
Palestine Journal of Mathematics

Vol. 6(Special Issue: II) (2017) , 204�214 © Palestine Polytechnic University-PPU 2017

A Note on Hermite-Based poly-Euler and Multi poly-Euler

Polynomials

Waseem A. Khan

Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classi�cations: Primary 33C45, 11B73, 11B68, 11A05.

Keywords and phrases: Hermite polynomials, poly-Euler polynomials, Hermite poly-Euler polynomials, multi poly-

Euler Polynomials, multi Hermite poly-Euler polynomials, summation formulae, symmetric identities.

Abstract In this paper, we introduce a new class of generalized poly-Euler, Hermite poly-

Euler, multi poly-Euler and multi Hermite poly-Euler polynomials. The concepts of poly-Euler

numbers E
(k)
n (a, b), generalized poly-Euler polynomials E

(k)
n (x; a, b, c) of Jolany et al, Hermite-

Bernoulli polynomials HBn(x, y) of Dattoli et al and HB
(α)
n (x, y) of Pathan and Khan are gener-

alized to the one HE
(k)
n (x, y; a, b, c). Some implicit summation formulae and general symmetry

identities are derived by using different analytical means and applying generating functions.

1 Introduction

Recently the generalized poly-Euler polynomials are de�ned by Jolany et al [4, 5, 6, 7] as follows

2Lik(1− (ab)−t)

a−t + bt
cxt =

∞∑
n=0

E
(k)
n (x; a, b, c)tn

n!
, |t| < 2π

| ln a+ ln b|
(1.1)

Note that the poly-Euler polynomials of Sasaki and Bayad [1, 11] can be deduced from (1.1) by

replacing t with 4t and taking x = 1

2
. when x = 0, (1.1) gives

E(k)
n (0; a, b, c) = E(k)

n (a, b)

2Lik(1− (ab)−t)

a−t + bt
=

∞∑
n=0

E
(k)
n (a, b)tn

n!
, |t| < 2π

| ln a+ ln b|
(1.2)

and when a = 1 and b = c = e, we get

E(k)
n (x; 1, e, e) = E(k)

n (x)

where

2Lik(1− e−t)

1+ et
ext =

∞∑
n=0

E
(k)
n (x)tn

n!
, |t| < 2π

| ln a+ ln b|
(1.3)

On the other hand in the same paper by Jolany et al [4, 5, 6, 7], they de�ned certain multi

poly-Euler polynomials as follows

2Lik1,...,kr
(1− (ab)−t)

(a−t + bt)r
crxt =

∞∑
n=0

E
(k1,...,kr)
n (x; a, b, c)tn

n!
, |t| < 2π

| ln a+ ln b|
(1.4)

where

Li(k1,...,kr)(z) =
∞∑

r,k=1

zmr

mk1

1
...mkr

r

is the generalization of poly-logarithm.
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In particular

E(k1,...,kr)
n (x; 1, e, e) = E(k1,...,kr)

n (x)

E(k1,...,kr)
n (0; a, b, c) = E(k1,...,kr)

n (a, b)

Further by taking r = 1, (1.4) immediately yield (1.1).

The generalized Hermite-Bernoulli polynomials of two variables HB
(α)
n (x, y) introduced by

Pathan [12] and Pathan and Khan [13 to 18] in the form(
t

et − 1

)α

ext+yt2 =
∞∑
n=0

HB(α)
n (x, y)

tn

n!
(1.5)

which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials, Hermite poly-

nomials and Hermite-Bernoulli polynomialsHBn(x, y) introduced by Dattoli et al [3, p.386(1.6)]
in the form (

t

et − 1

)
ext+yt2 =

∞∑
n=0

HBn(x, y)
tn

n!
(1.6)

De�nition 1.1. Let c > 0. The generalized 2-variable 1-parameter Hermite Kamp'e de Feriet

polynomials Hn(x, y, c) polynomials for nonnegative integer n are de�ned by

cxt+yt2 =
∞∑
n=0

Hn(x, y, c)
tn

n!
(1.7)

This is an extended 2-variable Hermite Kamp'e de Feriet polynomials Hn(x, y) (see[2]) de�ned
by

ext+yt2 =
∞∑
n=0

Hn(x, y)
tn

n!
(1.8)

Note that

Hn(x, y, e) = Hn(x, y)

In order to collect the powers of t we expand the left hand side of (1.7) to get( ∞∑
n=0

xn(ln c)ntn

n!

