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Abstract Let K/k be a purely inseparable extension of characteristic p > 0 and of finite size.
We recall that K/k is modular if for every n ∈ N, Kpn

and k are k ∩ Kpn

-linearly disjoint. A
natural generalization of this notion is to say that K/k is lq-modular if K is modular over a finite
extension of k. Our main objective is to extend in definite form some results and definitions of
the lq-modularity that have already been obtained in the case limited by the finiteness condition
imposed on [k : kp] in a rather general framework (framework of extensions of finite size called
also q-finite extensions). First, by means of invariants, we characterize the lq-modularity of a
q-finite extension. Moreover, we give a necessary and sufficient condition for K/k to be lq-
modular. As a consequence, the lq-modularity is stable up to a finite extension of the choice
of the ground field. This makes it possible to reduce the study of lq-modularity to the case of
relatively perfect extensions.

1 Introduction

Let K/k be a purely inseparable extension of characteristic p > 0. A subset B of K is called an
r-basis (relative p-basis) of K/k if K = k(Kp)(B) and for every x ∈ B, x ̸∈ k(Kp)(B \ {x}).
By virtue of ([1], III, p. 49, Corollary 3) and the exchange property of r-independence, we
deduce that any extension admits an r-basis and that the cardinality of any r-basis is invariant.
If K/k has an exponent, we immediately check that B is an r-basis of K/k if and only if B
is a minimal generator of K/k. Taking account of ([1], III, p. 25, Proposition 2), we can
control the size of any purely inseparable extension K/k by means of the irrationality degree
of K/k defined by di(K/k) = sup

n∈N
(|Gn|) where Gn is a minimal generator of kp

−n ∩ K/k.

In particular, the size measurement of an extension is an increasing function with respect to
inclusion. More precisely, for every chain of purely inseparable extensions, k ⊆ L ⊆ L′ ⊆ K,
we have di(L′/L) ≤ di(K/k). Henceforth, any extension of finite size will be called a q-
finite extension. It is clear that the q-finite extensions contain strictly all extensions of k whose
degree [k : kp] is finite. Moreover, we show that any decreasing family of q-finite extensions
is stationary. We also recall that K/k is said to be modular if and only if for any n ∈ N, Kpn

and k are Kpn ∩ k-linearly disjoint. A natural generalization of this notion is to say that K/k
is lq-modular if K is modular over a finite extension of k. Knowing that [7], [4] and [6] are
entirely devoted to the study of this notion in the local case delimited by the hypothesis [k : kp]
is finite, in this paper we want to extend some results of the lq-modularity that have already been
obtained locally in a fairly renovated framework (this is the framework of the q-finite extensions)
in a definitive form.

First, we begin by characterizing the lq-modularity of a q-finite extension by means of in-
variants. In this regard, we give a necessary and sufficient condition for K/k to be lq-modular,
and consequently the lq-modularity is stable up to a finite extension of the choice of the ground
field. This makes it possible to reduce the study of lq-modularity to the case of relatively perfect
extensions.

It should be pointed that k always designates a commutative field of characteristic p > 0, Ω an
algebraic closure of k and out that all the extensions involved in this paper are purely inseparable
subextensions of Ω. It is also convenient to denote sometimes [k,K] the set of intermediate field
of an extension K/k.
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2 Irrationality degree of a purely inseparable extension

Definition 2.1 ([11], Definition 1.3). Let K/k be a purely inseparable extension. A subset G of
K is said to be an r-generator (generator) of K/k if K = k(G), and if moreover for each x ∈ G,
x ̸∈ k(G\x), then G will be called a minimal r-generator of K/k.

Definition 2.2 ([11], Definition 1.2). Given an extension K/k of characteristic p > 0, and a
subset B of K. We say that B is an r-basis (relative p-basis) of K/k, if B is a minimal r-
generator of K/k(Kp). B is said to be r-free (or r-independent) over k, if B is an r-basis of
k(B)/k, in the opposite case B is said to be r-dependent over k.

