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Abstract. In this article we introduce and study the concept of pseudo-uniform modules.
An R-module M is called pseudo-uniform if each non-finitely generated submodule of M is
essential in M . We show that each pseudo-uniform module M has finite Goldie dimension. If
M is a pseudo-uniform module which is not uniform, then there exists a non-zero Noetherian
submodule N which is essential in M . We also introduce and study the concept of essentially
Noetherian submodules. We provide some basic facts for these modules.

1 Introduction

Lemonnier [25] introduced the concept of deviation and codeviation of an arbitrary poset, which
in particular, when applied to the lattice of all submodules of a module MR give the concepts
of Krull dimension (in the sense of Rentschler and Gabriel, see [18]) and dual Krull dimension
of M , respectively. The dual Krull dimension in [20], [21], [23] and [24] is called Noetherian
dimension whereas in [5] it is called N -dimension. Let R be a ring and let M be an R-module.
A submodule L of M is called essential if L ∩ N 6= 0 for every non-zero submodule N of M ,
we write L ⊆e M to denote this situation. Otherwise L is a non-essential submodule of M .
We recall that a uniform module is a nonzero module M such that the intersection of any two
nonzero submodules of M is nonzero, or, equivalently, such that every nonzero submodule of
M is essential in M . The socle of M , denoted by Soc(M), is the sum of all simple submodules
of M . Recall that Soc(M) is the intersection of all essential submodules of M . We also recall
that M has finite Goldie dimension if it does not contain a direct sum of an infinite number of
non-zero submodules of M . More recently, the partially ordered set (shortly poset) of all non-
finitly generated submodules of an R-module M , has been studied, see [12, 14, 15, 13]. The
purpose of this article is to extend the notion of uniform modules in view of this poset. Let us
give a brief outline of this paper. Section 1 is the introduction. In Section 2, we investigate the
concepts of pseudo-uniform and almost uniform modules. An R-module M is called pseudo-
uniform if each non-finitely generated submodule of M is essential in M . An R-module M is
called almost uniform, if for each two non-finitely generated submodules M1 and M2 of M , we
get M1 ∩M2 6= 0. It is manifest that any pseudo-uniform module is almost uniform. We observe
that each pseudo-uniform module M has finite Goldie dimension. If M is a pseudo-uniform
module which is not uniform, then there exists a non-zero Noetherian submodule N which is
essential in M . We also show that if M is a pseudo-uniform module which satisfying ascending
chain condision on essensial submodules, then M has Noetherian dimension and n-dimM ≤ 1.
Section 3 is devoted to a brief study of essentially Noetherian modules. We say that a submodule
E of M is essentially Noetherian in M , denoted E ⊆en M , if for each nonzero submodule P of
M , P ∩ E contains a nonzero Noetherian submodule. We show that if M is an R-module with
finite Goldie dimension and it has an essentially Noetherian submodule, then M is λ finitely
embedded for some ordinal number λ, see the comment which follows Proposition 3.12. Vedadi
and Smith [29], studied modulesM which satisfy the ascending chain condition on non-essential
modules. We investigate some properties of these modules in view of this terminology. If an R-
module M satisfies the ascending chain condition on non-essential submodules, we prove that
either M is uniform or M has an essentially Noetherian submodule. Throughout this paper R
will always denote an associative ring with a non-zero identity, 1 6= 0, and M is a left unital
R-module. The notation N ⊆ M (resp., N ⊂ M ) means that N is a submodule (resp. proper
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submodule) of M . The reader is referred to [6, 17, 18, 22, 23], for definitions, concepts, and the
necessary background not explicitly given here.

2 Pseudo-uniform modules

In this section we introduce and study the concepts of pseudo-uniform modules and almost
uniform modules.

We begin with the following definition.

Definition 2.1. Let M be a module and N a submodule of M . Then N is called non-finitely
generated if N can not be a finitely generated submodule of M .

Next, we give our definition of pseudo-uniform modules.

