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Abstract. For positive integers n and k, we investigate whether the diophantine equation
xn − yn = zn+k has positive integral solutions.

1 Introduction

Recently, Nathanson [3] constructed infinitely many positive integral solutions for the diophan-
tine equation xn − yn = zn+1. He proposed to study the diophantine equation

xn − yn = zn+k (1.1)

for any positive integers n ≥ 2 and k ≥ 2 (see [3, Section 3]). We initiate the study of (1.1) in
this article.

2 Main Results

Let n1, n2 and n3 be positive integers. The diophantine equation xn1 − yn2 = zn3 is called an
(n1, n2, n3)-system. The triple (a, b, c) of positive integers is called (n,k)-powerful if a > b and
there exists a positive integer t such that

an − bn

cn+k
= tk.

We define the following function

tn,k(a, b, c) :=
an − bn

cn+k
.

The triple (a, b, c) is (n, k)-powerful if and only if tn,k(a, b, c) is a kth-power of a positive integer.
The triple (a, b, c) is relatively prime if g.c.d.(a, b, c) = 1. The following result is a generalization
of Theorem 1 in Nathanson’s paper [3, Theorem 1].

Theorem 2.1. Let n and k be positive integers. If the triple (a, b, c) is (n, k)-powerful with
tn,k(a, b, c) = tk for some positive integer t, then the triple (x, y, z) = (at, bt, ct) is a solution of
an (n, n, n+ k)-system. Moreover, every positive integral solution of an (n, n, n+ k)-system is
produced by an unique relatively prime (n, k)-powerful triple.

Proof. Let (a, b, c) be an (n, k)-powerful triple with tn,k(a, b, c) = tk. We have

an − bn = tkcn+k.

Let the triple (x, y, z) = (at, bt, ct). Then,

xn − yn = (at)n − (bn)t = tn(an − bn) = tn(tkcn+k) = (ct)n+k.

Hence, (at, bt, ct) is a solution to an (n, n, n+ k)-system.
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If g.c.d.(a, b, c) = d, then

tn,k(a/d, b/d, c/d) =
(a/d)n − (b/d)n

(c/d)n+k
= dk

(an − bn

cn+k

)
= dktn,k(a, b, c) = dktk = (dt)k.

Hence, (a/d, b/d, c/d) is (n, k)-powerful and is relatively prime. We construct a solution to an
(n, n, n+ k)-system by using the (n, k)-powerful triple (a/d, b/d, c/d) as follows:

(x, y, z) = ((a/d)dt, (b/d)dt, (c/d)dt) = (at, bt, ct).

It is the same solution as the one constructed from the (n, k)-powerful triple (a, b, c).
If (x1, y1, z1) is a positive integral solution of an (n, n, n+ k)-system, that is,

(x1)
n − (y1)

n = (z1)
n+k,

then
tn,k(x1, y1, z1) = 1 = 1k

and hence (x1, y1, z1) is (n, k)-powerful. Let d1 = g.c.d.(x1, y1, z1). The triple (x1/d1, y1/d1, z1/d1)
is (n, k)-powerful with

tn,k(x1/d1, y1/d1, z1/d1) = (d1)
k

and is relatively prime. So, (x, y, z) = (x1, y1, z1) is a solution to an (n, n, n + k)-system pro-
duced by the (n, k)-powerful triple (x1/d1, y1/d1, z1/d1). Hence, each positive integral solution
of an (n, n, n+ k)-system can be produced by a relatively prime (n, k)-powerful triple.

Next, we show that each positive integral solution of an (n, n, n+ k)-system is produced by
an unique relatively prime (n, k)-powerful triple. Let (x, y, z) be a positive integral solution of
an (n, n, n + k)-system produced by two relatively prime (n, k)-powerful triple (a1, b1, c1) and
(a2, b2, c2). Then

tn,k(a1, b1, c1) = (t1)
k, tn,k(a1, b2, c2) = (t2)

k

for some positive integers t1, t2. Also,

(x, y, z) = (a1t1, b1t1, c1t1) = (a2t2, b2t2, c2t2).

Let d′ = g.c.d.(t1, t2). We have

a1(t1/d
′) = a2(t2/d

′), b1(t1/d
′) = b2(t2/d

′), c1(t1/d
′) = c2(t2/d

′).

