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Abstract A module which is invariant under automorphisms of its injective hull is called
an automorphism-invariant module. Automorphism-invariant modules, which generalize the no-
tion of quasi-injective modules, are precisely the pseudo-injective modules. Here, a study on
modules which are invariant under idempotent endomorphisms of their injective hulls is carried
out and such modules will be called idempotent-invariant modules. In this paper, we discuss
that idempotent-invariant modules, which also generalize the notion of quasi-injective modules,
are precisely the quasi-continuous modules and show that the classes of automorphism-invariant
modules and idempotent-invariant modules are not contained one in the other. Some facts and
results of this class of modules are obtained. Automorphism-invariant modules are clean but not
so for idempotent-invariant modules. We investigate certain conditions under which idempotent-
invariant modules can actually be clean. We also establish some relations of idempotent-invariant
modules with ADS, SIP , SSP and pseudo-continuous modules.

1 Introduction

Let R be an associative ring with unity. An element a ∈ R is said to be clean if a = e+ u where
e is an idempotent and u is a unit in R. If every element of R is clean, then R is called a clean
ring. Clean rings were introduced by W. K. Nicholson in [17]. Nicholson proved that every
clean ring is an exchange ring, and a ring with central idempotents is clean if and only if it is an
exchange ring . A ring is said to be clean (almost clean) if each of its elements is the sum of a
unit (regular element) and an idempotent. A module is clean (almost clean) if its endomorphism
ring is clean (almost clean). A module which is invariant under automorphisms of its injective
hull is called an automorphism-invariant module, i.e., M is called an automorphism-invariant
module if f(M) ⊆ M for all f ∈ Aut(E(M)). It has been proved in [9, Theorem 16] that
automorphism-invariant modules are precisely the pseudo-injective modules, where a module
M is called pseudo-injective, if for any submodule A of M , every monomorphism f : A → M
can be extended to an endomorphism of M .
A module which is invariant under idempotent endomorphisms of its injective hull will be
called an idempotent-invariant module, i.e., M will be called an idempotent-invariant module
if f(M) ⊆ M for all f2 = f ∈ End(E(M)). It has been proved in [11, Theorem 1.1] that
idempotent-invariant modules are precisely the π-injective (quasi-continuous) modules.
Consider the following conditions for an R-module M :

(C1)Every submodule of M is essential in a direct summand of M .
(C2)Every submodule of M that is isomorphic to a direct summand of M is itself a direct

summand of M .
(C3)If A and B are direct summands of M with A ∩ B = 0 then A ⊕ B is also a direct

summand of M .
M is called a CS (or an extending) module if it satisfies (C1); M is called continuous if it satis-
fies (C1) and (C2); M is called quasi-continuous if it satisfies (C1) and (C3).
Modules satisfying (C1), (C2) and (C3) are called C1-, C2- and C3- modules respectively.
It is well known that the following implications hold:
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Injective =⇒ quasi-injective =⇒ continuous =⇒ quasi-continuous =⇒ CS.
But none of the converses hold in general. For background on injective, quasi-injective, contin-
uous, quasi-continuous and CS modules, we refer to [8] and [16].
A right R-module M is said to satisfy the exchange property if for every right R-module A
and any two direct sum decompositions A = M1 ⊕ N = ⊕i∈IAi with M1 ' M there exist
submodules Bi of Ai such that A = M1 ⊕ (⊕i∈IBi). If this holds only for |I| < ∞ , then
M is said to satisfy the finite exchange property. It is well known that a continuous module is
idempotent-invariant and continuous modules satisfy the exchange property but it is not so for
idempotent-invariant modules. For an idempotent-invariant module, the finite exchange property
implies the full exchange property.
It has been proved in [12] that automorphism-invariant modules are clean and they satisfy the
exchange property. Similar results do not hold for idempotent-invariant modules. In this pa-
per, we investigate certain conditions under which an idempotent-invariant module can be clean
or almost clean. Every idempotent-invariant module is pseudo-continuous but the converse is
not true. Here we investigate certain conditions under which a pseudo-continuous module is
idempotent-invariant. We provide examples to show that the classes of automorphism-invariant
modules and idempotent-invariant modules are not contained one in the other and also show that
a direct sum of idempotent-invariant modules need not be idempotent-invariant although sum-
mands of idempotent-invariant modules inherit the property. Finally, we also establish some of
the relations of idempotent-invariant modules with ADS modules and modules with the SIP
and SSP .
Throughout, all rings R are associative with unity and all modules are unitary R-modules, unless
otherwise stated. For a module M , we use E(M), End(M) and Aut(M) to denote the injective
hull, the endomorphism ring and the group of automorphisms of M , respectively. kerf and Imf
denote the kernel of f and the image of f respectively. We write N ⊆M if N is a submodule of
M , N ⊆ess M if N is an essential submodule of M and N ⊆⊕ M if N is a direct summand of
M .