Definition 2.2. Let M be an R-module. M is called pseudo-uniform if each non-finitely gener-
ated submodule N of M is essential in M .

The following results are evident.

Remark 2.3. Every Noetherian module is pseudo-uniform.

Remark 2.4. Let M be a uniform R-module. Then M is pseudo-uniform.

Let us recall that the codeviation of a partially ordered set E = (E,≤), (shortly poset ),
denoted by co-dev (E) is defined as follows: co-dev (E) = −1 if and only if E is a trivial
poset, i.e., E has no two distinct comparable elements. If E is nontrivial but satisfies the ascend-
ing chain condition on its elements, then co-dev (E) = 0. For a general ordinal α, we define
co-dev (E) = α provided:

(i) co-dev (E) 6= β < α;
(ii) for any ascending chain

x1 ≤ x2 ≤ ... ≤ xn ≤ ...

of elements of E there is some n0 ∈ N for all n ≥ n0 the codeviation of the poset xn+1
xn

= {x ∈
E : xn ≤ x ≤ xn+1} is already defined and satisfies

co-dev (
xn+1

xn
) < α.

If no ordinal α exists such that co-dev (E) = α, we say E does not have codeviation. In partic-
ular, if we apply this concept to L(M ), the lattice of all submodules of a module M , we obtain
the concept of Noetherian dimension of M , denoted by n-dimM , see [20, 25, 26]. We also re-
call that the name of dual Krull dimension is also used by some authors, see [1] and [2]. If an
R-module M has Noetherian dimension and α is an ordinal number, then M is called α-atomic
if n-dimM = α and n-dimN < α, for all proper submodules N of M . An R-module M is
called atomic if it is α-atomic for some ordinal α, see [23] (note, atomic modules are also called
conotable, N-critical and dual critical in some other articles for example, see [26], [5], and [1],
respectively).

Remark 2.5. Let M be an R-module. If M is 1-atomic, then it is pseudo-uniform.

Lemma 2.6. Let M be an R-module. Then M is a pseudo-uniform module if and only if each
non-essential submodule of M is Noetherian.

Proof. Let X be any proper submodule of M . If there exists a non-finitely generated submodule
N of M such that N ⊆ X , then X ⊆e M . Otherwise each submodule of X is finitely generated,
hence X is Noetherian. The converse is obvious.

Corollary 2.7. Let M be a pseudo-uniform module, then M has finite Goldie dimension.

Proof. Let N1 ⊕N2 ⊕N3 ⊕ ... be an infinite direct sum of submodules of M . Then X = N2 ⊕
N3⊕ ... is a non-finitely generated submodule of M and N1∩X = 0 which is a contradiction
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In view of Corollary 2.7 and [17, Corollary 5.21], we have the following results.

Corollary 2.8. Let M be a pseudo-uniform R-module, then for each non-finitely generated sub-
module N of M , we have G-dimN = G-dimM .

Corollary 2.9. Let M be an R-module with finite Goldie dimension. Then M is pseudo-uniform
if and only if for each non-finitely generated submodule N of M , we have G-dimN = G-dimM .

Lemma 2.10. Let M be a pseudo-uniform module. If M is not uniform, then each submodule of
M has a non-zero Noetherian submodule.

Proof. In view of Corollary 2.7, we infer that there exists an integer number n and submodules
N1, ..., Nn of M such that N1 ⊕ N2 ⊕ ... ⊕ Nn ⊆e M . By our hypothesis n > 1. Since M is
pseudo-uniform each Ni is Noetherian and we are done.

Next, we recall the following result from [19, Lemma 3].

Proposition 2.11. A module M satisfies ACC on essential submodules if and only if M
Soc(M) is

Noetherian.

Let us recall that an R-module M is called α-short if for each submodule N of M either
n-dimN ≤ α or n-dim M

N ≤ α and α is the least ordinal number with this property. In [7, Propo-
sition 1.12] it is observed that ifM is an α-short module, then n-dimM = α or n-dimM = α+1.

