Primal and weakly primal ideals in $C(X)$

Ahmad Yousefian Darani

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13A15, 13C05; Secondary 13F05.

Keywords and phrases: Prime ideal, Primal ideal, Weakly prime ideal, Weakly primal ideal, Prime z-filter, Primal z-filter, Weakly prime z-filter, Weakly primal z-filter.

Abstract Let X be a completely regular Hausdorff space, and consider the ring of continuous functions $C(X)$. A z-filter \mathcal{F} on X is called primal if the set of all elements of $Z(X)$ that are not prime to \mathcal{F} forms a z-filter on X: here an element $Z \in Z(X)$ is called prime to \mathcal{F} if $Z \cup Z' \in \mathcal{F}$ implies that $Z' \in \mathcal{F}$. In this paper we consider the primal z-filters on X, and then we discuss on the relations between this class of z-filters on X and the class of primal ideals of $C(X)$. We also define the concept weakly prime and weakly primal z-filters on X and show that there is a one-to-one correspondence between the weakly prime (resp. weakly primal) z-filters on X and the weakly prime (resp. weakly primal) ideals of $C(X)$.

1 introduction

Prime z-filters play a central role in the study of the rings of continuous functions. Of course, a prime z-filter \mathcal{F} on a completely regular Hausdorff space X is z-filter \mathcal{F} on X with the property that

$$Z, Z' \in Z(X), Z \cup Z' \in \mathcal{F} \Rightarrow Z \in \mathcal{F} \text{ or } Z' \in \mathcal{F}.$$

There are several ways to generalize the notion of a prime z-filters. We could either restrict or enlarge where Z and/or Z' lie or restrict or enlarge where $Z \cup Z'$ lies. In this paper we will be mostly interested in generalizations obtained by restricting where $Z \cup Z'$ lies.

Let R be a commutative ring, I an ideal of R and J a subset of R. We denote by $(I :_R J)$ the set of all elements $r \in R$ with $ra \in I$ for every $a \in J$. Then the annihilator of J, denoted by $Ann_R(J)$ is just $(0 :_R J)$. An element $a \in R$ is called a zero-divisor of R provided that $Ann(a) \neq 0$. We denote by $Z(R)$, the set of all zero-divisors of R.

We recall from [4] that an element $a \in R$ is called prime to I if $ra \in I$ (where $r \in R$) implies that $r \in I$, that is $(I :_R a) = I$. Denote by $S(I)$ the set of elements of R that are not prime to I, that is

$$S(I) = \{ a \in R | ra \in I \text{ for some } r \in R \setminus I \}.$$

Then I is said to be primal if $S(I)$ forms an ideal of R; this ideal is always a prime ideal, called the adjoint prime ideal P of I. In this case we also say that I is a P-primal ideal of R ([4]). It is easy to see that I is a P-primal ideal of R if and only if $Z(R/I) = P/I$. Then ring R is called coprimal if the zero ideal of R is primal.

The concept of weakly primal ideals in a commutative ring R studied in [2]. An element $a \in R$ is called weakly prime to the ideal I if $0 \neq ra \in I$ ($r \in R$) implies $r \in I$. Clearly 0 is always weakly prime to I. Denote by $W(I)$ the set of all elements of R which are not weakly prime to I, that is

$$W(I) = \{ a \in R | 0 \neq ra \in I \text{ for some } r \in R \setminus I \}.$$

I is called weakly primal provided that the set $P := W(I) \cup \{0\}$ forms an ideal of R. Then the ideal is a weakly prime ideal of R, called the weakly prime adjoint ideal of R. We also say that I is P-weakly primal ideal. Of course a proper ideal P of R is said to be weakly prime if $0 \neq ab \in R$ implies either $a \in P$ or $b \in P$ [1].
Throughout this paper X is a completely regular Hausdorff space. Let $C(X)$ be the ring of all real-valued continuous functions on X. We list here some standard facts, terminology and notation for reference. The set of all positive integers is denoted by N. In any ring $C(X)$, the constant function whose value is r is designated by r. For any $f \in C(X)$, we write $Z(f)$ for the set

$$\{ x \in X : f(x) = 0 \}$$

$Z(f)$ is called a zero-set in X. For $C' \subseteq C(X)$, we write $Z[C']$ to designate the family of zero-sets in C', that is

$$Z[C'] = \{ Z(f) : f \in C' \}.$$

On the other hand, the family $Z[C(X)]$ of all zero-sets in X will also be denoted, for simplicity, by $Z(X)$.