2 Automorphism-invariant modules and idempotent-invariant modules

A module which is invariant under automorphisms of its injective hull is called an automorphism-
invariant module, i.e., M is called an automorphism-invariant module if f(M) ⊆ M for all
f ∈ Aut(E(M)).
Quasi-injective modules are automorphism-invariant but the converse is not true, in general.

Theorem 2.1. [15, Corollary 13] A moduleM is quasi-injective if and only if it is automorphism-
invariant CS .

Theorem 2.2. [7, Theorem 2.6] Every pseudo-injective module M satisfies (C2) .

Corollary 2.3. Every CS automorphism-invariant module is continuous.

Proof. Let M be a CS automorphism-invariant module. Since automorphism-invariant modules
are precisely the pseudo-injective modules, by Theorem 2.2 M satisfies (C2). By assumption M
is CS and M also satisfies (C2). Hence M is continuous.

It is pertinent to mention that the classes of automorphism-invariant modules and idempotent-
invariant modules are not contained one in the other as shown by the following examples.

Example 2.4. If Z, Q denote the ring of integers and rational numbers respectively, ZZ is an
idempotent-invariant module which is not automorphism-invariant because the injective hull QZ

of ZZ has the automorphism ϕ : Q→ Q defined by ϕ(q) =
q

2
but ϕ(Z) 6⊆ Z.

Example 2.5. If R is the ring of all eventually constant sequences (xn)n∈N of elements in Z2,
then E(RR) =

∏
n∈N Z2 has only one automorphism, namely the identity automorphism. Thus

RR is an automorphism-invariant module but RR cannot be CS because by Theorem 2.1 a mod-
ule M is quasi-injective if and only if it is automorphism-invariant CS. Hence RR is not an
idempotent-invariant module.
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Theorem 2.6. [15, Theorem 12] Every automorphism-invariant module satisfies (C3).

Though the classes of automorphism-invariant and idempotent-invariant modules are not con-
tained one in the other, the following corollary, which is a consequence of the above theorem,
shows that CS automorphism-invariant modules are indeed idempotent-invariant.

Corollary 2.7. Every CS automorphism-invariant module is idempotent-invariant.

Proof. Let M be a CS automorphism-invariant module. Then by Theorem 2.6, M satisfies (C3)
and by assumption M being CS, satisfies (C1). Thus M is an idempotent-invariant module.

A module M is called an ADS (Absolute Direct Summand) module if for every decomposi-
tion M = A ⊕ B of M and every complement C of A, M = A ⊕ C. A module M is called
square-free if it contains no non-zero isomorphic submodules A and B with A ∩ B = 0. An
R-module M satisfies (C4) if, whenever A and B are submodules of M with M = A ⊕ B and
f : A → B is an R-homomorphism with kerf ⊆⊕ A, then Imf ⊆⊕ B. An R-module M satis-
fying (C4) is called a C4-module. A C4-module which is also CS, is called a pseudo-continuous
module.
Some examples ofC4-modules areADS modules, automorphism-invariant modules and square-
free modules.
We know that (C2)⇒ (C3) and also (C3)⇒ (C4). Hence we have the following implications:
(C2)⇒ (C3)⇒ (C4) which further yields the implications
continuous⇒ quasi-continuous⇒ pseudo-continuous.
But the converses are not true in general.

