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Abstract. Tribonacci numbers have been widely studied in relation with Fibonacci num-
bers and their generalizations. Tribonacci-type numbers T (T0,T1,T2)

n are defined by the recurrence
relation T

(T0,T1,T2)
n = T

(T0,T1,T2)
n−1 + T

(T0,T1,T2)
n−2 + T

(T0,T1,T2)
n−3 (n ≥ 3) with given initial values

T
(T0,T1,T2)
0 = T0, T (T0,T1,T2)

1 = T1 and T
(T0,T1,T2)
2 = T2. When T0 = 0 and T1 = T2 =

1, Tn = T
(0,1,1)
n are ordinary Tribonacci numbers, which sequence is given by {Tn}n≥0 =

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, . . . .
In this paper, we give some convolution identities for Tribonacci-type numbers with binomial

(multinomial) coefficients.

1 Introduction

Convolution identities for various kinds of numbers (or polynomials) have been studied, with or
without binomial (or multinomial) coefficients, including Bernoulli, Euler, Genocchi, Cauchy,
Stirling, and Fibonacci numbers ([1, 2, 3, 6, 7, 10, 13]). One typical formula is due to Euler,
given by

n∑
k=0

(
n

k

)
BkBn−k = −nBn−1 − (n− 1)Bn (n ≥ 0) ,

where Bn are Bernoulli numbers, defined by

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
(|x| < 2π) .

In [11], Panda et al. several kinds of the sums of product of two balancing numbers are given.
As an application, the sums of the products of two Fibonacci (and Lucas) numbers

n∑
m=0

Fkm+rFk(n−m)+r and
n∑

m=0

Lkm+rLk(n−m)+r ,

where k and r are fixed integers with k > r ≥ 0, are given. In [12], Ray et al. consider the
higher-order convolution identities for balancing numbers. In addition, let un and vn satisfy the
three-term recurrence relations un = aun−1 + bun−2 (n ≥ 2) with u0 = 0 and u1 = 1 and
vn = avn−1 + bvn−2 (n ≥ 2) with v0 = 2 and v1 = a, respectively. Then, explicit formulae for
general Fibonacci numbers un and Lucas numbers vn, namely,∑

k1+···+kr=n

k1,...,kr≥0

(
n

k1, . . . , kr

)
uk1 · · ·ukr and

∑
k1+···+kr=n

k1,...,kr≥0

(
n

k1, . . . , kr

)
vk1 · · · vkr

are given, where (
n

k1, . . . , kr

)
=

n!
k1! · · · kr!

is the multinomial coefficient.
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In [8, 9], we studied the convolution identities for the original Tribonacci numbers. In the
case of Fibonacci or Lucas numbers, the convolution identities can be expressed in terms of
Fibonacci or Lucas numbers only. In the case of balancing or Lucas-balancing numbers, the
convolution identities can be expressed in terms of balancing or Lucas-balancing numbers only.
However, the convolution identities for Tribonacci numbers need other Tribonacci-type numbers
with different initial values. In this paper, we give some convolution identities with binomial (or
multinomial) coefficients for Tribonacci-type numbers, generalizing the previous results.

2 Main results

For convenience, we shall introduce Tribonacci-type numbers T (T0,T1,T2)
n , satisfying the recur-

rence relation

T (T0,T1,T2)
n = T

(T0,T1,T2)
n−1 + T

(T0,T1,T2)
n−2 + T

(T0,T1,T2)
n−3 (n ≥ 3)

with given initial values T (T0,T1,T2)
0 = T0, T (T0,T1,T2)

1 = T1 and T (T0,T1,T2)
2 = T2. Hence, Tn =

T
(0,1,1)
n are ordinary Tribonacci numbers, which sequence is given by

{Tn}n≥0 = 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, . . .

([14, A000073]).
The generating function with binomial coefficients is given by

t(x) := c1e
αx + c2e

βx + c3e
γx =

∞∑
n=0

T (s0,s1,s2)
n

xn

n!
, (2.1)

where α, β and γ are the roots of x3 − x2 − x− 1 = 0 and given by

α =
3
√

19 + 3
√

33 +
3
√

19− 3
√

33 + 1
3

= 1.839286755 ,

β, γ =
2− (1±

√
−3) 3

√
19− 3

√
33− (1∓

√
−3) 3

√
19 + 3

√
33

6
= −0.4196433776± 0.6062907292

√
−1 ,

satisfying
α+ β + γ = 1 , αβ + βγ + γα = −1 , αβγ = 1 . (2.2)

Since c1 + c2 + c3 = T0, c1α+ c2β + c3γ = T1 and c1α
2 + c2β

2 + c3γ
2 = T2, we have

c1 =
T0βγ − T1(β + γ) + T2

(α− β)(α− γ)
,

c2 =
T0γα− T1(γ + α) + T2

(β − α)(β − γ)
,

c3 =
T0αβ − T1(α+ β) + T2

(γ − α)(γ − β)

(see e.g., [5]) ,
First, we shall prove the following two lemmas.

