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Abstract. A fractional differential equation has a wide range of applications in engineering
and science. Haar wavelet operational matrix has been widely applied in system analysis, system
identification, Optimal control and numerical solution of integral and differential equations. In
this paper, a numerical scheme, based on the Haar wavelet operational matrix of the fractional
order integration for the solution of fractional differential equation is presented. The operational
matrix is used to reduce the fractional differential equation in to a system of algebraic equations.
Numerical examples are provided to demonstrate the accuracy, efficiency and simplicity of the
proposed method.

1 Introduction

Fractional calculus involves integration and differentiation of arbitrary order. The application of
fractional calculus just emerged in last few decades in various areas of engineering and science,
namely in signal processing, control engineering, electrochemistry, electromagnetism , diffusion
processes, biosciences, fluid mechanics, propagation of spherical flames, dynamics of viscoelas-
tic materials, Continuum and statistical mechanics, quantum mechanics, quantum chemistry and
damping laws and rheology. Fractional order derivatives are used in modeling and control of
many dynamic systems. Fractional calculus does a remarkable job in modeling of a dynamic
system as it depends on two factors such as the time instant and the prior time history. Due to
the applications and advantages of Fractional differential equations (FDEs), many researchers
are trying to develop more efficient and accurate methods to solve them.

But finding the exact solution of a FDE is not easy as its structure is very complicated. Hence
analytical and numerical methods are good for finding the solution of FDEs.

Motivated by increasing number of applications of FDEs [11] considerable attention has
been given to provide efficient methods for the exact and numerical solution of FDEs. The
most commonly used methods are [1, 2, 9, 15]. All these methods have their own advantages,
disadvantages, restrictions and limitations. Some of them are very complicated and tough to
implement and convergence of results also not very good.

The recent years have witnessed the development of Wavelet theory, a new tool, which
emerged from mathematics and quickly adopted by diverse field of engineering and science [6,
8]. Wavelets are special types of oscillatory functions with compact support. The Haar wavelet
is the simplest example of orthogonal wavelets, compactly supported on the interval [0, 1). His-
torically Chen C. and Hsiao C., [7], first proposed a Haar operational matrix for the integration
of Haar function vectors and used it for solving differential equations. Recently, there has been
some significant interest in the applications of wavelet methods for the numerical solutions of
FDEs [18].

In this paper, our purpose is to provide a numerical scheme, based on Haar wavelet opera-
tional matrices of integration, to solve various types of FDEs by converting them in to a system
of algebraic equations. The paper is organized as follows: In section 2, we introduce some nec-
essary definitions and mathematical preliminaries of fractional calculus and Haar wavelet. In
section 3, we discuss function approximation by the Haar wavelet and operational matrices of
integration. In section 4, we present several examples to demonstrate the accuracy and simplicity
of the numerical scheme.
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2 Definitions, Mathematical Preliminaries and Notations

2.1 Fractional Calculus

In this section, some necessary definitions and mathematical preliminaries of fractional calculus
theory are given, which will be used further in this paper. The Riemann-Liouville fractional
integral operator Iα of order α > 0 on the usual Lebesgue space L1[a, b] is given as [16],

(Iαf)(t) =
1

Γ(α)

∫ t

0
(t− z)α−1f(z)dz (2.1)

(I0f)(t) = f(t) (2.2)

Where f ∈ Cµ, µ ≥ −1

Its fractional derivative of order α > 0 is given by

(Dαf)(t) =
( d
dt

)n
(In−αf)(t) for n− 1 < α ≤ n (2.3)

Where n is an integer and f ∈ Cn1
Now by the Riemann-Liouvilles definition

Iαtν = Γ(ν+1)
Γ(α+ν+1 t

α+ν

IαIβf(t) = Iα+βf(t)

IαIβf(t) = IβIαf(t)


(2.4)

Where α, β ≥ 0, t > 0 and ν > −1

There are many disadvantages of Riemann-Liouvilles derivatives when trying to model real
world phenomena with fractional differential equations. Therefore we need to introduce a mod-
ified fractional differential operator Dα proposed by Caputo.

