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Abstract. In this paper, we present a new public key scheme which is a combination of

RSA variant namely the Dependent-RSA (DRSA) and the general formulation of DGDLP. The

security of this scheme depend equally on the integer factorization of n and the discrete logarithm

on Z∗
n, where n is a product of two large primes and Z∗

n is the multiplicative group modulo n.
The scheme is a randomized algorithm and it is at least as secure as the DRSA and ElGamal

schemes.

1 Introduction

The public key cryptography has a major advantage over the symmetric key cryptography. It has

an own public key which is known to everybody and has a corresponding private key which is

only known to the intended recipient. Therefore, it does not require a prior communication of a

secret key which is the main disadvantage of symmetric key cryptography. Most of the public

key cryptosystems are based on one-way trapdoor function, where the encryption rule is easy to

compute, but decryption rule is computationally infeasible without any additional information.

Thus, the security of a public key cryptosystem is based on the intractability of hard mathemati-

cal problems such as integer factorization problem (IFP), discrete logarithm problem (DLP) etc.

The two problems which are used in this paper are the Computational Dependent-RSA problem

(C-DRSA problem) [7] and the generalization of generalized discrete logarithm problem (gen-

eralization of GDLP or generalized GDLP ) [6]. For a large composite RSA modulus n and an

exponent e relatively prime to ϕ(n), the Computational Dependent-RSA problem [7] stated that

for given ke (mod n) �nd (k+ 1)e (mod n) where k ∈ Z∗
n. The C-DRSA problem is intractable

for large RSA modulus n [7]. The Generalization of GDLP [6] stated that given a �nite group G
and elements α, γ ∈ G, �nd an integer x such that αx = γ, provided that such an integer exists.
In this formulation, it is not required that G be a cyclic group, and even it is, it is not required to

consider generator of the group [6]. Since α is not a generator of the group so αx is not unique,

which makes this problem harder to solve than GDLP. In this paper, we consider two generalized

GDLP (we call it the generalization of DGDLP or general formulation of DGDLP) on Z∗
n, the

non-cyclic group of multiplication modulo n, where n is the product of large primes.

Up to now, most of the public key schemes are based on one cryptographic assumption.

Although these schemes are secure but it is possible that in future ef�cient algorithms will be

developed to solve these assumptions false. In 1988, K. S. McCurley [5] proposed the �rst key

distribution scheme based on two hard dissimilar assumptions. The scheme is a modi�cation of

the ElGamal cryptosystem. Instead of using an arithmetic modulus a prime p, he used a modulus

n that is a product of two primes. To break the scheme requires the prime factorization of n and

ability to solve DLP. After that, many public key schemes were developed which are based on

two cryptographic assumptions (for example [4, 2, 3, 10, 8] etc)

By this motivation, we propose a new public key scheme whose security is based on the Com-

putational Dependent-RSA problem and the generalization of GDLP. In this proposed scheme,

an attacker has to solve simultaneously the integer factorization problem (IFP) and the general-

ization of DGDLP. One advantage of this scheme is that it include non-cyclic groups. Moreover,

the encryption scheme is more ef�cient than the Quadratic exponentiation randomized (QER)

cryptosystem [2]. We also show that the proposed scheme is at least as secure as each of the

DRSA scheme [8] and the ElGamal scheme [9].
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The paper is organized as follows. In section 2, we present our cryptosystem. Section 3 is

devoted to the security of the proposed cryptosystem and in section 4 we deal with its perfor-

mance. Finally, we conclude the paper in section 5. Throughout the paper, all notations are

usual. For example, the multiplicative group of Zn is denoted by Z∗
n, the Euler's phi function of

n is denoted by ϕ(n) etc.

2 The Proposed Public Key Scheme

In this section we present our public key scheme.

Public and private key generation:

A user A, who wants to create a public and private key, have to do the following steps:

1. Choose two large primes p and q of almost same size.

2. Compute n = pq and ϕ(n) = (p− 1)(q − 1).

3. Choose two integers e, d ∈ {1, . . . , n− 1} such that ed ≡ 1 (mod ϕ(n)).

4. Select two random integers a, b such that 0 ≤ a, b ≤ ϕ(n)− 1.

5. Choose α, β ∈ Z∗
n and compute αa (mod n) and βb (mod n).

The public key of A is (n, e, α, β, αa, βb) and the corresponding private key is (p, q, d, a, b).

Encryption:

Suppose that another user B want to send a message to A by using A's public key. Then B have

to do the following steps:

1. Represent the message m as an integer in the interval [0, n− 1].

2. Choose k ∈ Z∗
n and compute C1 ≡ ke (mod n).

3. Choose two random non-negative integers g and h and compute

C2 ≡ αg (mod n) and C3 ≡ βh (mod n).

4. Compute C4 ≡ (αa)g(βb)h(k + 1)em (mod n).

B send to A the encrypted message (C1, C2, C3, C4).