Lemma 2.1. We have

c2
1e
αx + c2

2e
βx + c2

3e
γx =

1
22

∞∑
n=0

T
(T∗

0 ,T
∗
1 ,T

∗
2 )

n
xn

n!
,

where

T ∗0 = 2(4T 2
0 − 6T 2

1 − 2T 2
2 − 3T0T1 + 9T1T2 + T2T0) ,
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T ∗1 = T 2
0 + 4T 2

1 + 5T 2
2 + 2T0T1 − 6T1T2 − 8T2T0 ,

T ∗2 = 2(−2T 2
0 + 3T 2

1 + T 2
2 + 7T0T1 + T1T2 + 5T2T0) .

Remark 2.2. If T0 = 0 and T1 = T2 = 1, then T ∗0 = 2, T ∗1 = 3 and T ∗2 = 10.

Proof. For Tribonacci-type numbers sn, satisfying the recurrence relation sn = sn−1 + sn−2 +
sn−3 (n ≥ 3) with given initial values s0, s1 and s2, we have

d1e
αx + d2e

βx + d3e
γx =

∞∑
n=0

T (s0,s1,s2)
n

xn

n!
. (2.3)

Since d1, d2 and d3 satisfy the system of the equations

d1 + d2 + d3 = s0 , d1α+ d2β + d3γ = s1 , d1α
2 + d2β

2 + d3γ
2 = s2 ,

we have

d1 =
−s0βγ + s1(β + γ)− s2

(α− β)(γ − α)
,

d2 =
−s0γα+ s1(γ + α)− s2

(α− β)(β − γ)
,

d3 =
−s0αβ + s1(α+ β)− s2

(β − γ)(γ − α)
.

Since d1 = 22c2
1, we have

−s0βγ + s1(β + γ)− s2

(α− β)(γ − α)
= 22

(
T0βγ − T1(β + γ) + T2

(α− β)(α− γ)

)2

.

By using the relations (2.2), we have

α2 = 2− (β + γ) + βγ ,

(β + γ)2 = 1 + (β + γ) + βγ ,

β2γ2 = −(β + γ)− βγ ,
βγ(β + γ) = βγ − 1 .

Thus, (
−s0βγ + s1(β + γ)− s2

)
(α− β)(γ − α)

= s0
(
−2(β + γ) + β2γ2 + 1

)
+ s1

(
−2(β + γ)− 2βγ(β + γ) + 2

)
+ s2

(
−(β + γ) + 3βγ + 3

)
= (−s0 − 2s1 + 3s2)βγ + (−3s0 − 2s1 − s2)(β + γ) + (s0 + 4s1 + 3s2) .

Similarly, (
T0βγ − T1(β + γ) + T2

)2

= (2T0T1 + 2T0T2 − T 2
0 + T 2

1 )βγ + (−2T1T2 − T 2
0 + T 2

1 )(β + γ)

+ (2T0T1 + T 2
1 + T 2

2 ) .

By solving the system

−s0 − 2s1 + 3s2 = 2T0T1 + 2T0T2 − T 2
0 + T 2

1 ,
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−3s0 − 2s1 − s2 = −2T1T2 − T 2
0 + T 2

1 ,

s0 + 4s1 + 3s2 = 2T0T1 + T 2
1 + T 2

2 ,

we obtain that

s0 =
4T 2

0 − 6T 2
1 − 2T 2

2 − 3T0T1 + 9T1T2 + T2T0

11
,

s1 =
T 2

0 + 4T 2
1 + 5T 2

2 + 2T0T1 − 6T1T2 − 8T2T0

22
,

s2 =
−2T 2

0 + 3T 2
1 + T 2

2 + 7T0T1 + T1T2 + 5T2T0

11
.

By replacing s0, s1 and s2 by s0/22, s1/22 and s2/22, respectively, we get the result. It is similar
for d2 = 22c2

2 and d3 = 22c2
3.