Dαf(t) =
1

Γ(n− α)

∫ t

0
(t− z)n−α−1fn(z)dz, (n− 1 < α ≤ n) (2.5)

Where n is an integer t > 0 and f ∈ Cn1

Caputo integral operator has a useful property,

IαDαf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, (n− 1 < α ≤ n) (2.6)

Where n is an integer t > 0 and f ∈ Cn1

2.2 Haar Wavelet

The Haar functions are orthogonal family of rectangular waveforms. The orthogonal basis
{hi(t)} of Haar wavelets for the Hilbert space L2[0, 1] consists of

hi(t) = h1(2jt− k), i = 2j + k, j ≥ 0, 0 ≤ k ≤ 2j , i, j, k ∈ Z (2.7)

where

h0(t) = 1, 0 ≤ t < 1, h1(t) =

{
1, 0 ≤ t < 0.5
−1, 0.5 ≤ t < 1

(2.8)

Each Haar wavelet hi has the support
(
2−jk, 2−j(k + 1)

)
so that it is zero elsewhere in the

interval [0, 1). Note that, as n increases, the Haar wavelets become more and more localized.
Therefore {hi(t)} forms a local basis.

The integer 2j , j = 0, 1,−−−, J indicates the level of wavelets, k = 0, 1,−−−,m− 1 is the
translation parameter. The integer J determines the maximal level of resolution. The index i can
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be calculated by formula i = 2j + k + 1. The sequence {hi(t)}∞i=0 is a complete orthonormal
system.

By simple calculations it can be shown that,∫ 1

0
hi(t)hj(t)dt = δij

Consequently, the Haar system {hi(t)}∞i=0 is orthonormal.

3 Function approximation and Operational matrices

3.1 Function approximation

Any function y(t) which is square integrable in the interval [0, 1) can be expanded in to Haar
series as

y(t) =
∞∑
i=0

Cihi(t) (3.1)

where the Haar coefficients Ci, i = 0, 1, 2,−−− are given by

Ci =< y(t), hi(t) >= 2j
∫ 1

0
y(t)hi(t)dt (3.2)

The coefficients Ci are determined in such a way that integral square error ε given by,

ε =

∫ 1

0
[y(t)−

m−1∑
i=0

Cihi(t)]
2dt, m = 2j , j = 1, 2, 3?−−−

is minimized. If the infinite series in equation (3.1) is truncated, then equation (3.1) can be
written as,

y(t) ≈ ym(t) =
m−1∑
i=0

Cihi(t) (3.3)

The error of numerical schemes mainly depends on series expansion for the unknown solution
of differential equations. For differential function y(t) with bounded first order derivative on (0,
1), we have by [4],

‖y(t)− ym(t)‖L2(0,1) = O(1/2j)

Thus the error of approximation decreases with increasing j.

The wavelet series in (3.3) can be written into the vector form as

y(t) ≈ CTmHm(t) (3.4)

where T indicates transposition. The Haar coefficient vector Cm and Haar function vector Hm

are defined as

Cm = [C0, C1,−−−, Cm−1]
T

Hm(t) = [h0(t), h1(t),−−−, hm−1(t)]
T

Taking the collocation points ti = 2i+1
2m , i = 0, 1, 2,− − −,−1, we can define the m - square

Haar matrix Hm×m as:

Hm×m = [Hm(t0) Hm(t1)−−−Hm(tm−1)]

For instance, when m = 8, the Haar matrix is given by

H8×8 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


(3.5)
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Correspondingly, we have

ym = [ym(t0) ym(t1)−−− ym(tm−1)] = CTmHm×m (3.6)

Because the m - square Haar matrix Hm×m is an invertible matrix, the Haar coefficient vector
CTm can be obtained by

CTm = ymH
−1
m×m (3.7)

3.2 Operational matrix of the fractional order integration

The integration of the Haar function vector Hm(t) is given by,∫ t

0
Hm(s)ds = Pm×mHm(t) (3.8)

where Pm×m is the Haar wavelet operational matrix of integration proposed by Chen C., Hsiao
C. [7] and it is given by

Pm×m =
1

2m

 2mPm
2 ×

m
2
−Hm

2 ×
m
2

H−1
m
2 ×

m
2

0


Now we define a m - set of Block pulse functions (BPF) as:

bi(t) =

{
1, i

m ≤ t <
i+1
m

0, otherwise
(3.9)

where i = 0, 1, 2,−−−,m− 1

The functions bi(t) are disjoint and orthogonal, that is

bi(t)bj(t) =

{
0, i 6= j

bi(t), i = j
(3.10)

∫ 1

0
bi(t)bj(t)dt =

{
0, i 6= j
1
m , i = j

(3.11)

Because the Haar functions are piecewise constant, it may be expanded into an m - term block
pulse functions (BPF) as,

Hm(t) = Hm×mBm(t) (3.12)

where the block - pulse function vector Bm(t) is defined as,

Bm(t) = [b0(t) b1(t)−−− bi(t)−−− bm−1(t)]
T (3.13)

Fractional integration of the block - pulse function vector is given as,

(IαBm)(t) = FαBm(t) (3.14)

where Fαm×m is the block - pulse operational matrix of the fractional order integration [12].