Since t1/d
′ and t2/d

′ are relatively prime, we know that t1/d
′ is a common divisor of a2, b2, c2

and t2/d
′ is a common divisor of a1, b1, c1. Since g.c.d.(a1, b1, c1) = g.c.d.(a2, b2, c2) = 1, we

get t1/d
′ = 1 and t2/d

′ = 1. Hence, we get that a1 = a2, b1 = b2 and c1 = c2 as desired.

Corollary 2.2. Let m, n be positive integers. There exist infinitely many positive integral solu-
tions to an (n, n,mn+ 1)-system.

Proof. Let n be a positive integer. We prove it by induction on m. Let a, b be positive integers
such that a > b. Let t = an − bn. Then (a, b, 1) is (n, 1)-powerful with tn,1(a, b, 1) = t.
By Theorem 2.1, (at, bt, t) is a solution of an (n, n, n + 1)-system. It is obvious that there are
infinitely many such solutions to an (n, n, n+1)-system as there are infinitely many such choices
of a and b.

We assume that the statement is true for m = k. There exist infinitely many positive inte-
gral solutions to an (n, n, kn + 1)-system. Let (a′, b′, c′) be a positive integral solution to an
(n, n, kn+ 1)-system.That is,

(a′)n − (b′)n = (c′)kn+1.

Then (a′, b′, 1) is (n, kn + 1)-powerful with tn,kn+1(a′, b′, 1) = (c′)kn+1. By Theorem 2.1,
(a′c′, b′c′, c′) is a solution of an (n, n, n + (kn + 1))-system. It is now clear that there are
infinitely many solutions of an (n, n, (k + 1)n+ 1)-system as there are infinitely many choices
of (a′, b′, c′) based on inductive hypothesis.
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Example 2.3. Let a = 3, b = 2. Then 33 − 23 = 19 and the triple (3, 2, 19) is a solution of an
(3, 3, 1)-system. The triple (3, 2, 1) is (3, 1)-powerful with t3,1(3, 2, 1) = 19. By Theorem 2.1,
(3 ·19, 2 ·19, 19) = (57, 38, 19) is a solution of an (3, 3, 4)-system. That is, 573−383 = 194. The
triple (57, 38, 1) is (3, 4)-powerful with t3,4(57, 38, 1) = 194 and hence (57 · 19, 38 · 19, 19) =
(1083, 722, 19) is a solution of an (3, 3, 7)-system by Theorem 2.1. That is, 10833−7223 = 197.
We can proceed inductively and obtain a solution for an (3, 3, 3k + 1)-system for every positive
integer k. The solutions of (3, 3, 3k+1)-systems for k = 0, . . . , 9 induced by the (3, 1)-powerful
triple (3, 2, 1) are listed as follows:

33 − 23 = 191

573 − 383 = 194

10833 − 7223 = 197

205773 − 137183 = 1910

3909633 − 2606423 = 1913

74282973 − 49521983 = 1916

1411376433 − 940917623 = 1919

26815152173 − 17877434783 = 1922

509506891233 − 339671260823 = 1925

9680630933373 − 6453753955583 = 1928.

Corollary 2.4. There are infinitely many positive integral solutions of an (2, 2,m)-system for
every positive integer m.

Proof. For odd m, it is clear due to Corollary 2.2. We prove that there exist infinitely many
positive integral solutions of an (2, 2,m)-system for even m by induction. If m = 2, then a
positive integral solution (a, b, c) of an (2, 2, 2)-system is a Pythagoras triple (b, c, a) such that
b2 + c2 = a2 and vice versa. It is well known that there are infinitely many Pythagoras triples.

We assume that there are infinitely many solutions of an (2, 2,m)-system for an even m.
Let (a′, b′, c′) be such solution. Then (a′, b′, 1) is (2,m)-powerful with t2,m(a′, b′, 1) = (c′)m.
By Theorem 2.1, (a′c′, b′c′, c′) is a solution of an (2, 2, 2 + m)-system. Infinitely many such
solutions can be constructed for an (2, 2,m+ 2)-system as there are infinitely many choices of
(a′, b′, c′) by inductive hypothesis.

