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Abstract. Let G be a mapping from ring R into itself such that
G(ab+ ba) = G(a)b+ ad(b) + G(b)a + bd(a),

for all a,b € R, where d is a Jordan derivation on R. We show that G is the additive mapping,
by taking some appropriate conditions on R.

1 Introduction

Let R be a ring and e a non trivial idempotent element of k. We denotes ¢, 1 — e, by e1, e
respectively, then we have Peirce decomposition [10] of R, as R = Ri1 ® Ri2 ® Ry @ Rao,
where R,,, = e, Re,, m,n = 1,2. An additive mapping d : R — R is called derivation (Jordan
derivation) if d(zy) = d(z)y + zd(y),(d(zy + yz) = d(x)y + zd(y) + d(y)z + yd(zx)) for all
x, y € R. The definition of generalized derivation was first introduced by Bresar, in [1]. An
additive mapping G : R — R is said to be generalized derivation (generalized Jordan derivation)
associated with derivation (Jordan derivation) d if G(zy) = G(x)y + zd(y), (G(zy + yx) =
G(z)y + zd(y) + G(y)x + yd(z)) for all z,y € R. If we remove additivity of d then d is said to
be multiplicative derivation. In similar fashion without additivity G is said to be multiplicative
generalized derivation (multiplicative generalized Jordan derivation).

Additive mappings are closely connected with the structure of rings. In this direction Posner
[9] proved very striking results. Posner studied behaviour of rings with the help of derivation.
Many author’s studied of additivity of mappings, further information can be found [6, 7]. In
general multiplicative maps are not additive. It is natural question that *When are multiplicative
maps addtive’? The answer of this question given by Martindale [8]. He proved the following
result:

Theorem 1.1. Let R be a ring containing a family {e,, : « € A} of idempotents which satisfies:
(1) R = {0} implies x = 0;
(2)If e Rz = {0} for each o € A, then x = O( hence Rx = {0} implies
z =0);
(3) For each o € A, eqreqR(1 — e,) = {0} implies eqxe, = 0.
Then any multiplicative bijective map from R onto an arbitrary ring R’ is additive.

In this line Daif [3] proved that multiplicative derivation is derivation by taking some suitable
condition on R. Recently, Jing and Lu [5] proved the following results:

Theorem 1.2, Let R be a ring with a nontrivial idempotent and satisfying:
(1) If a;jzji, = O for all x;, € Rj, then a;; = 0;
(2) Ifxijajk = Ofor all Tij € Rij, then Ak = 0;
(3) If a;;xi; + 4504 = O for all x;; € Ry;, then a;; = 0;
fori,j,k € {1,2}. If a mapping 6 : R — R satisfies

5(ab+ ba) = 8(a)b+ ad(b) + 5(b)a + bd(a)

forall a,b € R, then § is additive. Moreover if R is 2-torsion free, then § is a Jordan derivation.
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Motivated by the above results, it is natural to ask when are multiplicative generalized Jordan
derivation is additive? In this paper we will provide answer of the above question.

2 Preliminaries
The following lemma will be used in our main result.

Lemma 2.1. [[5], Lemma 1.5] Let R be a 2-torsion free semi prime ring with a nontrivial idem-
potent and i, j, k € {1,2} and R satisfies following condition:If a;;x;; = O for all x;, € R;;,(i #
J), then a;; = 0. Then R has following condition:
(1) Ifaijxji =0 forall xj, € Rjy, then a;; = 0.

3 Main Results

Throughout this section, we will take R, a ring with a nontrivial idempotent e; and satisfies the
following condition:

(C) If a;jxir =0, for all ik € Ry, then a;; = 0.
We also assume that mapping G : R — R satisfies

G(ab + ba) = G(a)b+ ad(b) + G(b)a + bd(a)

for all a,b € R, where d is a Jordan derivation on R.
We start with the following lemma.