It is known that, the r-dependence in K/k(Kp) is a dependence relation (for example see [9],
Lemma 6.1), and, consequently, according to ([9], Theorem 1.3) we obtain:

• Every extension K/k has an r-basis and any two r-bases of K/k have the same cardinality.

• From any r-generator of K/k(Kp), we can extract an r-basis of K/k.

• Any r-free subset of k(Kp) can be completed to an r-basis of K/k.

• The r-basis of K/k is exactly the maximal subset of K which is r-independent over k.

• The r-basis of K/k is exactly the minimal r-generator of K/k(Kp).

Recall that K is said to have an exponent (or, to be of bounded exponent) over k, if there
exists e ∈ N such that Kpe ⊆ k, and the smallest integer that satisfies this relation will be
called the exponent (or height) of K/k. Taking into account ([11], Corollary 1.6), if K/k has
an exponent, a subset B of K is an r-basis of K/k if and only if B is a minimal r-generator of
K/k. Let us consider a purely inseparable extension K/k of characteristic p > 0, clearly for any
n ∈ N, kp

−n ∩K/k has an exponent, and in addition, the cardinality of any minimal r-generator
of kp

−n ∩K/k depends only on n.

Definition 2.3. The invariant di(K/k) = supn∈N(|Bn|) (|.| designates the cardinality) will be
called the irrationality degree of K/k.

Here the sup is taken in the sense of ([1], III, p. 25, Proposition 2). Furthermore, the size
measurement of an extension grows as a function of inclusion. More specifically, for every
purely inseparable extensions k ⊆ L ⊆ L′ ⊆ K, di(L′/L) ≤ di(K/k) (cf. [8], Theorem 3.8). In
addition, di(K/k) = sup(di(L/k))L∈[k,K].

3 Quasi-finite extensions

Definition 3.1. Any extension of finite irrationality degree is called q-finite (quasi-finite) exten-
sion.

In the following, for each n ∈ N, kn always designates kp
−n ∩K. It is immediately verified

that:

(1) K/k is finite if and only if K/k is q-finite of bounded exponent.

(2) The q-finitude is transitive. In particular, for every n ∈ N, K/k(Kpn

) and kn/k are finite.

(3) There exists n0 ∈ N, for every integer n ≥ n0, di(kn/k) = di(K/k).

We recall that K/k is relatively perfect if k(Kp) = K. It is easy to verify that the property
"to be relatively perfect" is stable by any product covering k, and as a result, there exists a
largest subfield of K relatively perfect over k called the relatively perfect closure of K/k, and is
denoted by rp(K/k) (cf. [5], p. 50). In particular, for every L ∈ [k : K], K/L is finite implies
rp(K/k) ⊂ L, and if moreover K/k is relatively perfect, then K/L is finite involves L = K. In
addition, we will see some immediate applications of ([5], Lemma 1.2) that will be useful later.

Proposition 3.2. Let K/k be a q-finite extension. The sequence (k(Kpn

))n∈N stops over rp(K/k)
from a n0. In particular, K/rp(K/k) is finite.
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We obtain in particular the following result:

Corollary 3.3. The relatively perfect closure of a q-finite extension K/k is not trivial. More
precisely, K/k is of unbounded exponent so is rp(K/k)/k.

Proposition 3.4. For every q-finite extension K/k, there exists n ∈ N such that K/kn is relatively
perfect. Moreover, kn(rp(K/k)) = K.

Proposition 3.5. Let k ⊆ L ⊆ K be q-finite and relatively perfect extensions over k. Then
L = K if and only if di(L/k) = di(K/k).

Proof. The result holds immediately since di(K/k) = di(K/L) + di(L/k) (cf. [8], Proposition
4.8), and so di(L/k) = di(K/k) is equivalent to di(K/L) = 0, or again K = L.

Here is an extremely important application of the previous proposition

Proposition 3.6. Any decreasing sequence of a q-finite extension is stationary.