Corollary 2.12. Let M be a pseudo-uniform module. If M satisfies the ascending chain condi-
tion on essential submodules, then M has Noetherian dimension and n-dimM ≤ 1.

Proof. Let N be any submodule of M . By Lemma 2.6, N is Noetherian or essential. If N is
Noetherian, then n-dimN = 0. Now letN be an essential submodule ofM . Then by Proposition
2.11, M

N is Noetherian. This shows that M is a short module and by [7, Proposition 1.12],
n-dimM ≤ 1.

In the following we introduce the concept of almost-uniform modules.

Definition 2.13. LetM be anR-module. M is called almost uniform, if for each two non-finitely
generated submodules M1 and M2 of M , we get M1 ∩M2 6= 0.

It is manifest that each pseudo-uniform module is also almost uniform, but the converse is
not true. For example, the Z-module Z⊕Q is not pseudo-uniform, but it is almost uniform.

The following result is now immediate.

Corollary 2.14. Let N be a Noetherian R-module and U be a uniform R-module. Then, N ⊕ U
is an almost uniform module.

Lemma 2.15. Let M an R-module. If M is an almost uniform module, then so does each non-
zero proper submodule of M .

Lemma 2.16. Let M be an almost uniform module. Then M has finite Goldie dimension and
there exists a Noetherian submodule N and a submodule X of M , where X is zero or it is
non-finitely generated and X ⊕N ⊆e M .

Proof. Let N1 ⊕N2 ⊕N3 ⊕N4 ⊕ .... be a submodule of M . Then X = N1 ⊕N3 ⊕N5 ⊕ ... and
X ′ = N2 ⊕ N4 ⊕ N6 ⊕ ... are non-finitely generated submodules of M and X ∩X ′ = 0 which
is a contradiction. Hence M has a finite Goldie dimension. Thus there exists an integer number
n and uniform submodules N1, ..., Nn of M such that N1 ⊕ N2 ⊕ ... ⊕ Nn ⊆e M . If for each
i, Ni is Noetherian, then N = N1 ⊕ N2 ⊕ ... ⊕ Nn is a Noetherian submodule of M which is
essential in M , (note, in this case X is zero). Otherwise for some integer number i, Ni is not
Noetherian. Without less of generality we may assume that N1 is not Noetherian. Thus N1 has a
non-finitely generated submodule say it X1. Therefore X1 ⊕ (N2 ⊕ ...⊕Nn) ⊆e M . Since M is
almost uniform, we infer that (N2 ⊕ ...⊕Nn) = 0 or it is Noetherian and we are done.
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3 Essentially Noetherian modules

We begin with the following definition.

Definition 3.1. Let M be an R-module and E be a submodule of M . We say that E is an
essentially Noetherian submodule of M , denoted by E ⊆en M , if for each nonzero submodule
P of M , P ∩ E contains a nonzero Noetherian submodule.

The proof of the next result is elementary and is omitted.

Proposition 3.2. Let A, B, and C be modules with A ⊆ B ⊆ C. Then:

(i) If A ⊆en C, then both A ⊆en B and B ⊆en C.

(ii) If A ⊆e B and B ⊆en C, then A ⊆en C.

(iii) If A ⊆en B and B ⊆e C, then A ⊆en C.

The proof of the following three facts are standard.

Lemma 3.3. If A ⊆e B and A is Noetherian, then A ⊆en B.

Lemma 3.4. Let R be a Noetherian ring. Then A ⊆e B if and only if A ⊆en B.

Lemma 3.5. Let A ⊆e B and A has a Noetherian submodule such as N . If N ⊆e A, then
N ⊆e B and therefore A ⊆en B.

Lemma 3.6. Let A1, A2, B1 and B2 be submodules of a module C. If A1 ⊆en B1 and A2 ⊆e B2,
then A1 ∩A2 ⊆en B1 ∩B2.