We shall occasionally refer to the ring $C(X)$ itself as an improper ideal. Thus, the word ideal, unmodified, will always mean proper ideal. For any ideal I in $C(X)$ and $f \in C(X)$, the residue class of f modulo I is written $I[f]$. The ideal I is called a z-ideal if $Z(f) \in Z[I]$ implies that $f \in I$. By a prime z-filter, we shall mean a z-filter \mathcal{F} on X with the property that whenever the union of two zero-sets belongs to \mathcal{F}, then at least one of them belongs to \mathcal{F}. For any undefined terms here the reader may consult [6].

The structure of the family of prime ideals in $C(X)$ has been extensively studied in [10, 11, 12]. In this paper we first study the basic properties of the family of primal ideals of the ring $C(X)$. We define primal, weakly prime and weakly primal z-filters on X. Then we show that there exists a one-to-one correspondence between the set of all primal z-ideals (resp. weakly prime, weakly primal) of $C(X)$ and the set of all primal (resp. weakly prime, weakly primal) z-filters on X.

2 Primal ideals in $C(X)$

In this section we discuss on primal ideals of $C(X)$ and consider the relations between primal ideals of $C(X)$ and primal z-filters on X.

Definition 2.1. Let \mathcal{F} be a z-filter on X. An element Z in $Z(X)$ is called z-prime to \mathcal{F} provided that $Z \cup Z' \in \mathcal{F}$ implies $Z' \in \mathcal{F}$.

Lemma 2.2. Let \mathcal{F} be a z-filter on X and denote by $T(\mathcal{F})$ the set of all elements of $Z(X)$ that are not z-prime to \mathcal{F}, that is

$$T(\mathcal{F}) = \{ Z \in Z(X) | Z \cup Z' \in \mathcal{F} \text{ for some } Z' \in Z(X) \setminus \mathcal{F} \}.$$

Then:

1. $\mathcal{F} \subseteq T(\mathcal{F})$, and
2. If $T(\mathcal{F})$ forms a z-filter on X, then it is a prime z-filter.

Proof. (1) For every $Z(f) \in \mathcal{F}$, the relations

$$Z(f) \cup Z(1) \in \mathcal{F} \text{ with } Z(1) = \emptyset \notin \mathcal{F}$$

imply that $Z(f)$ is not z-prime to \mathcal{F}. Hence $Z(f) \notin T(\mathcal{F})$ and so $\mathcal{F} \subseteq T(\mathcal{F})$.

(2) Assume that $Z(f) \cup Z(g) \in T(\mathcal{F})$ but $Z(f) \notin T(\mathcal{F})$. There exists $Z(h) \in Z(X) \setminus \mathcal{F}$ such that $Z(f) \cup Z(g) \cup Z(h) \in \mathcal{F}$. As $Z(f)$ is z-prime to \mathcal{F}, we get $Z(g) \cup Z(h) \in \mathcal{F}$ with $Z(h) \in Z(X) \setminus \mathcal{F}$, that is $Z(g)$ is not z-prime to \mathcal{F}. So $Z(g) \in T(\mathcal{F})$. Therefore $T(\mathcal{F})$ is a prime z-filter.

\square
Definition 2.3. A z-filter \mathcal{F} on X is called a primal z-filter if $T(\mathcal{F})$ forms a z-filter on X. In this case, by Lemma 2.2, the z-filter $\mathcal{G} := T(\mathcal{F})$ is a prime z-filter, called the adjoint prime z-filter of \mathcal{F}. We will also say that \mathcal{F} is a \mathcal{G}-primal z-filter.

Theorem 2.4. (1) Let I and P be z-ideals of $C(X)$. If I is a P-primal of $C(X)$, then $Z[I]$ is a primal z-filter on X.

(2) If \mathcal{F} is a primal z-filter on X, then $Z^{-}[\mathcal{F}]$ is a primal z-ideal of $C(X)$.

Proof. (1) We know that P is a prime ideal of $C(X)$. So, by [6, Theorem P.29], $Z[P]$ is a prime z-filter on X. Assume that $Z(f) \in Z[P]$ is not z-prime to $Z[I]$. There exists $Z(g) \in Z(X) \setminus Z[I]$ such that $Z(f) \cup Z(g) \in Z[I]$. So $Z(fg) \in Z[I]$ and I z-ideal gives $fg \in I$. This implies that $g \in C(X) \setminus I$ with $fg \in I$, that is f is not prime to I. So $f \in P$ and so $Z(f) \in Z[P]$. Now assume that $Z(h) \in Z[P]$. As P is a z-ideal, $h \in P$. Therefore $hk \in I$ for some $k \in C(X) \setminus I$. It follows that $Z(h) \cup Z(k) \in Z[I]$ where $Z(k) \in Z(X) \setminus Z[I]$. Thus $Z(h)$ is not z-prime to $Z[I]$. We have already shown that $Z[P]$ consists exactly of elements of $Z(X)$ that are not z-prime to $Z[I]$. This shows that $Z[I]$ is a $Z[P]$-primal z-filter.