Proof. Let (Kn/k)n∈N be a decreasing sequence of subextensions of K/k and (Fi/k)i∈N the
sequence associated with their relatively perfect closures. Taking into account ([8], Theorem
3.8), the sequence of integers (di(Fi/k))i∈N is decreasing, hence stationary from an integer n0,
or again according to the previous proposition, for each integer n ≥ n0, Fi = Fn0 . By virtue of
monotony, for every integer n ≥ n0, [Kn+1 : Fn0 ] ≤ [Kn0 : Fn0 ]. In other words, the sequence
of integers ([Kn : Fn0 ])n≥n0 is decreasing, hence stationary from an integer e, or again for each
integer n ≥ e, [Kn : Fn0 ] = [Ke : Fn0 ]. As for each integer n ≥ e, Kn ⊆ Ke, we deduce that
Kn = Ke for every integer n ≥ e.

4 Lower quasi modularity

4.1 Invariant of the lq-modularity of an extension

Henceforth and unless otherwise stated, K/k denotes a q-finite extension of unbounded expo-
nent, and for all j ∈ N, kj = kp

−j ∩ K and U j
s (K/k) = j − os(kj/k) for each s ∈ N∗ where

os(kj/k) designates the s-th exponent of kj/k (refer to [2] or [3] for full details of exponents).

The definition below is similar to the one given in ([6], Definition 3.1).

Definition 4.1. The first natural integer i0 for which the sequence (U j
i0
(K/k))j∈N is unbounded

is called the invariant of the lq-modularity of K/k and is denoted Ilqm(K/k).

We verify immediately that 2 ≤ Ilqm(K/k). Moreover, the following result is an immediate
consequence of ([3], Proposition 8.3).

Proposition 4.2. For every positive integer s, the sequence (U j
s (K/k))j∈N is increasing.

Proof. It is immediate that os(kn/k) ≤ os(kn+1/k) ≤ os(kn/k) + 1 since kn+1
p ⊆ kn. Hence

n+ 1 − os(kn+1/k) ≥ n− os(kn/k); and consequently (U j
s (K/k))j∈N is increasing.

It follows immediately that:

• For any integer s ≥ Ilqm(K/k), lim
n→+∞

(U j
s (K/k)) = +∞.

• For every integer s ∈ [1, Ilqm(K/k)[, the sequence (U j
s (K/k))j∈N is bounded; and there-

fore, for any integer n ≥ sup
j∈N

(sup(U j
s (K/k))) (s<Ilqm(K/k)), we obtain Un

s (K/k) =

Un+1
s (K/k), or again, os(kn+1/k) = os(kn/k) + 1.

This leads to:

Proposition 4.3. Let k ⊆ K1 ⊆ K2 be q-finite extensions of unbounded exponent. For each
s ∈ N∗, for each n ∈ N, we have Un

s (K1/k) ≥ Un
s (K2/k). In addition, Ilqm(K1/k) ≤

Ilqm(K2/k), and the equality holds if K2/K1 is finite.
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Proof. At first, for each n ∈ N, we have kp
−n∩K1 ⊆ kp

−n∩K2, and by passing to exponents, we
get os(kp

−n ∩K1/k) ≤ os(kp
p−n

∩K2/k). Whence, Un
s (K2/k) ≤ Un

s (K1/k), and consequently
Ilqm(K1/k) ≤ Ilqm(K2/k).

In the case where K2/K1 is finite, let e = o1(K2/K1), therefore for every integer n > e,
k(kp

−n ∩ Kpe

2 ) ⊆ kp
−n ∩ K1. Taking into account ([3], Propositions 5.3 and 8.3), we obtain

os(kp
−n−e ∩ K2/k) − e ≤ os(kp

−n ∩ K1/k); and consequently e + n − os(kp
−n−e ∩ K2/k) ≥

n− os(kp
−n ∩K1/k), or again Un

s (K1/k) ≤ Un+e
s (K2/k). Hence Ilqm(K2/k) ≤ Ilqm(K1/k),

and as a result, Ilqm(K1/k) = Ilqm(K2/k).

