ON DIOPHANTINE EQUATIONS OF NATHANSON

Ho-Hon Leung

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11D41; Secondary 11D25.

Keywords and phrases: Diophantine equation.

Abstract. For positive integers n and k, we investigate whether the diophantine equation $x^n - y^n = z^{n+k}$ has positive integral solutions.

1 Introduction

Recently, Nathanson [3] constructed infinitely many positive integral solutions for the diophantine equation $x^n - y^n = z^{n+1}$. He proposed to study the diophantine equation

$$x^n - y^n = z^{n+k} \tag{1.1}$$

for any positive integers $n \ge 2$ and $k \ge 2$ (see [3, Section 3]). We initiate the study of (1.1) in this article.

2 Main Results

Let n_1 , n_2 and n_3 be positive integers. The diophantine equation $x^{n_1} - y^{n_2} = z^{n_3}$ is called an (n_1, n_2, n_3) -system. The triple (a, b, c) of positive integers is called (n,k)-powerful if a > b and there exists a positive integer t such that

$$\frac{a^n - b^n}{c^{n+k}} = t^k.$$

We define the following function

$$t_{n,k}(a,b,c) := \frac{a^n - b^n}{c^{n+k}}.$$

The triple (a, b, c) is (n, k)-powerful if and only if $t_{n,k}(a, b, c)$ is a k^{th} -power of a positive integer. The triple (a, b, c) is *relatively prime* if g.c.d.(a, b, c) = 1. The following result is a generalization of Theorem 1 in Nathanson's paper [3, Theorem 1].

Theorem 2.1. Let n and k be positive integers. If the triple (a, b, c) is (n, k)-powerful with $t_{n,k}(a, b, c) = t^k$ for some positive integer t, then the triple (x, y, z) = (at, bt, ct) is a solution of an (n, n, n + k)-system. Moreover, every positive integral solution of an (n, n, n + k)-system is produced by an unique relatively prime (n, k)-powerful triple.

Proof. Let (a, b, c) be an (n, k)-powerful triple with $t_{n,k}(a, b, c) = t^k$. We have

$$a^n - b^n = t^k c^{n+k}.$$

Let the triple (x, y, z) = (at, bt, ct). Then,

$$x^{n} - y^{n} = (at)^{n} - (bn)^{t} = t^{n}(a^{n} - b^{n}) = t^{n}(t^{k}c^{n+k}) = (ct)^{n+k}.$$

Hence, (at, bt, ct) is a solution to an (n, n, n+k)-system.

If g.c.d.(a, b, c) = d, then

$$t_{n,k}(a/d, b/d, c/d) = \frac{(a/d)^n - (b/d)^n}{(c/d)^{n+k}} = d^k \left(\frac{a^n - b^n}{c^{n+k}}\right)$$
$$= d^k t_{n,k}(a, b, c) = d^k t^k = (dt)^k.$$

Hence, (a/d, b/d, c/d) is (n, k)-powerful and is relatively prime. We construct a solution to an (n, n, n+k)-system by using the (n, k)-powerful triple (a/d, b/d, c/d) as follows:

$$(x, y, z) = ((a/d)dt, (b/d)dt, (c/d)dt) = (at, bt, ct).$$

It is the same solution as the one constructed from the (n, k)-powerful triple (a, b, c).

If (x_1, y_1, z_1) is a positive integral solution of an (n, n, n+k)-system, that is,

$$(x_1)^n - (y_1)^n = (z_1)^{n+k}$$

then

$$t_{n,k}(x_1, y_1, z_1) = 1 = 1^k$$

and hence (x_1, y_1, z_1) is (n, k)-powerful. Let $d_1 = \text{g.c.d.}(x_1, y_1, z_1)$. The triple $(x_1/d_1, y_1/d_1, z_1/d_1)$ is (n, k)-powerful with

$$t_{n,k}(x_1/d_1, y_1/d_1, z_1/d_1) = (d_1)^{\mu}$$

and is relatively prime. So, $(x, y, z) = (x_1, y_1, z_1)$ is a solution to an (n, n, n + k)-system produced by the (n, k)-powerful triple $(x_1/d_1, y_1/d_1, z_1/d_1)$. Hence, each positive integral solution of an (n, n, n + k)-system can be produced by a relatively prime (n, k)-powerful triple.

Next, we show that each positive integral solution of an (n, n, n + k)-system is produced by an *unique* relatively prime (n, k)-powerful triple. Let (x, y, z) be a positive integral solution of an (n, n, n + k)-system produced by two relatively prime (n, k)-powerful triple (a_1, b_1, c_1) and (a_2, b_2, c_2) . Then

$$t_{n,k}(a_1, b_1, c_1) = (t_1)^k, \ t_{n,k}(a_1, b_2, c_2) = (t_2)^k$$

for some positive integers t_1 , t_2 . Also,

$$(x, y, z) = (a_1t_1, b_1t_1, c_1t_1) = (a_2t_2, b_2t_2, c_2t_2).$$

Let $d' = \text{g.c.d.}(t_1, t_2)$. We have

$$a_1(t_1/d') = a_2(t_2/d'), \ b_1(t_1/d') = b_2(t_2/d'), \ c_1(t_1/d') = c_2(t_2/d').$$

Since t_1/d' and t_2/d' are relatively prime, we know that t_1/d' is a common divisor of a_2, b_2, c_2 and t_2/d' is a common divisor of a_1, b_1, c_1 . Since g.c.d. $(a_1, b_1, c_1) = \text{g.c.d.}(a_2, b_2, c_2) = 1$, we get $t_1/d' = 1$ and $t_2/d' = 1$. Hence, we get that $a_1 = a_2, b_1 = b_2$ and $c_1 = c_2$ as desired.