) ∞∑
j=0

yj(ln c)jt2j

j!

 =
∞∑
n=0

Hn(x, y, c)
tn

n!

Thus we led to the representation

Hn(x, y, c) =

[n
2
]∑

j=0

(
n

j

)
(ln c)n−jxn−2jyj (1.9)

In this note we �rst give de�nitions of the generalized poly-Euler polynomials E
(k)
n (x; a, b.c)

which generalize the concepts stated above and then research their basic properties and rela-

tionships with poly-Euler numbers E
(k)
n (a, b), poly-Euler polynomials E

(k)
n (x) and the gener-

alized poly-Euler polynomials E
(k)
n (x; a, b, c) of Jolany et al, Hermite-Bernoulli polynomials

HBn(x, y) of Dattoli et al and HB
(α)
n (x, y) of Pathan and Pathan and Khan. The remainder of

this paper is organized as follows. We modify generating functions for the poly-Euler polyno-

mials and derive some identities related to Hermite polynomials, poly-Euler polynomials and

power sums. Some implicit summation formulae and general symmetry identities are derived by

using different analytical means and applying generating functions. These results extend some

known summations and identities of generalized Hermite-Bernoulli polynomials studied by Dat-

toli et al, Zhang et al, Yang, Khan, Pathan and Pathan and Khan.
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2 De�nitions and Properties of the Generalized poly-Euler and Multi

poly-Euler Polynomials

In this section, we are establish a de�nitions and properties of generalized poly-Euler poly-

nomials E
(k)
n (x, y; a, b, c) and multi poly-Euler polynomials E

(k1,...,kr)
n (x, y; a, b, c)

De�nition 2.1. Let a, b, c > 0 and a ̸= b. The generalized Hermite poly-Euler polynomials

E
(k)
n (x, y; a, b, c) for nonnegative integer n are de�ned by

2Lik(1− (ab)−t)

a−t + bt
cxt+yt2 =

∞∑
n=0

HE(k)
n (x, y; a, b, c)

tn

n!
, | t |< 2π/(| ln a+ ln b |), xϵℜ (2.1)

whereas for x = 0 gives

E(k)
n (0, y; a, b, c) =

[n
2
]∑

m=0

n!

m!(n− 2m)!
(ln c)mE

(k)
n−2m(a, b)ym (2.2)

Another special case of (2.1) for x = 0, y = 0 leads to the extension of the generalized poly-

Euler numbers E
(k)
n (a, b) for nonnegative integer n de�ned by (1.2) in the form.

Further setting c = e in (2.1), we get

De�nition 2.2. Let a, b > 0 and a ̸= b. The generalized Hermite poly-Euler polynomials

HE
(k)
n (x, y; a, b, e) for nonnegative integer n are de�ned by

2Lik(1− (ab)−t)

a−t + bt
ext+yt2 =

∞∑
n=0

HE(k)
n (x, y; a, b, e)

tn

n!
, | t |< 2π/(| ln a+ ln b |), xϵℜ (2.3)

De�nition 2.3. Let a, b, c > 0 and a ̸= b. The generalized multi Hermite poly-Euler polynomi-

als HE
(k1,...,kr)
n (x, y; a, b, c) for nonnegative integer n are de�ned by

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
cr(xt+yt2) =

∞∑
n=0

HE(k1,...,kr)
n (x, y; a, b, c)

tn

n!
, | t |< 2π/(| ln a+ln b |), xϵℜ

(2.4)
For y = 0 in (2.4), the result reduces to (1.4).

Further setting c = e in (2.4), we get

De�nition 2.4. Let a, b > 0 and a ̸= b. The generalized multi Hermite poly-Euler polynomials

HE
(k1,...,kr)
n (x, y; a, b, e) for nonnegative integer n are de�ned by

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
er(xt+yt2) =

∞∑
n=0

HE(k1,...,kr)
n (x, y; a, b, e)

tn

n!
, | t |< 2π/(| ln a+ln b |), xϵℜ

(2.5)

The generalized poly-Euler polynomials E
(k)
n (x, y; a, b, c) and generalized muti poly-Euler

polynomials E
(k1,...,kr)
n (x, y; a, b, c) de�ned by (2.1) and (2.4) have the following properties

which are stated as theorems below.