Proof. Let 0 6= X ⊆ B1 ∩ B2, then A1 ∩X contains a nonzero Noetherian submodule such as
N1. Now N1 is a nonzero submodule of B2 and A2 ⊆e B2, therefore N1 ∩A2 6= 0. But we know
that 0 6= N1 ∩ A2 is Noetherian. Thus X ∩ A1 ∩ A2 contains a nonzero Noetherian submodule
and we are done.

In view of previous lemma we have the following corollary.

Corollary 3.7. Let M be an R-module. Then
⋂
N⊆enM

N =M or
⋂
N⊆enM

N = Soc(M).

Proof. If M does not have any essentially Noetherian submodule, then
⋂
N⊆enM

N = M . Oth-
erwise M has an essentially Noetherian submodule such as N . Let E be an essential submodule
of M , then by Lemma 3.6 we infer that N ∩ E is an essentially Noetherian submodule of M
and E ∩ N ⊆ E. Therefore

⋂
N⊆enM

N ⊆
⋂
E⊆eM

E. Conversely it is clear that each essen-
tially Noetherian submodule is an essential submodule of M . Hence

⋂
E⊆eM

E ⊆
⋂
N⊆enM

N .
Therefore

⋂
N⊆enM

N =
⋂
E⊆eM

E = Soc(M).

Proposition 3.8. Let A be a submodule of a module C and let f : B → C be a monomorphism.
If A ⊆en C, then f−1(A) ⊆en B.

Proof. Let M be any nonzero submodule of B. Then f(M) 6= 0 and A ∩ f(M) contains a
nonzero Noetherian submodule such as N . Hence f−1(N) ∩M is nonzero Noetherian module,
it follows that f−1(A) ⊆en B.

Lemma 3.9. Given a right module A over a domain R, the set

ZN(A) = {x ∈ A : xI = 0for some I ⊆en RR}

If ZN(A) is a non-empty set, then it is a submodule of A.

Proof. Given any x, y ∈ ZN(A) there are essentially Noetherian right ideals I , J in R such
that xI = yJ = 0. By Lemma 3.6, we infer that I ∩ J is an essentially Noetherian right ideals
of R and (x + y)(I ∩ J) = 0, we obtain x + y ∈ ZN(A). For any t ∈ R, the right ideal
K = {r ∈ R : tr ∈ I} is essentially Noetherian by Proposition 3.8, and xtK ⊆ xI = 0, whence
xt ∈ ZN(A). Thus ZN(A) is a submodule of A.



On PSEUDO-UNIFORM MODULES 19

We recall that anR-moduleM is called α-critical, where α is an ordinal number, if k-dimM =
α and k-dim M

N < α for all nonzero submodules N of M . An R-module M is called critical if
M is α-critical for some ordinal number α.

Note the following well-known result from [18].

Proposition 3.10. LetM be anR-module with Krull dimension; then it has a critical submodule.

Next, we recall the following definition from [22].

Definition 3.11. Let M be an R-module. For each ordinal α, we define Sα =
∑
i∈I ⊕Ci, where

{Ci}i∈I is a maximal independent set of α-critical submodules of M . Sα is called an α-critical
socle of M . Now a critical socle of M is defined to be a submodule S of M with S =

∑
α<λ Sα,

where λ is the least ordinal such that each critical submodule is α-critical for some α ≤ λ. If for
some ordinal α, there is no α-critical submodule, then we put Sα = 0. Clearly, the sum of any
maximal independent family of critical submodules of M is a critical socle of M .

We cite the following result from[22].

Proposition 3.12. If S is a critical socle of an R-module M , then S =
∑
α≤λ Sα =

∑
α≤λ⊕Sα.

Proof. See [22, Proposition 2.3].

We recall that an R-module M is called λ-finitely embedded (λ-f.e.) if λ is the least ordinal
such that each critical submodule of M is α-critical for some α ≤ λ and M contains a f.g.
essential critical socle (equivalently, M contains an essential critical socle with Krull dimension
λ), see [22].