Theorem 2.8. Every CS automorphism-invariant module is pseudo-continuous.

Proof. Let M be an automorphism-invariant module. Then by Theorem 2.6, M satisfies (C3)
and since (C3) implies (C4), M satisfies (C4). Thus M being a CS automorphism-invariant
module, is pseudo-continuous.

The following theorem by Goel and Jain is vital in establishing the equivalence between the
classes of π-injective and idempotent-invariant modules.

Theorem 2.9. [11, Theorem 1.1] For any R-module M the following are equivalent:
(a) M is π-injective.
(b) For every idempotent e in hom(M̂, M̂), eM ⊂M .
(c) If M̂ = N1 ⊕N2, then M = (N1 ∩M)⊕ (N2 ∩M).
(d) If M̂ =

⊕
i∈Λ

Ni, then M =
⊕

i∈Λ
(Ni ∩M) for any index set Λ .

(Note that in [11], M̂ denotes the injective hull of M and hom(M̂, M̂) denotes the endomor-
phism ring of R-homomorphisms of M̂ ).
In [11], Goel and Jain call a module M π-injective if for every pair of submodules M1 and M2
with M1 ∩M2 = 0, each projection πi : M1 ⊕M2 → Mi, i = 1, 2, can be lifted to an endo-
morphism of M . π-injective modules are the same as the quasi-continuous modules defined by
Jeremy in [14].
We call a module which is invariant under idempotent endomorphisms of its injective hull an
idempotent-invariant module, i.e., M is called an idempotent-invariant module if f(M) ⊆ M
for all f2 = f ∈ End(E(M)). Hence Theorem 2.9 can be restated as:

Theorem 2.10. For any R-module M the following are equivalent:
(a) M is quasi-continuous.
(b) M is idempotent-invariant, i.e., for every idempotent f in End(E(M)), f(M) ⊆M .
(c) If E(M) = N1 ⊕N2, then M = (N1 ∩M)⊕ (N2 ∩M).
(d) If E(M) =

⊕
i∈I Ni, then M =

⊕
i∈I(Ni ∩M) for any index set I .

It is to be noted that a summand of an idempotent-invariant module is also idempotent-invariant.
However, a direct sum of idempotent-invariant modules need not be idempotent-invariant as
shown by the following example.
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Example 2.11. Let R =

(
F F

0 F

)
where F is any field and let A =

(
F F

0 0

)
and B =(

0 0
0 F

)
. It is clear that A and B are idempotent-invariant as R-modules. However, R =

A⊕B is not idempotent-invariant as RR satisfies (C1) but does not satisfy (C3).

Recall that a ring is clean (almost clean) if each of its elements is the sum of a unit (regular
element) and an idempotent. A module is clean (almost clean) if its endomorphism ring is clean
(almost clean).

Theorem 2.12. [4, Theorem 3.9] Every continuous module is clean.

It is interesting to note that although continuous modules are clean, a similar result does not
hold, either for CS modules or for quasi-continuous modules. However, it has been proved in
[12, Corollary 4] that automorphism-invariant modules are clean and in [12, Theorem 3] that
automorphism-invariant modules satisfy the exchange property but similar results do not hold
for idempotent-invariant modules.
For example, ZZ is an idempotent-invariant module but Z is not a clean ring; in fact, Z is not even
an exchange ring. The question now arises under what conditions a quasi-continuous module
would be clean. The following is one of the consequences of Theorem 2.12 for quasi-continuous
modules.

Theorem 2.13. [4, Theorem 4.3] A quasi-continuous R-module M is clean if and only if it has
the finite exchange property if and only if it has the full exchange property.

It has been proved in [18] that for quasi-continuous modules, the finite exchange property implies
the full exchange property.
Recall that the singular submodule Z(M) of a module M is defined as Z(M) = {m ∈ M :
mI = 0 for some essential right ideal I of R} and a module M is called singular if Z(M) =M
and nonsingular if Z(M) = 0.