Theorem 2.1. Let a, b, c > 0 and a ̸= b. For xϵR and n ≥ 0. Then

HE(k)
n (x, y, 1, e, e) = HE(k)

n (x, y),HE(k)
n (0, 0, a, b, 1) = E(k)

n (a, b),

HE(k)
n (0, 0, 1, e, 1) = E(k)

n ,HE(k)
n (x, y, a, b, e) = HE(k)

n (x, y; a, b) (2.6)

HE(k)
n (x+ u, y + z; a, b, c) =

n∑
m=0

(
n

m

)
Hm(z, u; c)HE

(k)
n−m(x, y; a, b, c) (2.7)
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HE(k)
n (x+ z, y; a, b, c) =

n∑
m=0

(
n

m

)
E

(k)
n−m(z; a, b, c)Hm(x, y; c) (2.8)

Proof. The formula in (2.6) are obvious. Applying De�nition (2.1), we have

∞∑
n=0

HE(k)
n (x+ u, y + z; a, b, c)

tn

n!
=

∞∑
n=0

HE(k)
n (x, y; a, b, c)

tn

n!

∞∑
m=0

Hm(z, u; c)
tm

m!

=
∞∑
n=0

n∑
m=0

Hm(z, u; c)
tm

m!
HE

(k)
n−m(x, y; a, b, c)

tn

(n−m)!

Now equating the coef�cients of the like powers of t in the above equation, we get the result

(2.7). Again by De�nition (2.1) of generalized poly-Euler polynomials, we have

2Lik(1− (ab)−t)

a−t + bt
c(x+z)t+yt2 =

∞∑
n=0

HE(k)
n (x+ z, y; a, b, c)

tn

n!
(2.9)

which can be written as

2Lik(1− (ab)−t)

a−t + bt
cztcxt+yt2 =

∞∑
n=0

E(k)
n (z; a, b, c)

tn

n!

∞∑
m=0

Hm(x, y, c)
tm

m!
(2.10)

Replacing n by n-m in (2.10), comparing with (2.9) and equating their coef�cients of tn leads to

formula (2.8). 2

Theorem 2.2. The generalized multi Hermite poly-Euler polynomials satisfy the following

relation

HE(k1,...,kr)
n (x+ y, z; a, b, c) =

n∑
m=0

(
n

m

)
HE

(k1,...,kr)
n−m (x, z; a, b, c)ym(r ln c)m (2.11)

Proof. Using De�nition (2.3)

∞∑
n=0

HE(k1,...,kr)
n (x+ y, z; a, b, c)

tn

n!
=

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
cr(x+y)t+rzt2

=
∞∑
n=0

HE(k1,...,kr)
n (x, z; a, b, c)

tn

n!

∞∑
m=0

ym(r ln c)m
tm

m!

Replacing n by n-m in above equation and equating their coef�cients of tn leads to formula

(2.11).

2

Theorem 2.3. The generalized multi Hermite poly-Euler polynomials satisfy the following

relation

HE(k1,...,kr)
n (x, y; a, b, c) =

[n
2
]∑

m=0

(
n

2m

)
E

(k1,...,kr)
n−2m (x; a, b, c)ym(r ln c)m (2.12)

Proof. By the de�nitions of multi Hermite poly-Euler polynomials, we have

∞∑
n=0

HE(k1,...,kr)
n (x, y; a, b, c)

tn

n!
=

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
cr(x+yt2)

=
∞∑
n=0

E(k1,...,kr)
n (x; a, b, c)

tn

n!

∞∑
m=0

ym(r ln c)m
t2m

m!

Replacing n by n-2m in above equation and equating their coef�cients of tn leads to formula

(2.12).

2
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3 Implicit Summation Formulae Involving Generalized Hermite poly-Euler

Polynomials

For the derivation of implicit formulae involving generalized Hermite poly-Euler polynomi-

als HE
(k)
n (x, y; a, b, c) and generalized Hermite poly-Euler polynomials HE

(k)
n (x, y; a, b, e) the

same considerations as developed for the ordinary Hermite and related polynomials in Khan et

al [8] and Hermite-Bernoulli polynomials in Pathan [12] and Pathan et al [13 to 18] holds as

well. First we prove the following results involving generalized Hermite-poly-Euler polynomi-

als HE
(k)
n (x, y; a, b, c).

