# **On** *SWGC*-projective and *SWGC*-injective Modules

## A. Azari, A. Khojali and N. Zamani

# (Communicated by A. Mamouni)

MSC 2010 Classifications: Primary 13D02, 13D05 ,13D07; Secondary 18G15, 18G20, 18G25, 18G10.

Keywords and phrases: Semidualizing module, Gorenstein C-injective/projective module, Covering/Enveloping Class.

Abstract An S-module M (resp., R-module N) is called SWGC-projective (resp., SWGC-injective) if there exists a Hom<sub>S</sub> $(-, \mathcal{P}_{C}(S))$  exact exact complex (resp., Hom<sub>R</sub> $(\mathcal{I}_{C}(R), -)$  exact exact complex

 $\mathbb{P}:=\cdots \longrightarrow P \xrightarrow{d} P \xrightarrow{d} P \xrightarrow{d} \cdots$ 

of  $\mathcal{P}_{C}(S)$ -projective (resp.,  $\mathcal{I}_{C}(R)$ -injective) modules such that  $M \cong \operatorname{Im} d$  (resp.,  $N \cong \operatorname{Im} d$ ), where C is a semidualizing  $(S \cdot R)$ -bimodule. It will be shown that an S-module M (resp., R-module N) is  $\mathcal{SWGC}$ -projective (resp.,  $\mathcal{SWGC}$ -injective) if and only if  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M, \mathcal{P}_{C}(S))$  (resp.,  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{\geq 1}(\mathcal{I}_{C}(R), N)$ ) vanishes and there exists a short exact sequence  $0 \longrightarrow M \longrightarrow C \otimes_{R} P \longrightarrow M \longrightarrow 0$  (resp.,  $0 \longrightarrow N \longrightarrow \operatorname{Hom}_{S}(C, I) \longrightarrow N \longrightarrow 0$ ), where P (resp., I) is R-projective (resp., S-injective) module. Then we show that, with respect to the mentioned short exact sequences,  $\{\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i}(-,M)\}_{i\geq 0}$  (resp.,  $\{\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{i}(N,-)\}_{i\geq 0}$ ) become strongly connected sequence of functors, and by using it, we prove that a  $\mathcal{SWGC}$ -projective (resp.,  $\mathcal{SWGC}$ -injective) module of finite  $\mathcal{P}_{C}(S)$ -projective (resp.,  $\mathcal{I}_{C}(R)$ -injective) dimension is C-projective (resp., C-injective). Finally, over Noetherian rings, a characterization of finitely generated  $\mathcal{SWGC}$ -projective modules with respect to the class  $\mathcal{F}_{C}(S)$  is investigated.

#### **1** Introduction

Throughout, unless stated otherwise, R and S will be associative rings with 1 and all modules will be unitary. In [1], Auslander and Bridger introduced the notion of Gorenstein dimension, for finitely generated modules over a Noetherian ring R, and explored several properties of modules of finite Gorenstein dimension, where the name of Gorenstein dimension comes back to the fact that over a local ring  $(R, \mathfrak{m}, k)$  the following statements are equivalent:

- *R* is Gorenstein;
- $G-\dim(M) < \infty, \forall M$  finitely generated *R*-module;
- $\operatorname{G-dim}(k) < \infty;$

at which G-dim(X), for an R-module X, denotes the Gorenstein dimension of X.

Later, Enochs and Jenda [4], introduced the class of Gorenstein injective, projective and flat modules and related dimensions and characterized these invariants in terms of vanishing of extension and torsion functors. Especially, in [6], Enochs et al. proved that, whenever  $(R, \mathfrak{m})$  is a local Cohen-Macaulay ring admitting a dualizing module then the Bass (resp., Auslander) class, is the class of modules of finite Gorenstein injective (resp., Gorenstein projective) dimension.

Bennis and Mahdu [2], introduced the concept of an Strongly Gorenstein injective, projective and flat module and provided some new characterizations of Gorenstein injective, projective and flat modules.

Takahashi and White, [11, Theorem 3.2, 3.3], proved that vanishing of  $\{\operatorname{Ext}_{\mathcal{P}_C(S)}^i(M, -)\}_{i \geq n}$ (resp.,  $\{\operatorname{Ext}_{\mathcal{I}_C(R)}^i(-, N)\}_{i \geq n}$ ) measures finiteness of  $\mathcal{P}_C(S)$ -pd(M) (resp.,  $\mathcal{I}_C(R)$ -id(N)), where  $\mathcal{P}_C(S)$ -pd(M) (resp.,  $\mathcal{I}_C(R)$ -id(N)) stands for the  $\mathcal{P}_C(S)$ -projective (resp.,  $\mathcal{I}_C(R)$ -injective) dimension of an S-module M (resp.,  $\mathcal{R}$ -module N). In this paper, we shall introduce the concept of an SWGC-projective module M (resp., SWGC-injective module N) and recognize these

149

modules in terms of vanishing of  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M, \mathcal{P}_{C}(S))$  (resp.,  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{\geq 1}(\mathcal{I}_{C}(R), N)$ ). Using these characterizations it is proved that a  $\mathcal{SWGC}$ -projective module M (resp.,  $\mathcal{SWGC}$ -injective module N) of finite  $\mathcal{P}_{C}(S)$ -projective (resp.,  $\mathcal{I}_{C}(R)$ -injective) dimension is a C-projective (resp., C-injective) module. From this, by taking C = R = S, some well-known results of Enochs and Jenda (see [5, Proposition 10.2.3 and 10.1.2]), are concluded as special cases. For definitions concerning the functors  $\{\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i}(M, -)\}_{i\geq 0}$  and  $\{\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{i}(-, N)\}_{i\geq 0}$ , see Remark 3.5.