Theorem 2.14. [1, Theorem 2.6] If M is a quasi-continuous and non-singular module, then M
is almost clean.

Because of the equivalence of the classes of quasi-continuous modules and idempotent-invariant
modules, the following results are immediate consquences of the above two theorems.

Corollary 2.15. An idempotent-invariant module M is clean if and only if it has the finite ex-
change property if and only if it has the full exchange property.

Proof. The proof follows from Theorem 2.13.

Corollary 2.16. Every non-singular idempotent-invariant module is almost clean.

Proof. The proof follows from Theorem 2.14.

For any R-module M , a monomorphism f ∈ End(M) is called an essential monomorphism
if Im(f) ⊆ess M (i.e., Im(f) is an essential submodule of M ). A module M is called essen-
tially co-Hopfian if every essential monomorphism in End(M) is an isomorphism. A module
M is called co-Hopfian if every monomorphism in End(M) is an isomorphism.

Theorem 2.17. [4, Proposition 4.5] If M is a CS module, then every element f ∈ End(M) can
be written as e+ v where e = e2 ∈ End(M) and v ∈ End(M) is a monomorphism.

Theorem 2.18. [1, Proposition 2.5] If M is quasi-continuous, then every endomorphism of M
is the sum of an idempotent and an essential monomorphism.

With the aid of the two above results, we can now prove that every co-Hopfian CS module is
clean and every essentially co-Hopfian idempotent-invariant module is clean.

Corollary 2.19. Every co-Hopfian CS module is clean.



440 Jane R. Yimchunger and Manoj K. Patel

Proof. LetM be a co-HopfianCS module. SinceM isCS, by Theorem 2.17 every f ∈ End(M)
is the sum of an idempotent and a monomorphism. But M being co-Hopfian, every monomor-
phism is an isomorphism. Thus every f ∈ End(M) being the sum of an idempotent and an
isomorphism, M is clean.

By Theorem 2.12, we know that every continuous module is clean and by Theorem 2.19
every co-Hopfian CS module is clean. So it seems quite natural to raise the following question:
Is every clean module continuous?
The following example negates the possibility of every clean module being continuous.

Let R =

(
F F

0 F

)
where F is any field. Then RR is an Artinian (and thus a co-Hopfian) CS

module and so RR is clean but it is not quasi-continuous since RR satisfies (C1) but does not
satisfy (C3). Hence RR does not satisfy (C2) either and so RR is not continuous.

Theorem 2.20. Every essentially co-Hopfian idempotent-invariant module is clean.

Proof. LetM be an essentially co-Hopfian idempotent-invariant module. SinceM is idempotent-
invariant, by Theorem 2.18 every f ∈ End(M) is the sum of an idempotent and an essential
monomorphism. Since M is essentially co-Hopfian, every essential monomorphism is an iso-
morphism. Thus every f ∈ End(M) being the sum of an idempotent and an isomorphism, M is
clean.
(Alternative Proof). Let M be an essentially co-Hopfian idempotent-invariant module. Then
M is continuous (see [16, Lemma 3.14]) and so by Theorem 2.12, M is clean.

Lemma 2.21. [2, Lemma 3.1] An R-module M is ADS if and only if for each decomposition
M = A⊕B, A and B are mutually injective.

Lemma 2.22. [8, Lemma 7.5] LetA andB beR-modules and letM = A⊕B. Then the following
are equivalent:

(a) B is A-injective.
(b) For every submodule N of M such that N ∩ B = 0, there exists a submodule M1 of M

such that M =M1 ⊕B and N ≤M1 .

Theorem 2.23. [19, Theorem 2.7] Every ADS module is a C3-module.