Corollary 3.13. Let R-module M has finite Goldie dimension. If M has an essentially Noethe-
rian submodule, then M is λ-f.e., for some ordinal number λ.

Proof. Since M has an essentially Noetherian submodule, each non-zero submodule of M has
a non-zero Noetherian submodule. Hence each non-zero submodule of M has a non-zero sub-
module with Krull dimension, see [23, Proposition 1.1]. By Proposition 3.10, we infer that each
non-zero submodule of M has a critical submodule. Therefore M is λ-f.e., for some ordinal
number λ.

We should remind the reader that by a quotient finite dimensional module M we mean for
each submodule N of M , MN has finite Goldie dimension.

In view of previous corollary and [22, Proposition 2.20], we have the following result.

Corollary 3.14. Let M be a quotient finite dimensional module. If each nonzero factor module
of M has an essentially Noetherian submodule, then M has Krull dimension.

Proof. By previous corollary each non-zero factor module of M is λ-f.e., for some ordinal num-
ber λ. By [22, Proposition 2.20], we infer that M has Krull dimension.

In view of previous corollary and Lemma 2.10, we have the following result.

Corollary 3.15. Let M be a quotient finite dimensional R-module. If for each proper submodule
N of M , MN is pseudo-uniform module which is not uniform, then M has Krull dimension.

Note the following fact. The proof is standard but we include it for completeness.

Lemma 3.16. Let R-module M has finite Goldie dimension. If N is an essentially Noetherian
submodule of M , then there exists a Noetherian submodule U such that U ⊆e M .

Proof. Since M has finite Goldie dimension, we infer that there exists an integer number n such
that U1 ⊕ U2 ⊕ .... ⊕ Un ⊆e M , where each Ui is a uniform submodule of M . For each integer
number i, Ui ∩N contains a nonzero Noetherian submodule, U ′i say. It is clear that U ′i ⊆e Ui for
each i. Therefore 0 6= U ′1 ⊕ ...⊕U ′n ⊆e U1 ⊕ ...⊕Un ⊆e M . This shows that U = U ′1 ⊕ ...⊕U ′n
a non-zero Noetherian submodule of M which is essential in M , see [17, Proposition 5.6].
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Vedadi and Smith in [29], studied modules M which satisfy the ascending chain condition
on non-essential submodules. Now we investigate some properties of these modules.

Proposition 3.17. Let R-module M satisfy the ascending chain condition on non-essential sub-
modules. Then M is uniform or it has a Noetherian submodule N such that N ⊆e M , i.e., M is
uniform or M has an essentially Noetherian submodule.

Proof. By [29, Theorem 1.8], we infer that M has finite Goldie dimension. If M is not uniform,
then N1 ⊕N2 ⊆e M , for some non-zero submodules N1 and N2 of M . If N1 is not Noetherian,
then there exists the chain

N ′1 ⊂ N ′2 ⊂ N ′3 ⊂ ...

of submodules of N1. Hence N ′1 ⊂ N ′2 ⊂ ... is a chain of submodules of M such that for each i,
N ′i is not essential in M , which is a contradiction. Therefore N1 is Noetherian. Similarly we can
show that N2 is Noetherian and we are done.

In view of Proposition 3.17 and Corollary 3.13, we have the following result.

Proposition 3.18. Let R-module M satisfy the ascending chain condition on non-essential sub-
modules. If M is not uniform, then M is λ-f.e. for some ordinal number λ.

Finally we conclude this section by providing some examples of essential submodules of an
R-module M which are not essentially Noetherian. Let M be an R-module. If there exists an
R-module X ⊆ E(M) such that M ⊆en X , then M ⊆en E(M), see Proposition 3.2. If E(M)
has finite Goldie dimension and it is not λ-f.e., for each ordinal number λ, then M ⊆e X for
each X ⊆ E(M) but M is not a Noetherian essential submodule of X , see Corollary 3.13.
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