Lemma 3.1. (1)G(a11 + bi2) = G(an1) + G(bi2)

(2)G(a11 + b21) = G(ain) + G(bx)
(3)G(axn + b12) = G(axn) + G(b1)
(4)G(axn + by1) = G(axn) + G(by)

Proof. For any xy; € Ry, we compute
Gl(ai1 + bi2)xay + z22(a1n + bi2)]
= G(a1 + biz)xaa + (a1 + b12)d(z2) + G(z2)(a11 + b12) + xnd(a; + b2).

On other hand we get
Gl(an + bi2)zm + SEzz(au + b12)]
G(biax2)
= G(a1zn + znair) + G(bipxon + x2b12)
= G(a11)rn + and(xxn) + G(xa)an + xnd(air)
+G(b12)x22 + biad(z22) + G(22)b12 + T20d(b12)

Combining both the equalities, we get
[G(a11 + b12) — G(a11) — G(b12)]z2e =0

This gives us
[G(a11 + b12) — G(a11) — G(b12)]12222 = 0
[G(ai + biz) — Glai1) — G(b12)]mzn =0

Using hypothesis condition C, we obtain
[G(a11 +b12) — G(an1) — G(b12)]12 =0
[G(a11 + b12) — G(a11) — G(b12)]22 =0

For any z12 € Ri», we have
Gl(a11 + br2)x1a + z12(a1r + bi2)]
= G(anz12)
= G(anz + z12011) + G(b1az12 + x12b12)

Consequently, we obtain
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[G(a11 + b12) — G(a11) — G(b12)]zr12 =0

Again using hypothesis condition C, we obtain
[G(a11 + b12) — G(a11) — G(b12)]11 =0
[G(ai + bi2) — G(a11) — G(b12)]21 =0

Therefore G(a1 + b12) = G(ay1) + G(b12). Similarly we can prove others. O

Lemma 3.2. (1)G (a1 + biacan) = G(arz) + G(bracan)
(2)G(an1 + baear) = G(an) + G(bxear)

Proof. We prove only (1) and the proof of (2) is similar. Using Lemma 3.1, we obtain
G(a12 + biae)

= Gl(e1 + b12) (a2 + c22) + (arn + cx)(e1 + b12)]

= G(e1 +bo)(arz + ) + (e1 + bio)d(arz + c22)

+G(an + cn)(er + bia) + (a2 + en)d(e1 + bi2)

= [G(e1) + G(b12)](a12 + ¢22) + (€1 + bin)[d(a12) + d(c)]

+[G(a12) + G(cn)](e1 + bi2) + (a2 + c22)[d(e1) + d(b12)]

= G(a1n) + G(b1ac).

Lemma 3.3. (I)G(alz + blz) = G(alz) + G(blz)
(2)G(az1 + ba1) = G(aar) + G(b21)

Proof. For any x2, € Rj,, we have
Gl(a1z + br2)xan + (a1 + bi2)]
= G(a + bi2)zan + (a1p + bo)d(w2) + G(w2)(az + bi2) + znd(ay + b12).

On other hand by Lemma 3.2, we have
G[(a12 + b12) @22 + z22(a12 + b12)]
= G(anxn + binxn)
= G(anzyn) + G(bnaxn)
= G(anzn + xnarn) + G(biazxn + x2b12)
= G(an)zn + and(zn) + G(zn)an + xnd(arn)
+G(b12)wa2 + bi2d(x22) + G(x22)b12 + T22d(b12)

Therefore we get,
Gl(ar2 + b12) — G(arz) — G(bi2)]x22 =0
So, we have

G[(a12 + bia) — G(a12) — G(b12)]22 = 0
G[(a12 + b12) — G(an) — G(b12)]12 =0

For complete the proof take x5 € Ry, we compute
G(aiz + biz)x1z + (a2 + bi2)d(z12) + G(z12) (@12 + bi2) + z12d(ar2 + bi2)
= G[(az + b12)z12 + 712(a12 + b12]
=0
= G(anzn + znan) + G(bziz + z12b12)
= G(an)r12 + and(z12) + G(z12)az + z12d(an)
+G(ba)x12 + brad(z12) + G(z12)b12 + x12d(b12)