Decryption:

For the decryption of the message (C1, C2, C3, C4), A should do the following steps:

1. Compute k ≡ Cd
1
(mod n).

2. Compute M ≡ C4(k + 1)−e (mod n).

3. Compute C
ϕ(n)−a
2

(mod n) ≡ α−ag (mod n) and

C
ϕ(n)−b
3

(mod n) ≡ β−bh (mod n).

4. Compute N ≡ α−agβ−bhM (mod n).

Proof of validity:

From the relation N ≡ α−agβ−bhM (mod n), we have
N ≡ α−agβ−bhC4(k + 1)−e ≡ α−agβ−bhαagβbhm ≡ m (mod n).
Since 0 ≤ m,N ≤ n− 1, so N = m.
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3 Security

The security of this proposed cryptosystem is based on factoring and discrete logarithm. A third

party who intercepts the encrypt message (C1, C2, C3, C4) can recover m, by �nding the prime

factors p and q of n and so d and next by �nding a and b from αa (mod n) and βb (mod n)
that is an attacker has to solve integer factorization problem and general formulation of DGDLP.

So, the primes p and q are consider in such a way that they do not permit the application of the

known algorithms of factorization and for computation of discrete logarithm. Furthermore, d
must be greater than n0.292 to avoid low private exponent attack [1]. Also, the order of α and

β are large to prevent exhaustive search attack. To encrypt diffrent messages the parameters

k, g and h must be different. Because if a sender used same parameters for encryption of two

messages say m1 and m2 then he obtains C4 ≡ (αa)g(βb)h(k + 1)em1 (mod n) and C ′
4
≡

(αa)g(βb)h(k + 1)em2 (mod n). So, from the relation m2 ≡ C−1

4
C ′
4
m1 (mod n), an attacker

who knows the message m1 can recover m2.

Since the parameters k, g and h are randomly chosen by the sender, so the proposed scheme

is a randomized algorithm, which increases the security of the scheme. Also, an attacker is not

able to �nd the ciphertext of m1m2 even if he knows the corresponding ciphertext of messages

m1 and m2.

Note that if an attacker �nds easily a method to compute d or factoring n, then he has still to
solve general formulation of DGDLP. Alternatively, if the attacker can easily solve the general

formulation of DGDLP, then he also has to compute d by factoring n. Thus, in any case, an

attacker has to solve two hard problems. Since the security of this scheme is based on IFP and

general formulation of DGDLP, so it is more secure than the scheme proposed in [8] which

is based on IFP and two DLP as generalized GDLP is harder to solve than DLP. The scheme is

more secure than the quadratic exponentiation randomized (QER) cryptosystem [2] as it requires

IFP and one general formulation of GDLP.

Now, by the following theorem, we will show that the proposed scheme is at least as secure

as each of the DRSA and ElGamal schemes. For this, we assume that there exists an oracle

O that can break the proposed scheme that is O can gives the message from the corresponding

ciphertext.

Theorem 3.1. If there is an oracle that can break the proposed scheme then it can also break the

DRSA and ElGamal schemes.

Proof. If a = 0 = b, then αa = 1 = βb and so the DRSA cryptosystem is a particular case of

the proposed scheme. Hence, if there exist an oracle that can break the proposed scheme then it

can also break the DRSA scheme.

Let O be an oracle that can break the proposed scheme. We will show that O can also break

ElGamal Scheme. Let (p, g, y) be the public key and a be the private key of the ElGamal scheme,

where y ≡ ga (mod p).
Suppose that an attacker has captured a ciphertext (C,D), which is encrypted by the ElGamal

scheme and he wants to recover the corresponding message m. So, there is a z ∈ {0, . . . , p− 2}
such that C ≡ gz (mod p) and D ≡ yzm (mod p). First, he chooses a prime q such that q - D
and compute n = pq. Secondly, he chooses integers α, y1, C1, D1 ∈ {1, ..., n− 1} such that

α ≡ g (mod p), α ≡ 1 (mod q),
y1 ≡ y (mod p), y1 ≡ 1 (mod q),
C1 ≡ C (mod p), C1 ≡ 1 (mod q),
D1 ≡ D (mod p), D1 ≡ 1 (mod q).