4.2 Characterization of the lq-modularity of a q-finite extension

We recall that an extension K/k is said to be modular if and only if for each n ∈ N, Kpn

and k
are Kpn ∩ k-linearly disjoint. This notion has been for the first time by Sweedleer in [12], she
characterizes the purely inseparable extensions which are tensor product of simple extensions
over k, it is the equivalent of the fundamental concept Galois theory. Furthermore, if there exists
a subset B of a given field K such that K ≃ ⊗k(⊗kk(a))a∈B , necessarily B will be an r-basis of
K/k and it will be called subsequently a modular r-basis (or a subbase) of K/k ([14], p. 435).
In particular, according to Sweedleer’s theorem, if K/k has an exponent, it is equivalent to say
that:

(i) K/k has a modular r-basis.

(ii) K/k is modular.

Definition 4.4 ([4], Definition 5.3). Let K/k be a q-finite extension. K/k is said to be lq-modular
if K is modular over a finite extension of k.

By virtue of ([13], Proposition 1.2), there exists a smallest subextension m/k of K/k such
that K/m is modular, and from now on, we denote m = lm(K/k). Obviously K/k is lq-
modular if and only if lm(K/k)/k is finite. Furthermore, some remarkable examples of lq-
modular extensions are given in [4] in order to illustrate this notion. However, here is a nontrivial
example of purely inseparable extension that is not lq-modular.

Example 4.5. Let k0 be a perfect field of characteristic p > 0 and (X,Z1, Z2) an algebraically in-
dependent family over k0. We note k = k0(X,Z1, Z2) and for each n ∈ N∗, Kn = k(Xp−2n

, θn),
where θ1 = Zp−1

1 Xp−2
+ Zp−1

2 and for every n ≥ 2,

θn = Zp−1

1 Xp−2n
+ (θn−1)

p−1

= Zp−1

1 Xp−2n
+ Zp−2

1 Xp−2n+1
+ · · ·+ Zp−n

1 Xp−n−1
+ Zp−n

2 .

We have lm(K/k) = k(Xp−∞
), and so K/k is not lq-modular. In fact, let m = lm(K/k).

First, it’s clear that K/k(Xp−∞
) is modular, therefore m ⊆ k(Xp−∞

). Suppose next the exis-
tence of a positive integer n such that Xp−n+1 ∈ m and Xp−n ̸∈ m. By construction, we have
θ1

p = Z1(Xp−2
)
p
+ Z2 = Z1X

p−1
+ Z2 and

[Z1
p−1

Xp−2n
+ · · ·+ Z1

p−n

Xp−n−1
+ Z2

p−n

]
pn

= Z1
pn−1

Xp−n

+ · · ·+ Z1X
p−1

+ Z2

for every integer n ≥ 2, according to ([7], Lemma 3.7), we have Z1
p−1

∈ K. It follows that
Z2

p−1
∈ K since Z1

p−1
Xp−2

+ Z2
p−1

∈ K, and consequently di(k(Xp−1
, Z1

p−1
, Z2

p−1
)/k) =

3 ≤ di(K/k) = 2, contradiction.

The following result characterizes the lq-modular extensions by means of variation of expo-
nents. More specifically, we have:

Theorem 4.6. Let K/k be a q-finite extension and t = di(rp(K/k)/k). The following statements
are equivalent:

(1) K/k is lq-modular.

(2) There exists a natural number j such that K/kp
−j ∩K is modular.
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(3) For each integer s ∈ [1, t], the sequence (U j
s (K/k))j∈N is bounded.

(4) Ilqm(K/k) = t+ 1.

Proof. It’s clear that (2) ⇔ (3). Furthermore, taking into account Proposition 3.4, there exists a
positive integer j0 such that K/kj0 is relatively perfect and kj0(rp(K/k)) = K. In particular, by
([8], Proposition 4.18), di(K/kj0) = di(rp(K/k)/k) = t. Suppose next that condition (1) holds.
There are then two cases:

1st case: If K/k is modular, by virtue of ([8], Proposition 6.3), for every integer j ≥ j0,
we have kj/kj0 is equiexponential of exponent j − j0 and di(kj/kj0) = t. Hence for each
s ∈ {1, . . . , t}, U j

s (K/k) = U j+1
s (K/k).