This yields that
[G(aiz + b12) — G(ai) — G(br2)]z12 =0

Therefore we obtain
[G(a12 + b12) — G(an) — G(b12)]11 =0
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[G(a12 + b12) — G(an) — G(b12)]21 =0

Hence we get G(an + b1a) = G(ap) + G(by).
Similarly we can prove that G(az1 + b21) = G(az1) + G(ba1).

Lemma 3.4. (1)G(a11 +bi1) = G(an) + G(bn)
(2)G(ax + bxn) = G(azn) + G(bxn)

Proof. For any x2, € Rj,, we have

G(a1r + b11)zan + (a1 + b11)d(z) + G(z2)(a11 + b11) + z2ad(a1r + b11)
= G[(a1 + b11)z2n + x22(a11 + b11]
=0
= G(anxn + xnai) + G(biizan + x22bi1)
= G(an)zn + and(z) + G(zx)ann + zd(a;)
+G(b11)x22 + brid(z22) + G(x2)b11 + x22d(b11)

This yields that,
[G(ai + b11) — G(ain) — G(b11)]ze =0

Therefore, we obtain

[G(a11 + b11) — G(any) — G(bi)]12 =0
[Gar + bur) — Glant) = G(bur)]22 = 0

Similarly, by considering (a1; + b11)212 + z12(a11 + b11), we can show that

[G(a11 + b11) — G(an) — G(bi)]11 =0
[G(an + bu) — Glan) = G(bur)]or = 0

Hence, we obtain G(a11 + b11) = G(a11) + G(b11).
Similarly we can prove that G(ax + b») = G(axn) + G(b»n).
Lemma 3.5. G(au + bzl) = G(a12) + G(bzl)

Proof. For any x1p € Ri), we have
G(aiz + bor)z1z + (a12 + bar)d(z12) + G(z12) (@12 + bar) + z12d(arz + bar)
= G(byz12 + z12b21)
= G(by1x12 + x12b21) + G(annziz + x12012)
= G(ba1)z12 + boid(z12) + G(212)b21 + z12d(b21)
+G(a12)712 + a12d(z12) + G(z12)a12 + z12d(a12)

Therefore, we get
[G(a12 + b)) — G(a1z) — G(by)|x12 =0

Using hypothesis condition C, we obtain

[G(ai2 + ba) = Glarz) = G(bx)J11 = 0
[G(ar2 + ba) — Gar2) — G(bar)]z1 = 0

Similarly, by considering (a1 + b21)212 + ®12(a12 + b21), we can show that

[G(aia + b21) — Glap) — G(ba1)]12 =0
[G(a1z + ba1) — G(ar2) — G(bar)]2 =0

Hence we get the required result.

Lemma 3.6. (1)G(a11 + b2 + c21) = G(aq1) + G(b12) + G(ear)
(2)G(a1z + ba + c2) = G(a12) + G(b21) + G(c22)



ADDITIVITY OF GENERALIZED JORDAN DERIVATIONS 257

Proof. For any xp € Rj,, we have

Gl(air + bia + c21)zn + x2o(ar; + bia + c21)]
= G(an + b1z + 1)z + (a11 + b1z + ¢21)d(z22)
+G(zn)(a11 + b2 + c21) + x2d(ain + bz + c21)

On other hand by Lemma 3.5, we also have

Gl(a + biz + 1)z + z22(a11 + b1z + ¢21)]

= G(blzxzz + 220021)
(b12722) + G(x22021)
(a11222 + z22a11) + G(braxa + T20b12) + G(c21222 + x22021)
(a11)z22 + and(zn) + G(ax)ai + xnd(air)
(b12) @22 + brad(x22) + G(x22)b12 + 220d(b12)
(e21)z20 + c21d(x2) + G(a22)ea1 + z22d(car)

