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Abstract In this work, we consider the bifurcation problem for Marguerre-von Kármán equa-

tions, which constitute a mathematical model for the buckling of a nonlinearly thin elastic shal-

low shell, subjected to boundary conditions of von Kármán type on its lateral face. First, we re-

duce the continuous problem of these equations to a single equation with cubic operator, whose

unknowns are the vertical displacement and the intensity of the lateral compression. Then, we

solve this equation by adapting a Kikuchi's method [22]. Next, we establish the convergence of

a conforming �nite element approximations of non trivial solutions bifurcating from the trivial

solution at neighborhood of the simple eigenvalues of the linearized problem. Then, we obtain

the corresponding error estimates.

1 Introduction

The two-dimensional Marguerre-von Kármán equations for nonlinearly elastic shallow shells

were originally proposed by Marguerre [24] in 1938 and von Kármán and Tsien [30] in 1939,

they generalize the equations of von Kármán for thin elastic plates proposed by von Kármán [29]

in 1910.

In 1986, Ciarlet and Paumier [14] justi�ed the classical Marguerre-von Kármán equations

by means of a formal asymptotic analysis. Then, in 2002, Gratie [17] has generalized these

equations, where only a portion of the lateral face is subjected to boundary conditions of von

Kármán's type, the remaining portion being free. She showed that the leading term of the asymp-

totic expansion is characterized by a two-dimensional boundary value problem called general-

ized Marguerre-von Kármán equations. In 2006, Ciarlet and Gratie [11] have established an

existence theorem for these equations.

The questions of existence, uniqueness, regularity and stability for these equations. We quote

the works carried out by Kesavan and Srikanth [21], Kavian and Rao [18], Rao [26, 27], Léger

and Miara [23], Devdariani, Janjgava and Gulua [15].

In the same way but for the dynamical case, we quote the previous works [7, 8], when we

identi�ed the dynamical equations for generalized Marguerre-von Kármán shallow shells and we

established the existence of solutions to these equations. In the same way but for the unilateral

contact case, we quote our work [1] for justi�cation of the generalized Marguerre-von Kármán

equations with Signorini conditions.

For numerical approximations, some studies have been done for the von Kármán equations.

Miyoshi [25] studied the mixed �nite element method for these equations. Kesavan [19, 20] pro-

posed an iterative �nite element method of the bifurcation problem for von Kármán equations,

by adapting a Kikuchi's method [22], and mixed �nite element method for the same problem.

Brezzi [4] and Brezzi et al. [5, 6] analyzed a �nite element approximations of von Kármán

equations and studied a Hellan-Herrmann-Johnson mixed �nite element scheme for the von Kár-

mán equations. Reinhart [28] proposed an approximation of the von Kármán equations using a

Hermann-Miyoshi �nite element scheme. Ciarlet et al. [13] studied the �nite element method

for the generalized von Kármán equations. Recently in [16], we established the convergence of a

conforming �nite element approximations to the generalized Marguerre-von Kármán equations.

The objective of this study is to extend the results which studied by Kesavan [19] for the von
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Kármán plate to the Marguerre-von Kármán shallow shell.

2 Classical Marguerre-von Kármán equations

Let ω be a bounded and simply-connected open subset ofR2 with a Lipschitz-continuous bound-

ary γ. As shown in [14], the classical Marguerre-von Kármán equations are written as

2E

3(1− ν2)
△2ζ3 = 2[φ, ζ3 + θ] + p3 in ω,

△2φ = −E

2
[ζ3, ζ3 + 2θ] in ω,

ζ3 = ∂νζ3 = 0 on γ,

φ = φ0 and ∂νφ = φ1 on γ,

where

φ0(y) = −γ1

∫
γ(y)

h2dγ + γ2

∫
γ(y)

h1dγ +

∫
γ(y)

(x1h2 − x2h1)dγ, y ∈ γ,

φ1(y) = −ν1

∫
γ(y)

h2dγ + ν2

∫
γ(y)

h1dγ, y ∈ γ,

[η, ξ] = ∂11η∂22ξ + ∂22η∂11ξ − 2∂12η∂12ξ.

The known functions θ and p3 are, the function that de�nes the middle surface of the shell and

the resultant of the vertical forces acting on the shell respectively. The functions φ0 and φ1 are

known functions of the appropriately density (hα) : γ → R2 of the resultant of the horizontal

forces acting on the lateral face of the shell. The constants E and ν are respectively the Young

modulus and the Poisson coef�cient of the elastic material constituting of the shell. The unknown

ζ3 : ω̄ → R is the vertical component of the displacement �eld of the middle surface of the shell

and the unknown φ : ω̄ → R is the Airy function.