Theorem 3.1. Let a, b, c > 0 and a ̸= b. Then for x, yϵR and n ≥ 0, The following implicit

summation formulae for generalized Hermite poly-Euler polynomials HE
(k)
n (x, y; a, b, c) holds

true:

HE
(k)
m+l(z, y; a, b, c) =

m,l∑
n,p=0

(
l

p

)(
m

n

)
(z − x)n+p

HE
(k)
m+l−n−p(x, y; a, b, c) (3.1)

Proof. We replace t by t+ u and rewrite the generating function (2.1) as

2Lik(1− (ab)−(t+u))

a−(t+u) + b(t+u)
cy(t+u)2 = c−x(t+u)

∞∑
k,l=0

HE
(k)
m+l(x, y; a, b, c)

tm

m!

ul

l!
(3.2)

Replacing x by z in the above equation and equating the resulting equation to the above

equation, we get

c(z−x)(t+u)
∞∑

m,l=0

HE
(k)
m+l(x, y; a, b, c)

tm

m!

ul

l!
=

∞∑
m,l=0

HE
(k)
m+l(z, y; a, b, c)

tm

m!

ul

l!
(3.3)

On expanding exponential function (3.3) gives

∞∑
N=0

[(z − x)(t+ u)]N

N !

∞∑
m,l=0

HE
(k)
m+l(x, y; a, b, c)

tm

m!

ul

l!
=

∞∑
m,l=0

HE
(k)
m+l(z, y; a, b, c)

tm

m!

ul

l!

(3.4)
which on using formula [19,p.52(2)]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
(3.5)

in the left hand side becomes

∞∑
n,p=0

(z − x)n+ptnup

n!p!

∞∑
m,l=0

HE
(k)
m+l(x, y; a, b, c)

tm

m!

ul

l!
=

∞∑
m,l=0

HE
(k)
m+l(z, y; a, b, c)

tm

m!

ul

l!
(3.6)

Now replacing m by m-n, l by l-p and using the lemma [19,p.100(1)] in the left hand side of

(3.6), we get

∞∑
n,p=0

∞∑
m,l=0

(z − x)n+p

n!p!
HE

(k)
m+l−n−p(x, y; a, b, c)

tm

(m− n)!

ul

(l − p)!
=

∞∑
m,l=0

HE
(k)
m+l(z, y; a, b, c)

tm

m!

ul

l!

(3.7)
Finally on equating the coef�cients of the like powers of t and u in the above equation, we get

the required result.

2

Remark 1. By taking l = 0 in equation (3.1), we immediately deduce the following result.

Corollary 3.1. The following implicit summation formula for Hermite poly-Euler polynomials

HE
(k)
n (z, y; a, b, c) holds true:

HE
(k)
k (z, y; a, b, c) =

m∑
n=0

(
m

n

)
(z − x)nHE

(k)
m−n(x, y, a, b, c) (3.8)
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Remark 2. On replacing z by z+x and setting y = 0 in Theorem (3.1), we get the following

result involving generalized poly-Euler polynomials of one variable

E
(k)
m+l(z + x; a, b, c) =

m,l∑
n,p=0

(
l

p

)(
m

n

)
(z)n+pE

(k)
m+l−p−n(x; a, b, c) (3.9)

whereas by setting z=0 in Theorem 3.1, we get another result involving generalized poly-Euler

polynomials of one and two variables

E
(k)
m+l(y; a, b, c) =

m,l∑
n,p=0

(
m

n

)(
l

p

)
(−x)n+p

HE
(k)
m+l−p−n(x, y; a, b, c) (3.10)

Remark 3. Along with the above results we will exploit extended forms of generalized poly-

Euler polynomials E
(k)
m+l(z; a, b, c) by setting y=0 in the Theorem (3.1) to get

E
(k)
m+l(z; a, b, c) =

m,l∑
n,p=0

(
l

p

)(
m

n

)
(z − x)n+pE

(k)
m+l−p−n(x; a, b, c) (3.11)

Theorem 3.2. Let a, b, c > 0 and a ̸= b. Then for xϵR and n ≥ 0. Then

E(k)
n (x+ 1; a, b, c) = E(k)

n (x; ac,
b

c
, c) (3.12)