Corollary 2.2. Let m, n be positive integers. There exist infinitely many positive integral solutions to an (n, n, mn + 1)-system.

Proof. Let n be a positive integer. We prove it by induction on m. Let a, b be positive integers such that a > b. Let $t = a^n - b^n$. Then (a, b, 1) is (n, 1)-powerful with $t_{n,1}(a, b, 1) = t$. By Theorem 2.1, (at, bt, t) is a solution of an (n, n, n + 1)-system. It is obvious that there are infinitely many such solutions to an (n, n, n+1)-system as there are infinitely many such choices of a and b.

We assume that the statement is true for m = k. There exist infinitely many positive integral solutions to an (n, n, kn + 1)-system. Let (a', b', c') be a positive integral solution to an (n, n, kn + 1)-system. That is,

$$(a')^n - (b')^n = (c')^{kn+1}.$$

Then (a', b', 1) is (n, kn + 1)-powerful with $t_{n,kn+1}(a', b', 1) = (c')^{kn+1}$. By Theorem 2.1, (a'c', b'c', c') is a solution of an (n, n, n + (kn + 1))-system. It is now clear that there are infinitely many solutions of an (n, n, (k + 1)n + 1)-system as there are infinitely many choices of (a', b', c') based on inductive hypothesis.

Example 2.3. Let a = 3, b = 2. Then $3^3 - 2^3 = 19$ and the triple (3, 2, 19) is a solution of an (3, 3, 1)-system. The triple (3, 2, 1) is (3, 1)-powerful with $t_{3,1}(3, 2, 1) = 19$. By Theorem 2.1, $(3 \cdot 19, 2 \cdot 19, 19) = (57, 38, 19)$ is a solution of an (3, 3, 4)-system. That is, $57^3 - 38^3 = 19^4$. The triple (57, 38, 1) is (3, 4)-powerful with $t_{3,4}(57, 38, 1) = 19^4$ and hence $(57 \cdot 19, 38 \cdot 19, 19) = (1083, 722, 19)$ is a solution of an (3, 3, 7)-system by Theorem 2.1. That is, $1083^3 - 722^3 = 19^7$. We can proceed inductively and obtain a solution for an (3, 3, 3k + 1)-system for every positive integer k. The solutions of (3, 3, 3k + 1)-systems for $k = 0, \ldots, 9$ induced by the (3, 1)-powerful triple (3, 2, 1) are listed as follows:

$$3^{3} - 2^{3} = 19^{1}$$

$$57^{3} - 38^{3} = 19^{4}$$

$$1083^{3} - 722^{3} = 19^{7}$$

$$20577^{3} - 13718^{3} = 19^{10}$$

$$390963^{3} - 260642^{3} = 19^{13}$$

$$7428297^{3} - 4952198^{3} = 19^{16}$$

$$141137643^{3} - 94091762^{3} = 19^{19}$$

$$2681515217^{3} - 1787743478^{3} = 19^{22}$$

$$50950689123^{3} - 33967126082^{3} = 19^{25}$$

$$968063093337^{3} - 645375395558^{3} = 19^{28}.$$

Corollary 2.4. There are infinitely many positive integral solutions of an (2, 2, m)-system for every positive integer m.

Proof. For odd m, it is clear due to Corollary 2.2. We prove that there exist infinitely many positive integral solutions of an (2, 2, m)-system for even m by induction. If m = 2, then a positive integral solution (a, b, c) of an (2, 2, 2)-system is a *Pythagoras triple* (b, c, a) such that $b^2 + c^2 = a^2$ and vice versa. It is well known that there are infinitely many Pythagoras triples.

We assume that there are infinitely many solutions of an (2, 2, m)-system for an even m. Let (a', b', c') be such solution. Then (a', b', 1) is (2, m)-powerful with $t_{2,m}(a', b', 1) = (c')^m$. By Theorem 2.1, (a'c', b'c', c') is a solution of an (2, 2, 2 + m)-system. Infinitely many such solutions can be constructed for an (2, 2, m + 2)-system as there are infinitely many choices of (a', b', c') by inductive hypothesis.

Corollary 2.5. Let n, m, k be positive integers. If there is no positive integral solution of an (n, n, mn + k)-system, then there is no positive integral solution of an (n, n, m'n + k)-system for $0 \le m' \le m$.