(2) Clearly $Z^{-}[\mathcal{F}]$ is a z-ideal of $C(X)$. Assume that \mathcal{F} is \mathcal{G}-primal. By Lemma 2.2 and [6, Theorem p.29], $Z^{-}[\mathcal{G}]$ is a prime z-ideal of $C(X)$. It is enough to show that $Z^{-}[\mathcal{G}] = T(Z^{-}[\mathcal{F}])$. If $f \in C(X)$ is not prime to $Z^{-}[\mathcal{F}]$, then $fg \in Z^{-}[\mathcal{F}]$ for some $g \in C(X) \setminus Z^{-}[\mathcal{F}]$. This implies that $Z(f) \cup Z(g) \in \mathcal{F}$ with $Z(g) \notin \mathcal{F}$, that is $Z(f)$ is not z-prime to \mathcal{F}. Therefore $Z(f) \notin \mathcal{G}$ and so $f \in Z^{-}[\mathcal{G}]$. Conversely, assume that $h \in Z^{-}[\mathcal{G}]$. Then as $Z(h)$ is not z-prime to \mathcal{F}, there exists $Z(k) \in Z(X) \setminus \mathcal{F}$ with $Z(h) \cup Z(k) \in \mathcal{F}$. It follows that $hk \in Z^{-}[\mathcal{F}]$ with $k \in C(X) \setminus Z^{-}[\mathcal{F}]$, that is h is not prime to $Z^{-}[\mathcal{F}]$.

Lemma 2.5. Every prime z-filter is primal.

Proof. Let \mathcal{F} be a prime Z-filter. Then $Z^{-}[\mathcal{F}]$ is a prime z-ideal of $C(X)$ by [6, Theorem p.29]. But in any commutative ring, every prime ideal is primal. Hence $Z^{-}[\mathcal{F}]$ is a primal z-ideal of $C(X)$. Now the result follows from Theorem 2.4. □

An annihilator condition on a commutative ring R is property (A). R is said to have property (A) if every finitely generated ideal I contained in $Z(R)$ has a nonzero annihilator ([7]). Y. Quentzel introduced property (A) in [14], calling it condition (C). Faith in [4] studied rings with property (A) and called such rings McCoy. An example of a McCoy ring is a Noetherian ring. However, the property (A) fails for some non-Noetherian rings [9, p. 63]. To avoid the ambiguity we call such rings F-McCoy.

Recently the concept of rings with property (A) has been generalized to noncommutative rings [8]. Let R be an associative ring with identity. We write $Z_l(R)$ and $Z_r(R)$ for the set of all left zero-divisors of R and the set of all right zero-divisors of R, respectively. Then the ring R has right (left) Property (A) if for every finitely generated two-sided ideal $I \subseteq Z_l(R)$ ($Z_r(R)$), there exists nonzero $a \in R (b \in R)$ such that $|a| = 0 (|b| = 0)$. A ring R is said to have Property (A) if R has right and left Property (A).

Nielsen in [13] defined another class of rings and called it McCoy. This paper is on the basis of some recent papers devoted to this new class of rings. Let R be an associative ring with 1 (not necessarily commutative). R is said to be right McCoy when the equation $f(x)g(x) = 0$ over $R[x]$, where $f(x), g(x) \neq 0$, implies there exists a nonzero $r \in R$ with $f(x)r = 0$. Left McCoy rings are defined similarly. If a ring is both left and right McCoy then R is called a McCoy ring. This class of McCoy rings includes properly the class of Armendariz rings introduced in [15], which is extensively studied in the last years.

Let R be a commutative ring with identity. Then concepts "F-McCoy ring" and "McCoy ring" are different concepts. In fact neither implies the other. For example, if R is a reduced ring, then it is McCoy by [13, Theorem 2]. But we know that there are reduced rings which are not F-McCoy. Also if we let Z_4 to be the ring of integers modulo 4, then, by [8, Theorem 2.1], $M_2(Z_4)$, the set of all 2×2 matrices over Z_4, has Property (A) but it is not right McCoy by [16].