Proof. We start with the de�nition

∞∑
n=0

E(k)
n (x+ 1; a, b, c)

tn

n!
=

2Lik(1− (ab)−t)

a−t + bt
c(x+1)t =

2Lik(1− (ab)−t)

a−t + bt
cxtct

∞∑
n=0

E(k)
n (x+ 1; a, b, c)

tn

n!
=

Lik(1− (ab)−t)

(ac)−t + ( bc)
t
cxt =

∞∑
n=0

E(k)
n (x; ac,

b

c
, c)

tn

n!
(3.13)

Equating the coef�cients of tn leads to formula (3.12). 2

Theorem 3.3 Let a, b, c > 0 and a ̸= b. Then for x, yϵR and n ≥ 0. Then

HE(k)
n (x+ 1, y; a, b, c) =

[n
2
]∑

j=0

(
n

2j

)
yj(ln c)jE

(k)
n−2j(x; ac,

b

c
, c) (3.14)

Proof. Since

∞∑
n=0

HE(k)
n (x+ 1, y; a, b, c)

tn

n!
=

2Lik(1− (ab)−t)

a−t + bt
c(x+1)t+yt2 =

2Lik(1− (ab)−t)

(ac)−t + ( bc)
t

cxtcyt
2

=

( ∞∑
n=0

E(k)
n (x; ac,

b

c
, c)

tn

n!

) ∞∑
j=0

yj(ln c)j
t2j

j!


Now replacing n by n-2j and comparing the coef�cients of tn, we get the result (3.14).

2

Theorem 3.4. Let a, b, c > 0 and a ̸= b. Then for x, yϵR and n ≥ 0. Then

HE(k)
n (x, y; a, b, c) =

n∑
m=0

(
n

m

)
E

(k)
n−m(a, b)Hm(x, y, c) (3.15)

Proof. By the de�nition of generalized poly-Euler polynomials and the de�nition (1.1), we

have

2Lik(1− (ab)−t)

a−t + bt
cxt+yt2 =

∞∑
n=0

HE(k)
n (x, y; a, b, c)

tn

n!
=

( ∞∑
n=0

E(k)
n (a, b)

tn

n!

)( ∞∑
m=0

Hm(x, y; c)
tm

m!

)
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Now replacing n by n-m and comparing the coef�cients of tn, we get the result (3.15).
2

Remark. For c = e, (3.15) yields

HE(k)
n (x, y; a, b, e) =

n∑
m=0

(
n

m

)
Ek

n−m(a, b)Hm(x, y)

Theorem 3.5 Let a, b, c > 0 and a ̸= b. Then for x, yϵR and n ≥ 0. Then

HE(k)
n (x, y; a, b, c) =

n−2j∑
m=0

[n
2
]∑

j=0

yjxn−m−2j(ln c)n−m−jE(k)
m (a, b)

n!

m!j!(n− 2j −m)!
(3.16)

Proof. Applying the de�nition (2.1) to the term
2Lik(1−(ab)−t)

a−t+bt and expanding the exponential

function cxt+yt2 at t = 0 yields

2Lik(1− (ab)−t)

a−t + bt
cxt+yt2 =

( ∞∑
m=0

E(k)
m (a, b)

tm

m!

)( ∞∑
n=0

xn(ln c)n
tn

n!

) ∞∑
j=0

yj(ln c)j
t2j

j!



=
∞∑
n=0

(
n∑

m=0

(
n

m

)
(ln c)n−mE(k)

m (a, b)xn−m

)
tn

n!

 ∞∑
j=0

yj(ln c)j
t2j

j!


Replacing n by n-2j, we have

∞∑
n=0

HE(k)
n (x, y; a, b)

tn

n!
=

∞∑
n=0

n−2j∑
m=0

[n
2
]∑

j=0

(
n− 2j

m

)
(ln c)n−m−jE(k)

m (a, b)xn−m−2jyj

 tn

(n− 2j)!j!

(3.17)
Combining (3.17) and (2.1) and equating their coef�cients of tn produce the formula (3.16).