Lemma 2.3. We have

c2c3e
αx + c3c1e

βx + c1c2e
γx =

1
22

∞∑
n=0

T (T̂0,T̂1,T̂2)
n

xn

n!
,

where

T̂0 = 7T 2
0 + 6T 2

1 + 2T 2
2 + 5T0T1 − T0T2 − 9T1T2 ,

T̂1 = 8T 2
0 + 10T 2

1 + 7T 2
2 + T0T1 − 9T0T2 − 15T1T2 ,

T̂2 = 17T 2
0 + 24T 2

1 + 8T 2
2 + 9T0T1 − 15T0T2 − 25T1T2 .

Remark 2.4. If T0 = and T1 = T2 = 1, then T̂0 = −1, T̂1 = 2 and T̂2 = 7.

Proof. Similarly to the proof of Lemma 2.1, we need to have d1 = 22c2c3. In this case, we can
obtain that d2 = 22c3c1 and d3 = 22c1c2.

By using Lemma 2.1 and Lemma 2.3, we get the sum of the products of two Tribonacci-type
numbers with initial values T0, T1 and T2 with the binomial coefficient.

Theorem 2.5. For n ≥ 0,
n∑
k=0

(
n

k

)
T
(T0,T1,T2)
k T

(T0,T1,T2)
n−k =

1
22

(
2nT (T∗

0 ,T
∗
1 ,T

∗
2 0)

n + 2
n∑
k=0

(
n

k

)
(−1)kT (T̂0,T̂1,T̂2)

k

)
.

Proof. First, by Lemmas 2.1 and 2.3,

(c1e
αx + c2e

βx + c3e
γx)2

= (c2
1e

2αx + c2
2e

2βx + c2
3e

2γx) + 2(c1c2e
(α+β)x + c2c3e

(β+γ)x + c3c1e
(γ+α)x)

= (c2
1e

2αx + c2
2e

2βx + c2
3e

2γx) + 2(c1c2e
(1−γ)x + c2c3e

(1−α)x + c3c1e
(1−β)x)

=
1
22

∞∑
n=0

T
(T∗

0 ,T
∗
1 ,T

∗
2 )

n
(2x)n

n!
+ 2

n∑
i=0

xi

i!
1

22

∞∑
k=0

T
(T̂0,T̂1,T̂2)
k

(−x)k

k!

=
1
22

∞∑
n=0

T
(T∗

0 ,T
∗
1 ,T

∗
2 )

n
(2x)n

n!
+
∞∑
n=0

2
22

n∑
k=0

(
n

k

)
(−1)kT (T̂0,T̂1,T̂2)

k

xn

n!
.

On the other hand,( ∞∑
n=0

T (T0,T1,T2)
n

xn

n!

)2

=
∞∑
n=0

n∑
k=0

(
n

k

)
T
(T0,T1,T2)
k T

(T0,T1,T2)
n−k

xn

n!
.

Comparing the coefficients on both sides, we get the desired result.
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It would be possible to obtain higher-order convolution identities, but the forms seem to
become more complicated. We present the results for the sum of the products of three and four
Tribonacci-type numbers with multinomial coefficients.

Theorem 2.6. For n ≥ 0,∑
k1+k2+k3=n

k1,k2,k3≥0

(
n

k1, k2, k3

)
T
(T0,T1,T2)
k1

T
(T0,T1,T2)
k2

T
(T0,T1,T2)
k3

=
1
22

(
3

n∑
k=0

(
n

k

)
2n−kT (T∗

0 ,T
∗
1 ,T

∗
2 )

n−k T
(T0,T1,T2)
k − 3nT (Ť0,Ť1,Ť2)

n + 3T̃

)
.

Theorem 2.7. For n ≥ 0,∑
k1+k2+k3+k4=n

k1,k2,k3,k4≥1

(
n

k1, k2, k3, k4

)
T
(T0,T1,T2)
k1

T
(T0,T1,T2)
k2

T
(T0,T1,T2)
k3

T
(T0,T1,T2)
k4

=
1

484

(
44

n∑
k=0

(
n

k

)
3n−kT (Ť0,Ť1,Ť2)

n−k Tk − 3 · 4nT (T̄0,T̄1,T̄2)
n

+6
n∑
k=0

(
n

k

)( k∑
i=0

(
k

i

)
(−1)iT (T̂0,T̂1,T̂2)

i

)n−k∑
j=0

(
n− k
j

)
(−1)jT (T̂0,T̂1,T̂2)

j

 .
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