We consider here, the buckling of a nonlinearly thin elastic shallow shell under the com-

pressive forces of von Kármán's type applied on its lateral face, such that, before deformation

this forces is collinear to the normal of γ, and λ is a parameter measuring the magnitude of this

forces, denotes the intensity of the lateral compression. In this case, the Airy function be given

by φ+λθ0, where the function θ0 ∈ H2

0
(ω) is the unique solution of the boundary value problem:

△2θ0 = 0 in ω,

θ0 = φ0 and ∂νθ0 = φ1 on γ,

such that φ0 ∈ H
5

2 (ω) and φ1 ∈ H
3

2 (ω).
The classical Marguerre-von Kármán equations becomes

2E

3(1− ν2)
△2ζ3 = 2[φ, ζ3 + θ] + 2λ[θ0, ζ3 + θ] + p3 in ω,

△2φ = −E

2
[ζ3, ζ3 + 2θ] in ω,

ζ3 = ∂νζ3 = 0 on γ,

φ = ∂νφ = 0 on γ.

Next, we write the classical Marguerre-von Kármán equations in a simpler form, using the

following relations:

ζ3 = ( 2

3(1−ν2)
)

1

2 ξ, φ = E
3(1−ν2)

F, θ = ( 2

3(1−ν2)
)

1

2 �θ, θ0 =
E

3(1−ν2)
�θ0 and p3 = ( 2

3(1−ν2)
)

3

2 f .

We �nd that the unknowns (ξ,F, λ) satisfy the canonical Marguerre-von Kármán equations:

△2ξ = [F, ξ + �θ] + λ[ �θ0, ξ + �θ] + f in ω,
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△2
F = −[ξ, ξ + 2 �θ] in ω,

ξ = ∂νξ = 0 on γ,

F = ∂νF = 0 on γ.

Following Ciarlet [10], we obtain

�θ0 = −3(1− ν2)

2E
(x21 + x22). (2.1)

3 The continuous problem

3.1 The continuous operator equation

We assume without loss of generality that �θ ∈ H2

0
(ω) and (D2)−1f = − �θ, where (D2)−1 is the

inverse of D2 with homogenous Dirichlet boundary condition in ω.
First, we let the bilinear continuous operator:

B : H2(ω)×H2(ω) → H2

0 (ω),

be de�ned as follows: for each pair (ξ, η) ∈ H2(ω) × H2(ω), the function B(ξ, η) ∈ H2

0
(ω) is

the unique solution of the boundary value problem:

D
2B(ξ, η) = [ξ, η] in ω, (3.1)

B (ξ, η) = ∂νB (ξ, η) = 0 on γ. (3.2)

Next, we denote the cubic nonlinear operator C : H2

0
(ω) → H2

0
(ω) be de�ned by

C(η) = B(B(η, η), η), (3.3)

and the linear operator L1 : H
2

0
(ω) → H2

0
(ω) be de�ned by

L1η = B( �χ, η)

= B(B( �θ, η), �θ),

where �χ = B( �θ, �θ).
Also, we denote the linear operator L2 : H

2

0
(ω) → H2

0
(ω) be de�ned by

L2η = B( �θ0, η). (3.4)

Taking into account (2.1), we deduce that

D
2L2η = −3(1− ν2)

E
Dη. (3.5)

Finally, we denote �ξ = ξ + �θ, then, the canonical Marguerre-von Kármán equations are re-

duced to a cubic operator equation, such that the pair ( �ξ, λ) ∈ H2

0
(ω)×R satis�es the continuous

operator equation:
�ξ − λL2

�ξ + C( �ξ)− L1
�ξ = 0, (3.6)

and the Airy function F ∈ H2

0
(ω) is given by

F = �χ−B( �ξ, �ξ). (3.7)

For more details about this operators, see [10].

Noting that, �nding the solution �ξ of the above operator equation (3.6) is equivalent to solving
the following variational problem:{

Find ( �ξ, λ) ∈ H2

0
(ω)×R such that,

( �ξ − λL2
�ξ + C( �ξ)− L1

�ξ, η)D = 0 for all η ∈ H2

0
(ω),
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where (., .)D is the inner-product on H2

0
(ω) de�ned by (ζ, η)D =

∫
ω
DζDηdω and let ∥.∥D denote

the associated norm.

The cubic operator equation (3.6) generalizes an operator equation originally introduced by

Berger [2] and Berger and Fife [3], then used by Kesavan [19], Ciarlet, Gratie and Sabu [12], Cia-

rlet and Gratie [11], Ciarlet, Gratie and Kesavan [13] for analyzing the generalized von Kármán

and Marguerre-von Kármán equations.