Proof. Let M be an ADS module and let A ⊆⊕ M,B ⊆⊕ M such that A ∩ B = 0. We have
to show that A ⊕ B is a direct summand of M . Let M = A ⊕ A1 and M = B ⊕ B1 for some
submodules A1, B1 of M . Then by Lemma 2.21, A is A1−injective. Hence by Lemma 2.22,
there exists N ≤M such that M = N ⊕ A and B ≤ N . It follows that N = B ⊕ (N ∩B1) and
so M = (A⊕B)⊕ (N ∩B1), thereby implying that M = A⊕B is a direct summand of M .

Every idempotent-invariant module is ADS as proved in [16, Theorem 2.8] but the converse
is not true. As a consequence of Theorem 2.23, we have the following result.

Corollary 2.24. Every ADS module which is also CS is idempotent-invariant.

Proof. Let M be an ADS module. Then by Theorem 2.23, M is a C3-module and M also being
CS, is idempotent-invariant.

Theorem 2.25. Every essentially co-Hopfian ADS module which is CS is clean.

Proof. Let M be an essentially co-Hopfian ADS module which is CS. Then by Corollary 2.24,
M is idempotent-invariant. By assumption, M is essentially co-Hopfian. Thus by Theorem 2.20,
M is clean.

Theorem 2.26. Every ADS module which is also CS is pseudo-continuous.

Proof. Let M be an ADS module which is also CS. Then, by Corollary 2.24, M is idempotent-
invariant. Since every idempotent-invariant module is pseudo-continuous,M is pseudo-continuous.
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Recall that a module M is said to have the SIP (Summand Intersection Property), if the in-
tersection of every pair of direct summands of M is a direct summand of M . A module M is
said to have the SSP (Summand Sum Property), if the sum of every pair of direct summands
of M is a direct summand of M . A module M is said to be polyform if for every N ⊆ M and
homomorphism f : N →M , kerf is closed in N .

Lemma 2.27. [13, Theorem 2.3] Let M be an R-module. Then
(a) M has the SIP if and only if for every decomposition M = A ⊕ B and every R-

homomorphism f : A→ B, the kernel of f is a direct summand of A, i.e., kerf ⊆⊕ A.
(b) M has the SSP if and only if for every decomposition M = A ⊕ B and every R-

homomorphism f : A→ B, the image of f is a direct summand of B, i.e., Imf ⊆⊕ B.

It has been proved in [3, Lemma 19] that if M is a C3-module with the SIP , then M has the
SSP . As a consequence of this, we can have the following result.

Corollary 2.28. Every idempotent-invariant module with the SIP has the SSP .

The next theorem provides a sufficient condition for the endomorphism ring of an idempotent-
invariant module to have the summand sum property.

Theorem 2.29. If M is a nonsingular idempotent-invariant module, then End(M) has the SSP .

Proof. Let M be a nonsingular idempotent-invariant module and let A,B ⊆ M such that
M = A ⊕ B and let f : A → B be an R-homomorphism. Since M is nonsingular, A/kerf
is nonsingular and kerf is a closed submodule of M . Therefore, kerf ⊆⊕ A and so by Lemma
2.27 (a), M has the SIP . By Corollary 2.28, M also has the SSP . Since M has both the SIP
and the SSP , End(M) has the SSP (see [10, Theorem 2.3]).

We know that every module with the SSP is a C3-module and also every C3-module is a C4-
module. Hence every module with the SSP is a C4-module.
The following result is analogous to a result on C3-modules discussed earlier.

Theorem 2.30. If M is a C4-module with the SIP , then M has the SSP .

Proof. Let A,B ⊆M such that M = A⊕B and let f : A→ B be an R-homomorphism. Since
M is an SIP -module, by Lemma 2.27 (a), kerf ⊆⊕ A. Hence, by definition of C4-module,
Imf ⊆⊕ B. Thus by Lemma 2.27 (b), M has the SSP .

The following corollary is an immediate consequence of the above theorem.

Corollary 2.31. Every pseudo-continuous module with the SIP has the SSP .

Theorem 2.32. If M is a nonsingular CS module, then M has the SIP .