2

Theorem 3.6. Let a, b, c > 0 and a ̸= b. Then for x, yϵR and n ≥ 0. Then

HE(k)
n (x+ 1, y; a, b, c) =

[n
2
]∑

j=0

n−2j∑
m=0

(
n− 2j

m

)
yj(ln c)n−m−jE(k)

m (x; a, b, c) (3.18)

Proof. By the de�nition of generalized poly-Euler polynomials, we have

2Lik(1− (ab)−t)

a−t + bt
c(x+1)t+yt2 =

∞∑
n=0

HE(k)
n (x+ 1, y; a, b, c)

tn

n!
(3.19)

=

( ∞∑
m=0

E(k)
m (x; a, b, c)

tm

m!

)( ∞∑
n=0

(ln c)n
tn

n!

) ∞∑
j=0

yj(ln c)j
t2j

j!


=

∞∑
n=0

n∑
m=0

(
n

m

)
(ln c)n−mE(k)

m (x; a, b, c)
tn

n!

 ∞∑
j=0

yj(ln c)j
t2j

j!


=

∞∑
n=0

∞∑
j=0

n∑
m=0

(
n

m

)
yj(ln c)n−m+jE(k)

m (x; a, b, c)
tn+2j

n!j!

Replacing n by n-2j, we have

∞∑
n=0

HE(k)
n (x+ 1, y; a, b, c)

tn

n!
=

∞∑
n=0

 [n
2
]∑

j=0

n−2j∑
m=0

(
n− 2j

m

)
yj(ln c)n−m−jE(k)

m (x; a, b, c)

 tn

n!

(3.20)
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Combining (3.19) and (3.20) and equating their coef�cients of tn leads to formula (3.18).

2

Theorem 3.7. Let a, b, c > 0 and a ̸= b. Then for x, yϵR and n ≥ 0. The following implicit

summation formula involving generalized Hermite poly-Euler polynomials HE
(k)
n (x, y; a, b, c)

holds true:

HE(k)
n (x+ 1, y; a, b, c) =

n∑
m=0

(
n

m

)
(ln c)n−m

HE(k)
m (x, y; a, b, c) (3.21)

Proof. By the de�nition of generalized Hermite poly-Euler polynomials, we have

∞∑
n=0

HE(k)
n (x+ 1, y; a, b, c)

tn

n!
−

∞∑
n=0

HE(k)
n (x, y; a, b, c)

tn

n!

=
2Lik(1− (ab)−t)

a−t + bt
cxt+yt2(ct − 1)

=

( ∞∑
m=0

HE(k)
m (x, y; a, b, c)

tm

m!

)( ∞∑
n=0

(ln c)n
tn

n!

)
−

∞∑
n=0

HE(k)
n (x, y; a, b, c)

tn

n!

=
∞∑
n=0

n∑
m=0

(ln c)n−m
HE(k)

m (x, y; a, b, c)
tn

(n−m)!
−

∞∑
n=0

HE(k)
n (x, y; a, b, c)

tn

n!

Finally, equating the coef�cients of the like powers of tn, we get (3.21).
2

4 Symmetry Identities for the poly-Euler Polynomials

In this section, we give general symmetry identities for the generalized poly-Euler polynomials

HE
(k)
n (x, y; a, b, c) and E

(k)
n (x; a, b) by applying the generating function (1.1) and (2.1). The

results extend some known identities of Zhang and Yang [21], Yang [20,Eqs.(9)], Khan [9, 10],

Pathan [12] and Pathan et al [13 to 18].

Theorem 4.1. Let a, b, c > 0 and a ̸= b. For x, yϵR and n ≥ 0. Then the following identity

holds true:
n∑

m=0

(
n

m

)
bman−m

HE
(k)
n−m(bx, b2y; b, c)HE(k)

m (ax, a2y; a, c)

=
n∑

m=0

(
n

m

)
ambn−m

HE
(k)
n−m(ax, a2y; a, c)HE(k)

m (bx, b2y; b, c) (4.1)

Proof. Start with

g(t) =

(
(2Lik(1− (ab)−t))2

(a−at + bat)(a−bt + bbt)

)
cabxt+a2b2yt2 (4.2)

Then the expression for g(t) is symmetric in a and b and we can expand g(t) into series in two

ways to obtain

g(t) =
∞∑
n=0

HE(k)
n (bx, b2y; b, c)

(at)n

n!

∞∑
m=0

HE(k)
m (ax, a2y; a, c)

(bt)m

m!