The linearized problem for the canonical Marguerre-von Kármán equations consists in �nd-

ing the pair

(ϕ, λ) ∈ H2

0
(ω)×R such that

ϕ = λL2ϕ,

or

△2ϕ = λ[ �θ0, ϕ] in ω,

ϕ = ∂νϕ = 0 on γ.

Since the linear operator L2 is a compact, self-adjoint and positive de�nite (see [10]), we

conclude that L2 has an in�nite number of distinct eigenvalues λk > 0, each of �nite multiplicity,

such that

0 < λ1 < λ2 < ... < λk < ... → +∞,

where

λ1 = inf
η∈H2

0
(ω)

η ̸=0

∥η∥2
D

(L2η, η)D
.

3.2 Existence and regularity results

Let ϕ0 be an normalized eigenfunction of the operator L2 corresponding to the simple eigenvalue

λ0, in the sense

(L2ϕi, ϕj)D = δij , (3.8)

where ϕi be an eigenfunction of the operator L2 corresponding to the eigenvalue λi.

Here, we adapt a Kikuchi's method used in [22] to the operator equation (3.6), consists in

�nding the solution (ζ, λ) of (3.6), with λ in the neighborhood of λ0 and ζ of small norm, in the

sense that

ζ = εϕ0 + υ, (3.9)

where ε > 0 designates a parameter approaches zero.

Theorem 3.1. Let ε > 0 and (ζ, λ) ∈ H2

0
(ω)×R, with

ζ = εϕ0 + υ, υ ∈ {ϕ0}⊥. (3.10)

Then (ζ, λ) be solution of the operator equation (3.6) if and only if

υ = QSε(ζ) (3.11)

and

λ = λ0 +
1

ε
(C(ζ)− L1ζ, ϕ0)D, (3.12)

where

Sεη =
1

ε
(C(η)− L1η, ϕ0)DL2η − C(η) + L1η, (3.13)

and the mapping Q : H2

0
(ω) → {ϕ0}⊥ be de�ned by

(I − λ0L2)Qη = P0η, (3.14)

such that P0 is the orthogonal projection in H2

0
(ω) onto {ϕ0}⊥.
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For give the existence results, we use the following lemma

Lemma 3.2. We let the operator Lε : H
2

0
(W) → R be de�ned by

Lεη = λ0 +
1

ε
(C(η)− L1η, ϕ0)D, (3.15)

such that

Sεη = (Lεη − λ0)L2η − C(η) + L1η, ∀η ∈ H2

0 (ω). (3.16)

and we assume here that ∥ �θ∥D ≤ cε. Then, there exists a constant c independent of ε, such
that

∥Qη∥D ≤ c∥η∥D, ∀η ∈ H2

0 (ω), (3.17)

∥L1ζ1 − L1ζ2∥D ≤ cε2∥ζ1 − ζ2∥D, ∀ζi ∈ Uε, (3.18)

∥C(ζ1)− C(ζ2)∥D ≤ cε2∥ζ1 − ζ2∥D, ∀ζi ∈ Uε, (3.19)

|Lεζ − λ0| ≤ cε2, ∀ζ ∈ Uε, (3.20)

|Lεζ1 − Lεζ2| ≤ cε∥ζ1 − ζ2∥D, ∀ζi ∈ Uε, (3.21)

∥Sεζ∥D ≤ cε3, ∀ζ ∈ Uε, (3.22)

∥Sεζ1 − Sεζ2∥D ≤ cε2∥ζ1 − ζ2∥D, ∀ζi ∈ Uε, (3.23)

where

Uε = {εϕ0 + υ; υ ∈ Vε}, (3.24)

Vε = {υ ∈ H2

0 (ω); ∥υ∥D ≤ ε}. (3.25)

Theorem 3.3. For ε is small enough, then there exists a unique solution (ζ, λ) to the operator

equation (3.6), with ζ is of the form εϕ0 + υ, υ ∈ {ϕ0}⊥ ∩ Vε, such that

ζ ̸= 0, ∥ζ∥D = O(ε), |λ− λ0| = O(ε2). (3.26)

For obtaining the regularity results, we use the same arguments of Kesavan [19].

First, we assume, that ω is suf�ciently smooth and if g ∈ L2(ω), then the solution of the

following problem

D
2u = g, (3.27)

satis�es u ∈ H3(ω) ∩H2

0
(ω), with ∥u∥3,ω ≤ c|g|0,ω.