The commutative ring R is called strongly co-primal (resp. Super co-primal) if for arbitrary $a, b \in Z(R)$ (resp. finite subset E of $Z(R)$) the annihilator of $\{a, b\}$ (resp. annihilator of E) in

"Primal and weakly primal ideals in $C(X)$"
R is non-zero. Clearly, R is a strongly coprimal if and only if R is both a coprimal and a F-McCoy ring. In the following Theorem, we give some conditions under which $C(X)$ is strongly coprimal (resp. super coprimal) [17].

Theorem 2.6. (1) The ring $C(X)$ is strongly primal if and only if $\text{int}Z(f_1) \cap \text{int}Z(f_2) \neq \emptyset$ for every f_1 and f_2 in $Z(C(X))$.

(2) The ring $C(X)$ is super primal if and only if $\text{int}Z(f_1) \cap \text{int}Z(f_2) \cap \ldots \cap \text{int}Z(f_n) \neq \emptyset$ for every f_1, f_2, \ldots, f_n in $Z(C(X))$.

Proof. (1) Assume that $C(X)$ is strongly primal. Then, for every $f_1, f_2 \in Z(C(X))$, $\text{Ann}(f_1, f_2) \neq 0$. So there exists a nonzero element $g \in C(X)$ with $gf_1 = gf_2 = 0$. In this case, for every $x \in X$, if $g(x) \neq 0$ we have $f_1(x) = f_2(x) = 0$, that is $coZ(g) \subseteq Z(f_1) \cap Z(f_2)$. Therefore $\text{int}Z(f_1) \cap \text{int}Z(f_2) \neq \emptyset$. Now suppose that $\text{int}Z(f_1) \cap \text{int}Z(f_2) \neq \emptyset$ for every $f_1, f_2 \in Z(C(X))$. Set $Y = \text{int}Z(f_1) \cap \text{int}Z(f_2)$ and define the map $g : X \to R$ as follows:

$$g(x) = \begin{cases} 1, & x \in Y; \\ 0, & x \in X - Y. \end{cases}$$

Then g is a continuous function. So $0 \neq C(X)$, and for every $x \in X$, $g(x)f_1(x) = 0$, $g(x)f_2(x) = 0$, that is $gf_1 = 0 = gf_2$. Consequently $\text{Ann} \{f_1, f_2\} \neq 0$. Thus $C(X)$ is strongly primal.

(2) The proof of this part is completely to that of part (1). \qed

3 Weakly prime and Weakly primal ideals

The concept of weakly prime and weakly primal ideals in a commutative ring introduced in [1, 2]. In this section we define the weakly prime and weakly primal z-filters on X and then we investigate the relations among these classes of z-filters, weakly prime and weakly primal ideals.

Definition 3.1. Assume that F is a z-filter on X. F is said to be a weakly prime z-filter whenever, for $Z, Z' \in Z(X)$, $X \neq Z \cup Z' \notin F$ implies that either $Z \in F$ or $Z' \in F$.

Lemma 3.2. Every prime z-filter is weakly prime.

Theorem 3.3. (1) If P is a weakly prime z-ideal in $C(X)$, then $Z[P]$ is a weakly prime z-filter on X.

(2) If F is a weakly prime z-filter on X, then $Z^+[F]$ is a weakly prime z-ideal of $C(X)$.

Proof. (1) Let P be a weakly prime z-ideal in $C(X)$. Clearly $Z[P]$ is a z-filter on X. Assume that $X \neq Z(f) \cup Z(g) \in Z[P]$ for some $Z(f), Z(g) \in Z(X)$. Then $Z(0) \neq Z(fg) = Z(f) \cup Z(g) \in Z[P]$. Since P is a z-ideal, we have $0 \neq fg \in P$. Therefore either $f \in P$ or $g \in P$ since P is assumed to be weakly prime. It follows that either $Z(f) \in Z[P]$ or $Z(g) \in Z[P]$, that is $Z[P]$ is a weakly prime z-filter.

(2) Assume that F is a weakly prime z-filter on X. In this case $P = Z^+[F]$ is a z-ideal of $C(X)$. Suppose that $f, g \in C(X)$ are such that $0 \neq fg \in P$. Then, $X \neq Z(f) \cup Z(g) = Z(fg) \in Z[Z^+[F]] = F$. Since F is weakly prime, either $Z(f) \in F$ or $Z(g) \in F$. Thus either $f \in P$ or $g \in P$, and this implies that P is a weakly prime z-ideal of $C(X)$.

Definition 3.4. Assume that F is a z-filter on X. An element Z in $Z(X)$ is called z-weakly prime to F provided that $X \neq Z \cup Z' \in F (Z' \in Z(X))$ implies that $Z' \in F$.