2nd case: If K is modular over a finite extension L of k, taking into account the finitude of
L/k, there exists a natural number e1 such that L ⊆ ke1 . Therefore, Lp−j ∩K ⊆ ke1+j , and by
passing to exponents, for every s ∈ N∗, os(Lp−j ∩K) ≤ os(ke1+j); let therefore Ue1+j

s (K/k) ≤
e1+U j

s (K/L). Hence, the sequence (U j
s (K/k))j∈N is stationary for each s ∈ {1, . . . , t} (namely

rp(K/L) = L(rp(K/k)) and L/k is finite, therefore di(rp(K/L)/L) = di(L(rp(K/k))/L) =
di(rp(K/k)/k) = t (cf. [8], Proposition 4.18)).

Conversely, if condition (2) is satisfied, there exists m0 ≥ sup(e(K/k), j0), for every integer
j ≥ m0, for every s ∈ {1, . . . , t}, we have os(kj+1/k) = os(kj/k) + 1 (and di(kj/km0) = t).
We concluded that kj/kj0 is equiexponential, and thus modular. Hence K =

∪
j>m0

kj is modular

over kj0 .

The fact that the sequence (U j
s (K/k))s∈N∗ is increasing (j being a fixed natural integer),

condition (3) of the above theorem reduces to (U j
t (K/k))j∈N is bounded, and consequently

K/k is lq-modular if and only if the sequence (U j
t (K/k))j∈N is bounded.

Let k be a commutative field of characteristic p > 0 and Ω an algebraic closure of k. We
define, as in ([4]), the relation ∼ on Ω as follows: k1 ∼ k2 if and only if k1 ⊆ k2 and k2/k1 is
finite or k2 ⊆ k1 and k1/k2 is finite, and we get similar results when we extend the lq-modularity
to q-finite extensions. We first check that ∼ is reflexive, symmetric, however ∼ is generally
nontransitive. Moreover, for any q-finite extension K1/k, the application of lower modularity:

lm : [k : K1] 7−→ [k : K1]

L −→ lm(K1/L),

is compatible with the relation ∼. More specifically, we have:

Proposition 4.7. Let k1 ⊆ k2 ⊆ K1 be q-finite extensions. If k1 ∼ k2, then lm(K1/k1) ∼
lm(K1/k2).

Proof. It is enough to note that lm(K1/k1) ⊆ lm(K1/k2), and if moreover o1(k2/k1) = e1, then
k2 ⊆ (lm(K1/k1))

p−e1 ∩K1 with K1/(lm(K1/k1))
p−e1 ∩K1 is modular (cf. [10], Proposition

3). Let therefore lm(K1/k2) ⊆ (lm(K1/k1))
p−e1 ∩K1.

As a consequence, the lq-modularity is stable up to a finite extension of the choice of the
ground field, as specified by the following result:

Proposition 4.8. Let K/k be a q-finite extension. We have:

(1) If k′ ∼ k and k′ ⊂ K, K/k is lq-modular if and only if the same holds for K/k′.

(2) If K ∼ K ′ and k ⊂ K ′, K/k is lq-modular if and only if the same holds for K ′/k.

(3) If k′ ∼ k and K ∼ K ′, with k′ ⊂ K ′, then K/k is lq-modular if and only if the same holds
for K ′/k′.

Proof. This results immediately from Propositions 4.3 and 4.7 and Theorem 4.6.
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As a consequence, the result below makes it possible to reduce the study of lq-modularity to
the case of relatively perfect extensions.

Corollary 4.9. Let K/k be a q-finite extension and H/k the relatively perfect closure of K/k.
Then:

(i) K/k is lq-modular if and only if the same holds for H/k.

(ii) Let F/k be a subextension of K/k. K/F is lq-modular if and only if the same is true for
rp(K/k)/rp(F/k) and K/rp(F/k).

Proof. It is sufficient to note that K ∼ rp(K/k) and F ∼ rp(F/k).
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