Proof. We prove it by backward induction on m. The base step is clear. We assume that there is no positive integral solution of an (n, n, k'n + k)-system for some k' such that $1 \le k' \le m$. Let (a, b, c) be a positive integral solution of an (n, n, (k' - 1)n + k)-system. The triple (a, b, 1) is (n, (k' - 1)n + k)-powerful with $t_{n,(k'-1)n+k}(a, b, 1) = (c)^{(k'-1)n+k}$. By Theorem 2.1, the triple (ac, bc, c) is a solution of an (n, n, k'n + k)-system, which is a contradiction.

For certain positive integers n_1 , n_2 , n_3 , there is no positive integral solution of an (n_1, n_2, n_3) -system. We state two lemmas here.

Lemma 2.6. Let n_1 , n_2 , n_3 be positive integers such that $g.c.d.(n_1, n_2, n_3) = d \ge 3$. There is no positive integral solution of an (n_1, n_2, n_3) -system.

Proof. Let the triple (a, b, c) be a positive integral solution of an (n_1, n_2, n_3) -system. We have

$$a^{n_1} - b^{n_2} = c^{n_3},$$

 $(a^{n_1/d})^d - (b^{n_2/d})^d = (c^{n_3/d})^d.$

So, the triple $(a^{n_1/d}, b^{n_2/d}, c^{n_3/d})$ is a positive integral solution of an (d, d, d)-system. But such positive integral solutions do not exist by the well known Fermat's Last Theorem [4].

Lemma 2.7. Let k_1 , k_2 be positive integers. There is no positive integral solution of an $(4k_1, 4k_1, 2k_2)$ -system.

Proof. Let the triple (a, b, c) be a positive integral solution of an (4, 4, 2)-system. We have $a^4 = c^2 + b^4$. But there is no solution for the equation $z^4 = x^2 + y^4$ by the classical method of infinite descent introduced by Euler and Fermat.

Let the triple (a', b', c') be a positive integral solution of an $(4k_1, 4k_1, 2k_2)$ -system, then

$$(a')^{4k_1} - (b')^{4k_1} = (c')^{2k_2},$$

$$((a')^{k_1})^4 - ((b')^{k_1})^4 = ((c')^{k_2})^2$$

and hence $((a')^{k_1}, (b')^{k_1}, (c')^{k_2})$ is a solution of an (4, 4, 2)-system, which is a contradiction. \Box

Corollary 2.8. Let $k \ge 1$. There exist infinitely many positive integral solutions of an (3, 3, 3k + 1)-system. There is no positive integral solution of an (3, 3, 3k)-system. There exist at least two solutions of an (3, 3, 3k + 2)-system.

Proof. The first and the second statements are due to Corollary 2.2 and Lemma 2.6 respectively. Only two solutions are known for an (3, 3, 2)-system (see Remark 5.3 in Karama's paper [2, Remark 5.3]). Namely,

$$10^3 - 6^3 = 28^2,$$

295296³ - 294528³ = 14155780².

Hence, the triples (10, 6, 1) and (295296, 294528, 1) are (3, 2)-powerful with $t_{3,2}(10, 6, 1) = 28^2$ and $t_{3,2}(295296, 294528, 1) = 14155780^2$. We can construct two solutions for an (3, 3, 3k + 2)-system inductively based on Theorem 2.1.

There are many open questions on this topic.

Conjecture 2.9. There is no positive integral solution to $x^4 - y^4 = z^7$.

Remark 2.10. If there exists a positive integral solution to $x^4 - y^4 = z^3$, then the triple (x, y, 1) is (4, 3)-powerful with $t_{4,3}(x, y, 1) = z^3$ and hence Conjecture 2.9 is false by Theorem 2.1. The existence of positive integral solutions to $x^4 - y^4 = z^3$ is equivalent to the existence of positive integral solutions to $a^2 - b^2 = c^3$ such that both a and b are squares. But the author is not aware of any solution of this form to the latter equation (see the work done by Andrica and Tudor [1] and Karama [2] for the constructions of solutions to the diophantine equation $a^2 - b^2 = c^3$.)

Conjecture 2.11. There is no positive integral solution to $x^6 - y^6 = z^2$.

Remark 2.12. The existence of positive integral solutions to $x^6 - y^6 = z^2$ is equivalent to the existence of positive integral solutions to $a^3 - b^3 = c^2$ such that both a and b are squares. But the author is not aware of any solution of this form to the latter equation.

3 Acknowledgements

The author is grateful to the editor-in-chief and to the referee(s) for carefully reading the paper. The author is supported by Startup Grant 2016 (G00002235) from United Arab Emirates University.

References

- [1] D. Andrica and G.M. Tudor, Parametric solutions for some Diophantine equations, *Gen. Math.* **12**, 23–34 (2004).
- M.J. Karama, Using summation notation to solve some diophantine equations, *Palest. J. Math.* 5, Special Issue, 155–158 (2016).
- [3] M. Nathanson, On a diophantine equation of M. J. Karama, Palest. J. Math. 6, 524-527 (2017).

[4] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2), 141, 443–551 (1995).

Author information

Ho-Hon Leung, Department of Mathematical Sciences, United Arab Emirates University, Al Ain, 15551, U.A.E.. E-mail: hohon.leung@uaeu.ac.ae

6

Received: March 10, 2018. Accepted: July 28, 2018.