Then, we show the following results

Lemma 3.4. We assume that �θ0 ∈ W 2,∞(ω), then, if (ζ, λ) be solution of the operator equation

(3.6), we have

ζ ∈ H3(ω) ∩H2

0 (ω). (3.28)

Lemma 3.5. If ζ ∈ H3(ω) ∩H2

0
(ω) and η ∈ H2(ω), then we have

B(ζ, η) ∈ H
5

2 (ω), (3.29)

C(ζ) ∈ H3(ω), (3.30)

where

∥B(ζ, η)∥ 5

2
,ω ≤ c∥ζ∥3,ω∥η∥2,ω, (3.31)

∥C(ζ)∥3,ω ≤ c∥ζ∥23,ω∥ζ∥D. (3.32)
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Lemma 3.6. We assume that �χ ∈ W 2,∞(ω), then, if ζ ∈ H2

0
(ω), we have

L1ζ ∈ H3(ω), (3.33)

where

∥L1ζ∥3,ω ≤ c∥ζ∥D. (3.34)

Lemma 3.7. We assume that �θ0 ∈ W 2,∞(ω), then, if ζ ∈ H2

0
(ω), we have

L2ζ ∈ H3(ω), (3.35)

where

∥L2ζ∥3,ω ≤ c∥ζ∥D. (3.36)

Finally, we give the following consequence of the lemmas 3.5, 3.6, 3.7, if ζ ∈ H3(ω) ∩ Uε,

we have

Sεζ ∈ H3(ω), (3.37)

where

∥Sεζ∥3,ω ≤ cε3 + cε∥ζ∥23,ω. (3.38)

4 The discrete problem

Let ω is a convex, polygonal domain and Vh ⊂ H2

0
(ω) be standard conforming �nite element

space (see, e.g., [9]).

First, we assume that there exist a linear operator rh : H3(ω) ∩H2

0
(ω) → Vh, such that

∥η − rhη∥D ≤ chm−1∥η∥m+1,ω, (4.1)

for all η ∈ Hm+1(ω) ∩H2

0
(ω), where 2 ≤ m ≤ l and c > 0 is a constant independent of h.

In particular, this assumption imply that

lim
h→0

( inf
ηh∈Vh

∥η − ηh∥D) = 0, ∀η ∈ H2

0 (ω). (4.2)

Next, we give the following property is due to Kesavan [19].

Lemma 4.1. If η ∈ H
5

2 (ω), then there exist a constant c > 0 independent of h, such that

inf
ηh∈Vh

∥η − ηh∥D ≤ ch
1

2 ∥η∥ 5

2
,ω. (4.3)

4.1 The Linearized discrete problem

The linearized discrete problem for the Marguerre-von Kármán equations consists in �nding the

pair

(ϕh, λh) ∈ Vh ×R such that∫
ω

DϕhDηhdω = λh

∫
ω

[ �θ0, ϕh]ηhdω, ∀ηh ∈ Vh, (4.4)

or

(ϕh, ηh)D = λh(L2ϕh, ηh)D, ∀ηh ∈ Vh. (4.5)

If h is small enough, then there exists a simple eigenvalues λoh who approaches to λ0 and there

exists an eigenfunction ϕ0h, corresponding to λoh who approaches to ϕ0, such that

(L2ϕ0h, ϕ0h)D = 1. (4.6)

For ϕ0 ∈ H3(ω) ∩H2

0
(ω), we have

∥ϕ0 − ϕ0h∥D ≤ ch∥ϕ0∥3,ω, (4.7)
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|λ0 − λ0h| ≤ ch2∥ϕ0∥3,ω. (4.8)

Let ς ∈ H2

0
(ω), then Qhς is the unique solution of the following problem

(Qhς, ηh)D − λ0h(L2Qhς, ηh)D = (P0hς, ηh)D, ∀ηh ∈ Vh, (4.9)

(Qhς, ϕ0h)D = 0, (4.10)

such that P0h is the orthogonal projection in H2

0
(ω) onto {ϕ0h}⊥ ∩ Vh.

Also, we give the following property is due to Kesavan [19].

Lemma 4.2. There exist a constant c independent of h, such that

∥Qhς∥D ≤ c∥ς∥D, ∀ς ∈ H2

0 (ω), (4.11)

∥Qς −Qhς∥D ≤ ch∥ς∥3,ω, ∀ς ∈ H3(ω) ∩H2

0 (ω). (4.12)

4.2 The discrete operator equation

Let the bilinear mapping: Bh : H2(ω) × H2(ω) → Vh be de�ned as follows: for each pair

(ξ, η) ∈ H2(ω) × H2(ω), the function Bh(ξ, η) ∈ Vh is the unique solution of the variational

equation

(Bh(ξ, η), ςh)D =

∫
ω

[ξ, η]ςhdω for all ςh ∈ Vh, (4.13)

hence, Bh(ξ, η) be the orthogonal projection of B(ξ, η) on Vh.