It follows that
Gl(air + bz + e21) — G(a11) — G(bi2) — G(en)]xn =0

Then we can obtain that

Gl(ai1 + bz + 1) — G(a1r) — G(b12) — G(ea1)]12 =0
Gl(a11 + b1z + c21) — G(a11) — G(b2) — G(ca1)]2 =0

Similarly, we can show that,

Gl(ann + bz + ¢21) — G(ar1) — G(b12) — G(ea1)]21 =0
Gl(a11 + bz + 1) — G(an) — G(bi2) — G(c21)]11 =0
which completes the proof. O

Lemma 3.7. G(au + b+ o1 + 922) = G(all) + G(b12) + G(Czl) + G(gzz)

Proof. For any a1; € Ry,

G(ai1 + bix + ¢a1 + g2)x11 + (ar1 + bz + 21 + go2)d(z11)
+G($11)(a11 +bia + 21 + g2) + zid(anr + bz + 21 + g2)
Gl(an + b2 + e21 + g2)z11 + z11(a11 + bz + co1 + g2)]
= Glanzi + ca1w11 + x11611 + 11012
= G(anz + +x11011) + G(z11b12) + G(ea1z11)
= G(anzi + +z11a11) + G(bizi1 + z11b12)
+G (1211 + z11001) + G(922711 + 11922)

From above expression we find that
[G(a11 + bz + 21 + g22) — G(ai) — G(bi2) — G(ea1) — G(g22)]x11 =0

we can infer that

[G(ai1 + b1z + 21 + g22) — G(an1) — G(bi2) — G(ear) —
[G(ain + b2 + 21 + gn) — G(ann) — G G

Similarly we can prove that

[G(a11 + bz + 21 + g22) — G(a11) — G(b12) — G(ea1) — G =
[G(a11 + bia + 21 + g22) — G(ai) — G(bi2) — G(ea1) — G(g22)]22 =0

This completes the proof. O

Theorem 3.8. Let R be a ring with a nontrivial idempotent ey and satisfies:
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i) If a;jz, = O for all i, € Ry, then a;; = 0; fori,j,k € {1,2}. Suppose that the mapping
G : R — R satisfies

G(ab+ ba) = G(a)b+ ad(b) + G(b)a + bd(a)

for all a,b € R, where d is a Jordan derivation on R, then G is additive. Moreover if R is
2-torsion free, then G is a generalized Jordan derivation.

Proof. For any a,b € R, we write a = aj1 + a;p + ap1 + axp and b = byy + b1p + ba1 + boo.
Applying Lemmas 3.1 — 3.7 we have

G(a +b) =G(aj + a2 + ap1 + az + by + bio + bay + bgg)

[(a11 + b11) + (a2 + bi2) + (a2 + bo1) + (a2 + b22)]

(@11 + b11) + G(arz + biz) + G(ao1 + ba1) + Glaxn + bx)

(a11) + G(bn) + G(alz) + G(b12) + G(azl) + G(bzl) + G(azz) + G(bgg)
gail + a(12)+ az1 + axn) + G(biy + bia + boy + ba2)

G

Hence G is the additive mapping. O

=G
=G
G
=G

In [4], it has been proved that every Generalized Jordan derivation on a 2-torsion free semi
prime ring is a generalized derivation. Using this result and applying Lemma 2.1 we get the
following corollary.

Corollary 3.9. Let R be a 2-torsion free semi prime ring with a nontrivial idempotent and satis-
fying:

(P) Ifaiixij = Ofor all Ti; € Rij (Z 7é j), then a;; = 0.
If mapping G : R — R satisfies

G(ab+ ba) = G(a)b+ ad(b) + G(b)a + bd(a)

for all a,b € R, where d is a Jordan derivation on R, then G is additive. Moreover G, is a
generalized derivation.
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