\beta + \sigma M'') \]

\[
\Gamma(\alpha + \beta + \sigma M' + \rho M'') \]
\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp\{i(\alpha + \beta) \tan^{-1}\left(\frac{y}{x}\right) - \mu(x^2 + y^2)^{1/2}\} \text{d}x \text{d}y \left[\begin{array}{c} \int_0^\infty t^{\rho-1} \exp(i\pi\sigma_1/2) \left(1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1 \right) \\ \int_0^\infty \exp(i\pi\sigma_1/2) \left(1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1 \right) \end{array} \right] \\
B^* \left(1 - \beta - \omega k - \eta L - \rho M', \delta_1 \right) A^* \\
\left(1 - \alpha - \beta - (\lambda + \omega) k - (\zeta + \eta) L - (\sigma + \rho) M', \sigma_1 + \delta_1 \right)
\]

The conditions of validity of above result can easily be derived from those mentioned with (3.1).

Next we take

\[
f(t) = H'[ct, dt]
\]

and evaluate the t-integral occurring on the R.H.S. of (4.1) and (6.2) with the help of Gamma functions and arrive at the following multiple integrals after simplifications:

\[
\int_0^\infty \int_0^\infty x^{\beta-1} y^{\alpha-1} (x^2 + y^2)^{1-(\alpha+\beta)/2} \exp\{i(\alpha + \beta) \tan^{-1}\left(\frac{y}{x}\right) - \mu(x^2 + y^2)^{1/2}\}
\]

\[
S_0^{\alpha, \beta}[y_1 \exp\{i(\lambda + \omega) \tan^{-1}\left(\frac{y}{x}\right)\} x^{\alpha} y^{\alpha} (x^2 + y^2)^{-(\alpha+\beta)/2}]
\]

\[
S_0^{\alpha, \beta, 0}[y_2 \exp\{i(\eta + \zeta) \tan^{-1}\left(\frac{y}{x}\right)\} x^{\eta} y^{\xi} (x^2 + y^2)^{-(\alpha+\beta)/2}]
\]

\[
H'[c (x^2 + y^2); d(x^2 + y^2)] \left[\begin{array}{c} \int_0^\infty t^{\rho-1} \exp(i\pi\sigma_1/2) \left(1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1 \right) \\ \int_0^\infty \exp(i\pi\sigma_1/2) \left(1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1 \right) \end{array} \right] \\
B^* \left(1 - \beta - \omega k - \eta L - \rho M', \delta_1 \right) A^* \\
\left(1 - \alpha - \beta - (\lambda + \omega) k - (\zeta + \eta) L - (\sigma + \rho) M', \sigma_1 + \delta_1 \right)
\]

and

\[
S_0^{\alpha, \beta}[y_1 (x^2 + y^2 + z^2)^{\omega} \exp\{i(\lambda + \omega) \tan^{-1}\left(\frac{y}{x}\right)\} x^{\omega} y^{\omega} (x^2 + y^2)^{-(\alpha+\beta)/2}]
\]

\[
S_0^{\alpha, \beta, 0}[y_2 (x^2 + y^2 + z^2)^{\rho} \exp\{i(\eta + \zeta) \tan^{-1}\left(\frac{y}{x}\right)\} x^{\eta} y^{\xi} (x^2 + y^2)^{-(\alpha+\beta)/2}]
\]

\[
H'[c (x^2 + y^2 + z^2); d(x^2 + y^2 + z^2)] \left[\begin{array}{c} \int_0^\infty t^{\rho-1} \exp(i\pi\sigma_1/2) \left(1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1 \right) \\ \int_0^\infty \exp(i\pi\sigma_1/2) \left(1 - \alpha - \lambda k - \zeta L - \sigma M', \sigma_1 \right) \end{array} \right] \\
B^* \left(1 - \beta - \omega k - \eta L - \rho M', \delta_1 \right) A^* \\
\left(1 - \alpha - \beta - (\lambda + \omega) k - (\zeta + \eta) L - (\sigma + \rho) M', \sigma_1 + \delta_1 \right)
\]
The result (6.4) and (6.5) are valid under the following conditions:

(i) $Re(\alpha) > 0$, $Re(\beta) > 0$, $\sigma_1 > 0$, $\delta_1 > 0$, $\rho_1 > 0$

(ii) $Re(2\omega'k + 2\rho L + 2M'' + 2\rho_1 \xi_1 + 2j) > 0$ and sets of conditions (ii), (iii) and (iv) mentioned with (3.1) are satisfied.

References

Author information

Naseem A. Khan* and Yashwant Singh**, *Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India. E-mail: naseemamr@rediffmail.com

**Department of Mathematics, Government College, Kaladera, Jaipur, Rajasthan, India. E-mail: dryashu23@yahoo.in

* Department of Applied Mathematics, Vivekananda College of Technology & Management, Aligarh-202002, U.P., India, India. E-mail: naseemamr@gmail.com

Received: November 25, 2016.

Accepted: November 22, 2017.