Fα =
1
mα

1
Γ(α+ 2)



1 ξ1 ξ2 − − − ξm−1

0 1 ξ1 − − − ξm−2

0 0 1 − − − ξm−3

− − − − −
− − − − −
− − − − −
0 0 0 − − − 1


(3.15)

with ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1

Now let
(IαHm)(t) = Pαm×mHm(t) (3.16)
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where them - square matrix Pαm×m is called the Haar wavelet operational matrix of the fractional
order integration. Using equations (3.12) and (3.14), we have

(IαHm)(t) = (IαHm×mBm)(t) = Hm×m(I
αBm)(t) = Hm×mF

αBm(t) (3.17)

Now from equations (3.16) and (3.17), we have

Pαm×mHm(t) = Pαm×mHm×mBm(t) = Hm×mF
αBm(t) (3.18)

then the Haar wavelet operational matrix of the fractional order integration Pαm×m is given by,

Pαm×m = Hm×mF
αH−1

m×m (3.19)

For example, let α = 0.5,m = 8, the operational matrix Pαm×m is given as:

P 0.5
8×8 =



0.7532 −0.2203 −0.1558 −0.0820 −0.1102 −0.0580 −0.0447 −0.0377
0.2203 0.3116 −0.1558 0.2296 −0.1102 −0.0580 0.1756 0.0782
0.0410 0.1148 0.2203 −0.0350 −0.1102 0.1623 −0.0389 −0.0063
0.0779 −0.0779 0 0.2203 0 0 −0.1102 0.1623
0.0094 0.0196 0.0812 −0.0032 0.1558 −0.0247 −0.0026 −0.0009
0.0112 0.0439 −0.0551 −0.0194 0 0.1558 −0.0247 −0.0026
0.0145 −0.0145 0 0.0812 0 0 0.1558 −0.0247
0.0275 −0.0275 0 −0.0551 0 0 0 0.1558


4 Numerical Examples

In this section, the proposed Haar wavelet operational matrices of the fractional order integration
is discussed to find the numerical solution of the linear and non - linear fractional differential
equations. The illustrative examples show the correctness, effectiveness and accuracy of the
proposed method.

Example 4.1. Following [10] and [13], we consider the following linear fractional differential
equation

Dαy(t) + y(t) = 0, 0 < α ≤ 2 (4.1)

such that,
y(0) = 1, y

′
(0) = 0 (4.2)

The condition y
′
(0) = 0 is only for 1 < α ≤ 2. The exact solution of equation (4.1), (4.2) is

given by
y(t) = Eα(−tα)

where

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)

is the Mittage - Leffler function of order α.
We apply proposed method for 1 < α ≤ 2. Let

Dαy(t) = KT
mHm(t) (4.3)

then
Dy(t) = (Iα−1Dαy)(t) + y

′
(0) = KT

mP
α−1
m×mHm(t) (4.4)

and
y(t) = KT

mP
α
m×mHm(t) + y(0) (4.5)

On substituting equations (4.3) and (4.5) in the equation (4.1), we have

KT
mHm(t) +KT

mP
α
m×mHm(t) + 1 = 0 (4.6)

Thus equation (4.6) has been transformed into a system of algebraic equations. Solving the
equation (4.6), we can obtain the coefficients KT

m. Then on using equation (4.5) we can get
the value of required function y(t). The absolute error for α = 1.5 and for different values of
m = 8, 16, 32, 64, 128 is shown in table 1.
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Example 4.2. Next, we consider a non-homogeneous multi-term fractional differential equation

ADαy(t) +BDβy(t) + Cy(t) = g(t) (4.7)

With y(0) = y0, y
′
(0) = y1, 0 ≤ t ≤ 1, 0 < β < α ≤ 2 where A 6= 0 and B,C ∈ R

For α = 2, β = 3
2 equation (4.7) reduces to the Bargely-Torvik equation originally proposed in

[5]. This equation arises in the modeling of a rigid plate immersed in a Newtonian fluid.