The discrete cubic operator Ch : Vh → Vh is de�ned by

Ch(ηh) = Bh(Bh(ηh, ηh), ηh) (4.14)

The linear operator L1,h : Vh → Vh be de�ned by

L1,hηh = Bh( �χh, ηh),

where �χh = Bh( �θ, �θ).
Also, the linear operator L2,h : Vh → Vh be de�ned by

L2,hηh = Bh( �θ0, ηh). (4.15)

For each h > 0, the discrete problem of canonical Marguerre-von Kármán equations consists

in �nding ( �ξh, λh) ∈ Vh ×R, such that �ξh satis�es the discrete operator equation:

�ξh − λhL2
�ξh + Ch( �ξh)− L1

�ξh = 0, (4.16)

and Fh is given by

Fh = �χh −Bh( �ξh, �ξh), (4.17)

where �ξh = ξh + �θ.

Theorem 4.3. Let ε > 0 and (ζh, λh) ∈ Vh ×R, with

ζh = εϕ0h + υh, υh ∈ Vh ∩ {ϕ0h}⊥. (4.18)

Then (ζh, λh) be solution of the discrete operator equation (4.16) if and only if

υh = Th,ευh (4.19)

and

λh = λ0h +
1

ε
(Ch(ζh)− L1,hζh, ϕ0h)D, (4.20)

where

Sh,εηh =
1

ε
(Ch(ηh)− L1,hηh, ϕ0h)DL2,hηh − Ch(ηh) + L1,hηh, (4.21)

Th,ευh = QhSh,ε(εϕ0h + υh). (4.22)
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Theorem 4.4. For ε and h are small enough, then there exists a unique solution (ζh, λh) to the

discrete operator equation (4.16), with ζh is of the form εϕ0h + υh, υh ∈ {ϕ0h}⊥ ∩ Vh,ε, such

that

ζh ̸= 0, ∥ζh∥D = O(ε), |λh − λ0| = O(ε2), (4.23)

where

Vh,ε = {υh ∈ Vh; ∥υh∥D ≤ ε}. (4.24)

5 Error estimates

For give the error estimates, we use the following lemmas

Lemma 5.1. We assume that ζ ∈ H2

0
(ω) and η ∈ H2(ω), there exists a constant c independent

of h, such that

∥Bh(ζ, η)∥D ≤ c∥ζ∥D∥η∥2,ω, (5.1)

∥Ch(ζ)∥D ≤ c∥ζ∥3
D
. (5.2)

Lemma 5.2. We assume that ζ ∈ H3(ω) ∩ H2

0
(ω)and η ∈ H2(ω), there exists a constant c

independent of h, such that

∥B(ζ, η)−Bh(ζ, η)∥D ≤ c∥ζ∥3,ω∥η∥2,ω, (5.3)

∥C(ζ)− Ch(ζ)∥D ≤ ch
1

2 ∥ζ∥3,ω∥ζ∥2D. (5.4)

Lemma 5.3. We assume that ζ ∈ H3(ω)∩H2

0
(ω), there exists a constant c independent of h and

ε, such that

|λ− λh| ≤ ch2 + chε2 + cε∥ζ − ζh∥D, (5.5)

∥Sε(ζ)− Sh,ε(ζh)∥D ≤ ch
1

2 ε3 + cε2∥ζ − ζh∥D. (5.6)

Finally, we show the following result

Theorem 5.4. We assume that ζ ∈ H3(ω)∩H2

0
(ω), there exists ε0 > 0 and a constant c(ε0) > 0,

such that for all h small enough and for all ε with 0 < ε ≤ ε0, we have

∥ζ − ζh∥D ≤ chε+ ch
1

2 ε3, (5.7)

|λ− λh| ≤ ch2 + chε2 + ch
1

2 ε4. (5.8)

6 CONCLUSION AND COMMENTARY

This study is concerned with �nite element method for approximating solutions to the bifurcation

problem for Marguerre-von Kármán equations, solving these equations amounts to solving a

single discrete cubic operator equation. First, we establish the existence and uniqueness of non

trivial solutions bifurcating from the trivial solution at neighborhood of the simple eigenvalues

of the linearized problem, by using a Kikuchi's method. Next, we establish the convergence of

a conforming �nite element approximations of this solution and we give the corresponding error

estimates.

Note that, in the case θ ≡ 0 in ω̄, we recover the bifurcation problem for von Kármán equa-

tions.
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