Proof. LetM be a nonsingularCS module. We use Lemma 2.27 (a) to show thatM has the SIP ,
i.e., we show that if A,B ⊆ M such that M = A ⊕ B and f : A → B is an R-homomorphism,
then kerf ⊆⊕ A. Since M is a CS module and A ⊆⊕ M , A is also a CS module and so
kerf ⊆ess L ⊆⊕ A for a submodule L of M . Since M is nonsingular, A/kerf is nonsingular
and kerf is a closed submodule of M . Therefore kerf ⊆⊕ A and so by Lemma 2.27 (a), M has
the SIP .

Corollary 2.33. If M is a nonsingular pseudo-continuous module, then M has the SSP . In
particular, M is an idempotent-invariant module.

Proof. Let M be a nonsingular pseudo-continuous module and let A,B ⊆ M such that M =
A ⊕ B and f : A → B is an R-homomorphism. Since every pseudo-continuous module is
obviously CS, by Theorem 2.32 M has the SIP and so kerf ⊆⊕ A. M being a C4-module,
by definition, if A and B are submodules of M such that M = A ⊕ B and f : A → B is an
R-homomorphism with kerf ⊆⊕ A, then Imf ⊆⊕ B. Therefore using Lemma 2.27 (b), M
has the SSP . As every module with the SSP satisfies (C3) and M also being CS, M is an
idempotent-invariant module.
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Theorem 2.34. If M is a polyform CS module, then M has the SIP .

Proof. Let M be a polyform CS module and let M = A ⊕ B and f : A → B be an R-
homomorphism. Since M is polyform, kerf is closed in A. Since M is a CS module and
A ⊆⊕ M , A is also a CS module. Hence kerf ⊆⊕ A and so by Lemma 2.27 (a), M has the SIP.

Corollary 2.35. If M is a polyform pseudo-continuous module, then M has the SSP . In partic-
ular, M is an idempotent-invariant module.

Proof. Let M be a polyform pseudo-continuous module and let M = A ⊕ B and f : A → B
be an R-homomorphism. Since every pseudo-continuous module is obviously CS, by Theorem
2.34, M has the SIP and so kerf ⊆⊕ A. M being a C4-module, by definition, Imf ⊆⊕ B
and so using Lemma 2.27 (b), M has the SSP . As every SSP module satisfies (C3) and M also
being CS, M is an idempotent-invariant module.

Theorem 2.36. LetM be an idempotent-invariant polyform module. ThenM is anADS module
with the SIP .

Proof. Let M = A⊕B and f : A→ B be a homomorphism. M being an idempotent-invariant
module is also an ADS module. Since M is polyform, kerf is closed in A and so kerf ⊆⊕ A.
Thus by Lemma 2.27 (a), M has the SIP .

We know that every idempotent-invariant module is pseudo-continuous but the converse is not
true in general. The following results can now be established as consequences of Corollary 2.33
and Corollary 2.35.

Theorem 2.37. A module M is idempotent-invariant if and only if M is a nonsingular pseudo-
continuous module.

Theorem 2.38. A module M is idempotent-invariant if and only if M is a polyform pseudo-
continuous module.

Recall that a module M is said to satisfy the (full) internal exchange property if for every
internal direct sum decomposition M = ⊕i∈IMi and every summand N ⊆⊕ M , there exist
submodules Ni ⊆ Mi, i ∈ I , such that M = ⊕i∈INi ⊕ N . If this holds only for |I| < ∞, then
M is said to satisfy the finite internal exchange property. We have discussed earlier that ZZ is an
idempotent-invariant module which does not satisfy the finite exchange property. However, it is
to be noted that ZZ satisfies the full internal exchange property.
It has been proved in [6, Proposition 2.22] that if M is a C4-module with the finite internal
exchange property, thenM is a C3-module. Also, it has been proved in [18, Proposition 1.1] that
every idempotent-invariant-module satisfies the internal exchange property. The next theorem
follows as an immediate consequence of both the results.

Theorem 2.39. A module M is idempotent-invariant if and only if M is a pseudo-continuous
module with the internal exchange property.
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