Now let
Dαy(t) = KT

mHm(t) (4.8)

together with the initial states, then we have

Dαy(t) = (Iα−βDαy)(t) = KT
mP

α−β
m×mHm(t) = KT

mHm×mF
α−βH−1

m×mHm(t) (4.9)

and
Dy(t) = KT

mP
α−1
m×mHm(t) + y

′
(0) = KT

mP
α−1
m×mHm(t) + y1 (4.10)

and
y(t) = KT

mP
α
m×mHm(t) + y1[1, 1,−−−, 1]H−1

m×mP
α−1
m×mHm(t) + y0 (4.11)

Similarly the input signal g(t) may be expanded by the Haar functions as follows,

g(t) = gTmHm(t) (4.12)

where gTm is a known constant vector. On substituting equations (4.8), (4.9), (4.11) and (4.12) in
the equation (4.7), we have

AKT
mHm(t) +BKT

mP
α−β
m×mHm(t) + C(KT

mP
α
m×mHm(t) + y1[1, 1,−−−, 1]H−1

m×mP
α−1
m×mHm(t)

+ y0[1, 1,−−−, 1]) = gTmHm(t) (4.13)

Thus equation (4.13) has been transformed into a system of algebraic equations. Substituting the
values of A,B and C into the equation (4.13) and solving the system of algebraic equations, we
can obtain the coefficients KT

m. Then using the equation (4.11) we can get the required output
y(t).

In particular, if we choose α = 2, β = 3
2 , A = B = C = 1 and g(t) = 8 for t ∈ [0, 1] and

y0 = y1 = 0. The numerical solutions obtained by the proposed method and some other numer-
ical methods such as fractional finite difference method, the Adomian decomposition method,
fractional differential transform method and the variational iteration method given in [3, 14]
are given in the table 2. The exact solution refers to the closed form series solution given by
[14]. Clearly, the approximations obtained by the proposed Haar wavelet operational matrix of
integration method are in good agreement with those obtained with above mentioned numerical
methods.

Example 4.3. In example 4.2, for A = B = 1, C = 0, α = 2, 0 ≤ β ≤ 1, y0 = y1 = 0
and g(t) = 6t3

(
t−α

Γ(4−α) +
t−β

Γ(4−β)

)
, one can easily verify that the exact solution in this case is

y(t) = t3. Computer simulations are carried out for t ∈ [0, 1] and the maximum absolute errors
by our proposed method are given in table 3. This confirms that the proposed method gives very
accurate results for the solution of FDEs.

Example 4.4. Consider the following non-linear fractional order differential equation

Dαy(t) + ayn(t) = g(t) (4.14)

where y(0) = 0, 1 < α ≤ 2, n ∈ N and g(t) is the given function.

Now let,
Dαy(t) = KT

mHm(t) (4.15)

together with the initial states, then we have

y(t) = KT
mP

α
m×mHm(t) = KT

mP
α
m×mHm×mBm(t) (4.16)

where Bm(t) is the block-pulse function vector.
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Now let,
KT
mP

α
m×mHm×m = [a1, a2,−−−, am]

and using equation (3.10), we have

[y(t)]n = [a1b1(t) + a2b2(t) +−−−+ ambm(t)]
n

= an1 b1(t) + an2 b2(t) +−−−+ anmbm(t)

[y(t)]n = [an1 , a
n
2 ,−−−, anm]Bm(t) (4.17)

Similarly, the input signal g(t) may be expanded by the Haar functions as follows,

g(t) = gTmHm(t) = gTmHm×mBm(t) (4.18)

where gTm is a known constant vector. On substituting (4.15), (4.17) and (4.18) in (4.14), we have

KT
mHm×mBm(t) + a[an1 , a

n
2 ,−−−, anm]Bm(t)− gTmHm×mBm(t) = 0 (4.19)

This is a non-linear system of algebraic equations. Here, we use MATLAB to solve equation
(4.19). In particular, for α = 3

2 , a = exp(−2π), n = 2 and g(t) = 105
32 t

2 + e2πt7, it can be easily
verified that the exact solution is y(t) = t

7
2 . The absolute error is given for m = 64 and different

values of α in the table 4.

Table 1: Absolute error for α = 1.5 and different values of m.

Table 1

Table 2: Numerical results obtained by the proposed method of Haar wavelet operational matrix
of integration (HWM) for m = 64 with comparison to solutions given by [3, 14].

Table 2

Table 3: Maximum absolute error by the proposed method for α = 2 and different values of β.

Table 3
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Table 4: Absolute error for m = 64 and different values of α.

Table 4

5 Conclusion

In this work a numerical scheme, based on operational matrices of integration for Haar wavelet,
is proposed and is used to solve fractional differential equations numerically. A general proce-
dure of forming this matrix Pαm×m is summarized. The proposed method is used to solve the
linear and nonlinear multi - term fractional orders differential equations. The obtained results
by the proposed method are compared with exact solutions and with the solutions obtained by
some other numerical methods. The numerical examples show that the proposed method is very
convenient, efficient and accurate for solving FDEs.
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