Remark 3.5. Let F be a z-filter on X. Then:

(1) X (i.e. $Z(0)$) is always z-weakly prime to F

(2) If $Z \in Z(X)$ is z-prime to F, then it is z-weakly prime to F.

Ahmad Yousefian Damani
Lemma 3.6. Let \mathcal{F} be a z-filter on X and denote by $W(\mathcal{F})$ the set of all elements of $Z(X)$ that are not z-weakly prime to \mathcal{F}. Then:

1. $\mathcal{F} \subseteq W(\mathcal{F}) \cup \{X\}$, and

2. If $W(\mathcal{F}) \cup \{X\}$ forms a z-filter on X, then it is a weakly prime z-filter.

Proof. (1) For every $Z(f) \in F - \{X\}$ we have:

$$X \neq Z(f) = Z(f) \cup Z(1) \in F$$

with $Z(1) = \emptyset \notin \mathcal{F}$. This implies that $Z(f)$ is not z-weakly prime to \mathcal{F}. Hence $Z(f) \in W(\mathcal{F})$. Therefore $\mathcal{F} \subseteq W(\mathcal{F}) \cup \{X\}$.

(2) Let $Z(f), Z(g) \in Z(X)$ be such that $X \neq Z(f) \cup Z(g) \in W(\mathcal{F}) \cup \{X\}$. Suppose also that $Z(f) \notin W(\mathcal{F}) \cup \{X\}$, that is $Z(f)$ is z-weakly prime to \mathcal{F}. There exists $Z(h) \in Z(X) \setminus \mathcal{F}$ such that $X \neq Z(f) \cup Z(g) \cup Z(h) \notin \mathcal{F}$. Now $Z(f)$ is z-weakly prime to \mathcal{F} implies that $X \neq Z(g) \cup Z(h) \in \mathcal{F}$ with $Z(h) \in Z(X) \setminus \mathcal{F}$, that is $Z(g)$ is not z-weakly prime to \mathcal{F}, hence $Z(g) \in W(\mathcal{F}) \cup \{X\}$, that is $W(\mathcal{F}) \cup \{X\}$ is a weakly prime z-filter on X.

Definition 3.7. Assume that \mathcal{F} is a z-filter on X. \mathcal{F} is called a weakly primal z-filter on X if $W(\mathcal{F}) \cup \{X\}$ forms a z-filter on X. In this case, by Lemma 3.6, the z-filter $\mathcal{G} := W(\mathcal{F}) \cup \{X\}$ is a weakly prime z-filter, called the adjacent weakly prime z-filter of \mathcal{F}. In this case we sat that \mathcal{F} is a \mathcal{G}-weakly primal z-filter.

Theorem 3.8. Every weakly prime z-filter on X is weakly primal.

Proof. Assume that \mathcal{F} is a weakly prime z-filter on X. Then $\mathcal{F} \subseteq W(\mathcal{F}) \cup \{X\}$ by Lemma 3.6. Now pick an element $Z(f) \in W(\mathcal{F}) \cup \{X\}$. If $Z(f) = X$, then $Z(f) \in \mathcal{F}$. So assume that $Z(f) \neq X$. Then $Z(f)$ is z-weakly prime to \mathcal{F}. So there exists $Z(g) \in Z(X) - \mathcal{F}$ with $X \neq Z(f) \cup Z(g) \in \mathcal{F}$. Since \mathcal{F} is a weakly prime z-filter we get $Z(f) \in \mathcal{F}$, that is $W(\mathcal{F}) \cup \{X\} \subseteq \mathcal{F}$. Hence $\mathcal{F} = W(\mathcal{F}) \cup \{X\}$, and this implies that \mathcal{F} is an \mathcal{F}-weakly primal z-filter.

Theorem 3.9. (1) Let I be a P-weakly primal ideal of $\text{C}(X)$, where I and P are both z-ideals. Then $Z[I]$ is a primal z-filter on X with the weakly prime adjoint z-filter $Z[P]$.

(2) If \mathcal{F} is a \mathcal{G}-weakly primal z-filter on X, then $Z^-(\mathcal{F})$ is a weakly primal z-ideal of $\text{C}(X)$ with the weakly prime adjoint ideal $Z^-[\mathcal{F}]$.

Proof. The proof is completely similar to that of Theorem 2.4 and we omit it.

References

Author information

Ahmad Yousefian Danani, Department of Mathematics and Applications, University of Mohaghegh Ardabili, Arghbil 56199-11367, Iran.

E-mail: yousefian@uma.ac.ir

Received: July 12, 2016.

Accepted: December 11, 2016.