=
∞∑
n=0

n∑
m=0

HE
(k)
n−m(bx, b2y; b, c)

an−m

(n−m)!
HE(k)

m (ax, a2y; a, c)
bm

m!
tn

On the similar lines we can show that

g(t) =
∞∑
n=0

HE(k)
n (ax, a2y; a, c)

(bt)n

n!

∞∑
m=0

HE(k)
m (bx, b2y; b, c)

(at)m

m!
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=
∞∑
n=0

n∑
m=0

HE
(k)
n−m(ax, a2y; a, c)

bn−m

(n−m)!
HE(k)

m (bx, b2y; b, c)
am

m!
tn

by comparing the coef�cients of tn on the right hand sides of the last two equations we arrive

the desired result.

2

Remark 1. For c = e in Theorem 4.1, we immediately deduce the following result involving

generalized Hermite-poly-Euler polynomials HE
(k)
n (x, y; a, b, e) for nonnegative integer n

n∑
m=0

(
n

m

)
bman−m

HE
(k)
n−m(bx, b2y; b, e)HE(k)

m (ax, a2y; a, e)

=
n∑

m=0

(
n

m

)
ambn−m

HE
(k)
n−m(ax, a2y; a, e)HE(k)

m (bx, b2y; b, e) (4.3)

Remark 2. By setting b = 1 in Theorem 4.1, we immediately following result

n∑
m=0

(
n

m

)
an−m

HE
(k)
n−m(x, y; 1, c)HE(k)

m (ax, a2y; a, c)

=
n∑

m=0

(
n

m

)
amHE

(k)
n−m(ax, a2y; a, c)HE(k)

m (x, y; 1, c) (4.4)

Theorem 4.2. Let a, b, c > 0 and a ̸= b. For x, yϵR and n ≥ 0. Then the following identity

holds true:

n∑
m=0

(
n

m

)
a−1∑
i=0

b−1∑
j=0

bman−m
HE

(k)
n−m

(
bx+

b

a
i+ j, b2z;A,B, c

)
E(k)

m (ay;A,B, c)

=
n∑

m=0

(
n

m

)
b−1∑
i=0

a−1∑
j=0

ambn−m
HE

(k)
n−m

(
ax+

a

b
i+ j, a2z;A,B, c

)
E(k)

m (by;A,B, c) (4.5)

Proof. Let

g(t) =

(
(2Lik(1− (ab)−t))2

(A−at +Bat)(A−bt +Bbt)

)
(cabt − 1)2cab(x+y)t+a2b2zt2

(cat − 1)(cbt − 1)

g(t) =

(
2Lik(1− (ab)−t)

(A−at +Bat

)
cabxt+a2b2zt2

(
cabt − 1

cbt − 1

)(
2Lik(1− (ab)−t)

A−bt +Bbt

)
cabyt

(
cabt − 1

cat − 1

)

=

(
2Lik(1− (ab)−t)

(A−at +Bat

)
cabxt+a2b2zt2

a−1∑
i=0

cbti
(
2Lik(1− (ab)−t)

A−bt +Bbt

)
cabyt

b−1∑
j=0

catj (4.6)

=

(
2Lik(1− (ab)−t)

A−at +Bat

)
ca

2b2zt2
a−1∑
i=0

b−1∑
j=0

c(bx+
b
a i+j)at

∞∑
m=0

E(k)
m (ay;A,B, c)

(bt)m

m!

=
∞∑
n=0

a−1∑
i=0

b−1∑
j=0

HE(k)
n

(
bx+

b

a
i+ j, b2z;A,B, c

)
(at)n

n!

∞∑
m=0

E(k)
m (ay;A,B, c)

(bt)m

(m)!

=
∞∑
n=0

n∑
m=0

(
n

m

)
a−1∑
i=0

b−1∑
j=0

HE
(k)
n−m

(
bx+

b

a
i+ j, b2z;A,B, c

)
E(k)

m (ay;A,B, c)bman−mtn

(4.7)
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On the other hand

g(t) =
∞∑
n=0

n∑
m=0

(
n

m

)
b−1∑
i=0

a−1∑
j=0

HE
(k)
n−m

(
ax+

a

b
i+ j, a2z;A,B, c

)
E(k)

m (by;A,B, c)ambn−mtn

(4.8)
By comparing the coef�cients of tn on the right hand sides of the last two equations, we arrive

at the desired result.

2
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