Since αa ≡ y (mod p) and αa ≡ 1 (mod q), so αa ≡ y1 (mod n). Similarly, αz ≡
C1 (mod n). Consider M ∈ {1, . . . , n − 1} such that M ≡ m (mod p) and M ≡ 1 (mod q).
Then D1 ≡ yz

1
M (mod n).

Again, choose β ∈ Z∗
n, b ∈ {0, . . . , ϕ(n) − 1} and compute y2 ≡ βb (mod n). So, (n, e =

1, α, β, y1 = αa, y2 = βb) mod n is the public key and (p, q, d = 1, a, b) is the private key of

the proposed scheme. Since the oracle O can break the proposed scheme, so from the ciphertext

(1, C1 = αz, C2 = β0, C3 = 2yz
1
y0
2
M = 2D1) mod n, one can recover M and hence m.
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4 Performance analysis

The encryption algorithm of the proposed scheme requires six modular exponentiations namely

ke, αg, βh, (αa)g, (βb)h, (k + 1)e mod n and three modular multiplications for computation of

C1, C2, C3 and C4. The six modular exponentiations and two modular multiplications can be

done in advance. Thus, the encryption requires only one modular multiplication. The decryp-

tion algorithm required four modular exponentiations namely Cd
1
, (k+ 1)e, Ca

2
, Cb

3
mod n, three

modular multiplications to compute M,N mod n and three applications of extended Euclidean

algorithm for computation of ((k+1)e)−1, (Ca
2
)−1, (Cb

3
)−1 mod n. Hence, the encryption of this

scheme is as ef�cient as the encryption scheme proposed in [8] whereas the decryption is less

ef�cient since the decryption scheme of the previous scheme requires three modular exponenti-

ations, two modular multiplications and two applications of extended Euclidean algorithm. The

encryption scheme of the QER cryptosystem [2] requires one modular exponentiation and one

modular multiplication whereas decryption requires two modular exponentiations, one modular

multiplication and one application of the extended Euclidean algorithm. Thus, the proposed en-

cryption scheme is more ef�cient than the QER encryption scheme and decryption scheme is less

ef�cient. Similarly, encryption scheme is more ef�cient than the encryption scheme described

in section III of [3], [4] and section 3 of [5]. The scheme is more ef�cient than the trivial use of

the DRSA and QER schemes in series. It is also more ef�cient than the trivial use of the DRSA

and ElGamal schemes in series. A disadvantage of the proposed scheme is that the ciphertext is

longer than the plaintext.

5 Conclusion

In this paper, we introduced a new public key scheme which is a combination of DRSA and gen-

eral formulation DGDLP. The use of the general formulation of DGDLP increases the security

of the proposed scheme. We also showed that the scheme is at least as secure as the DRSA and

ElGamal cryptosystems, which are semantically secure. The encryption scheme is at least as

ef�cient as the most of the existing scheme.

References

[1] D. Boneh and G. Durfee, New results on cryptanalysis of low private exponent RSA, Preprint (1998).

[2] H. Elkamchouchi, K. Elshenawy and Heba. A. Shaban, Two new public key techniques in the domain of

Gaussian integers, Proceedings of the Twentieth national radio science conference, NRSC 2003 C17, 1�8

(2003).

[3] H. M. Elkamchouchi, M. E. Nasr and R. Esmail, New public key techniques based on double discrete

logarithm problem, Proceedings of the Twenty-First National radio science conference, NRSC 2004 C23,

1�9 (2004).

[4] L. Harn, Public-key cryptosystem design based on factoring and discrete logarithms, IEE Proceedings -

Computers and Digital Techniques 141:3, 193�195 (1994).

[5] K. S. McCurley, A key distribution system equivalent to factoring, J. Cryptology 1 : 2, 95�106 (1988).

[6] A. J. Menezes , P. van Oorschot and S. Vanstone, Handbook of Apllied Cryptography, CRC Press, (1997).

[7] D. Pointcheval, New public key cryptosystems based on the dependent-RSA problems, Proceedings of

Advances in cryptology - EUROCRYPT'99, J. Stern (editor), Springer, Berlin, Lect. Notes Comput. Sci.

1592, 239�254 (1999).

[8] D. Poulakis, A public key encryption scheme based on factoring and discrete logarithm, Journal of Dis-

crete Mathematical Sciences and Cryptography 12 : 6, 745�752 (2009).

[9] Y. Tsiounis and M. Yung, On the security of ElGamal based encryption, Proceedings of 1st International

Workshop on Practice and Theory in Public Key Cryptography (PKC'98), H. Imai et al. (editor), Springer,

Berlin, Lect. Notes Comput. Sci. 1431, 117�134 (1998).

[10] W. Wei, T. van Trung, S. Magliveras, F. Hoffman, Cryptographic primitives based on groups of hidden

order, Tatra Mt. Math. Publ. 29, 147�155 (2004).



584 Pinkimani Goswami, Madan Mohan Singh and Bubu Bhuyan

Author information

Pinkimani Goswami, Department of Mathematics, North-Eastern Hill University, Shillong-793022, India.

E-mail: pinkimanigoswami@yahoo.com

Madan Mohan Singh, Department of Basic Sciences and Social Sciences, North-Eastern Hill University,

Shillong-793022, India.
E-mail: mmsingh2004@gmail.com

Bubu Bhuyan, Department of Information Technology, North-Eastern Hill University, Shillong-793022, India.

E-mail: bbhuyan@gmail.com

Received: July 30, 2015.

Accepted: May 9, 2016.