Corollary 2.5. Let n, m, k be positive integers. If there is no positive integral solution of an
(n, n,mn + k)-system, then there is no positive integral solution of an (n, n,m′n + k)-system
for 0 ≤ m′ ≤ m.

Proof. We prove it by backward induction on m. The base step is clear. We assume that there is
no positive integral solution of an (n, n, k′n+ k)-system for some k′ such that 1 ≤ k′ ≤ m. Let
(a, b, c) be a positive integral solution of an (n, n, (k′ − 1)n + k)-system. The triple (a, b, 1) is
(n, (k′− 1)n+ k)-powerful with tn,(k′−1)n+k(a, b, 1) = (c)(k

′−1)n+k. By Theorem 2.1, the triple
(ac, bc, c) is a solution of an (n, n, k′n+ k)-system, which is a contradiction.

For certain positive integers n1, n2, n3, there is no positive integral solution of an (n1, n2, n3)-
system. We state two lemmas here.

Lemma 2.6. Let n1, n2, n3 be positive integers such that g.c.d.(n1, n2, n3) = d ≥ 3. There is no
positive integral solution of an (n1, n2, n3)-system.

Proof. Let the triple (a, b, c) be a positive integral solution of an (n1, n2, n3)-system. We have

an1 − bn2 = cn3 ,

(an1/d)d − (bn2/d)d = (cn3/d)d.

So, the triple (an1/d, bn2/d, cn3/d) is a positive integral solution of an (d, d, d)-system. But such
positive integral solutions do not exist by the well known Fermat’s Last Theorem [4].
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Lemma 2.7. Let k1, k2 be positive integers. There is no positive integral solution of an (4k1, 4k1, 2k2)-
system.

Proof. Let the triple (a, b, c) be a positive integral solution of an (4, 4, 2)-system. We have
a4 = c2 + b4. But there is no solution for the equation z4 = x2 + y4 by the classical method of
infinite descent introduced by Euler and Fermat.

Let the triple (a′, b′, c′) be a positive integral solution of an (4k1, 4k1, 2k2)-system, then

(a′)4k1 − (b′)4k1 = (c′)2k2 ,

((a′)k1)4 − ((b′)k1)4 = ((c′)k2)2

and hence ((a′)k1 , (b′)k1 , (c′)k2) is a solution of an (4, 4, 2)-system, which is a contradiction.

Corollary 2.8. Let k ≥ 1. There exist infinitely many positive integral solutions of an (3, 3, 3k+
1)-system. There is no positive integral solution of an (3, 3, 3k)-system. There exist at least two
solutions of an (3, 3, 3k + 2)-system.

Proof. The first and the second statements are due to Corollary 2.2 and Lemma 2.6 respectively.
Only two solutions are known for an (3, 3, 2)-system (see Remark 5.3 in Karama’s paper [2,
Remark 5.3]). Namely,

103 − 63 = 282,

2952963 − 2945283 = 141557802.

Hence, the triples (10, 6, 1) and (295296, 294528, 1) are (3, 2)-powerful with t3,2(10, 6, 1) = 282

and t3,2(295296, 294528, 1) = 141557802. We can construct two solutions for an (3, 3, 3k+ 2)-
system inductively based on Theorem 2.1.

There are many open questions on this topic.

Conjecture 2.9. There is no positive integral solution to x4 − y4 = z7.

Remark 2.10. If there exists a positive integral solution to x4 − y4 = z3, then the triple (x, y, 1)
is (4, 3)-powerful with t4,3(x, y, 1) = z3 and hence Conjecture 2.9 is false by Theorem 2.1. The
existence of positive integral solutions to x4 − y4 = z3 is equivalent to the existence of positive
integral solutions to a2 − b2 = c3 such that both a and b are squares. But the author is not aware
of any solution of this form to the latter equation (see the work done by Andrica and Tudor [1]
and Karama [2] for the constructions of solutions to the diophantine equation a2 − b2 = c3.)

Conjecture 2.11. There is no positive integral solution to x6 − y6 = z2.

Remark 2.12. The existence of positive integral solutions to x6 − y6 = z2 is equivalent to the
existence of positive integral solutions to a3 − b3 = c2 such that both a and b are squares. But
the author is not aware of any solution of this form to the latter equation.
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