## 2 Preliminaries

In this section we bring the facts and definitions, which will be used in the sequel. Note that by an (S-R)-bimodule X, denoted by  ${}_{S}X_{R}$ , we mean a left S-module and a right R-module such that for all  $s \in S, x \in X$  and  $r \in R$  we have (sx)r = s(xr). To avoid confusion, a right R-module will be denoted by  $R^{\text{op}}$ -module. Also, the symbols  ${}_{R}M$  and  $N_{R}$  mean that M is an R-module and N is an  $R^{\text{op}}$ -module. Recall that an R-module M is said to admits a degreewise finite projective resolution if there exists a projective resolution P of M such that each component  $P_i$  of P is finitely generated.

**Remark 2.1.** (1) Consider modules  ${}_{S}M$ ,  ${}_{S}N_{R}$  and  ${}_{R}F$ . It is easy to see that, if M is a finitely presented S-module and F is a flat R-module, then the mapping  $\nu_{MNF}$  : Hom $_{S}(M, N) \otimes_{R} F \to$  Hom $_{S}(M, N \otimes_{R} F)$ , where for each  $\psi \in$  Hom $_{S}(M, N)$ ,  $f \in F$  and  $m \in M$ ,  $\nu_{MNF}(\psi \otimes f)(m) = \psi(m) \otimes f$ , is a natural equivalence of (contravariant) functors. If M is an (S - R)-bimodule, then  $\nu_{MNF}$  is an R-isomorphism, which in turn implies the R-isomorphism

$$\operatorname{Ext}_{S}^{i}(M, N) \otimes_{R} F \cong \operatorname{Ext}_{S}^{i}(M, N \otimes_{R} F),$$

provided that M admits a degreewise finite S-projective resolution.

(2) Now, consider modules  $M_R$ ,  ${}_SN_R$  and  ${}_SI$ . Again, it is easy to see that, if M is a finitely presented  $R^{\text{op}}$ -module and I is an injective S-module, then the mapping  $\mu_{MNI} : M \otimes_R \text{Hom}_S(N, I) \to \text{Hom}_S(\text{Hom}_{R^{\text{op}}}(M, N), I)$ , where for each  $\varphi \in \text{Hom}_{R^{\text{op}}}(M, N), \phi \in \text{Hom}_S(N, I)$  and  $m \in M$ ,  $\mu_{MNI}(m \otimes \phi)(\varphi) = \phi(\varphi(m))$ , is an equivalence of (covariant) functors. If M is an (S-R)-bimodule, then  $\mu_{MNI}$  is an S-isomorphism, which in turn implies the S-isomorphism

$$\operatorname{Tor}_{i}^{R}(M, \operatorname{Hom}_{S}(N, I)) \cong \operatorname{Hom}_{S}(\operatorname{Ext}_{R^{\operatorname{op}}}^{i}(M, N), I),$$

provided that M admits a degreewise finite  $R^{op}$ -projective resolution.

**Definition 2.2.** An (S-R)-bimodule  ${}_{S}C_{R}$  is semidualizing if:

- $_{S}C$  (resp.,  $C_{R}$ ) admits a degreewise finite S-projective (resp.,  $R^{op}$ -projective) resolution,
- the natural homothety maps  ${}_SS_S \to \operatorname{Hom}_{R^{\operatorname{op}}}(C,C)$  and  ${}_RR_R \to \operatorname{Hom}_S(C,C)$  are isomorphisms, and
- $\operatorname{Ext}_{S}^{\geqslant 1}(C,C) = \operatorname{Ext}_{R^{\operatorname{op}}}^{\geqslant 1}(C,C) = 0.$

Throughout,  $C = {}_{S}C_{R}$  denotes a semidualizing (S-R)-bimodule.

**Definition 2.3.** The *Bass* class with respect to *C*, denoted by  $\mathcal{B}_C(S)$ , consists of all *S*-modules *M* such that

- (i)  $\operatorname{Ext}_{S}^{\geq 1}(C, M) = \operatorname{Tor}_{\geq 1}^{R}(C, \operatorname{Hom}_{S}(C, M)) = 0;$
- (ii) the natural map  $\nu_{CCM} : C \otimes_R \operatorname{Hom}_S(C, M) \longrightarrow M$  is an isomorphism.

The Auslander class with respect to C, denoted by  $\mathcal{A}_C(R)$ , consists of all R-modules M such that

- (i)  $\operatorname{Tor}_{\geq 1}^{R}(C, M) = \operatorname{Ext}_{S}^{\geq 1}(C, C \otimes_{R} M) = 0;$
- (ii) the natural map  $\mu_{_{CCM}}: M \longrightarrow \operatorname{Hom}_S(C, C \otimes_R M)$  is an isomorphism.

**Definition 2.4.** An S-module (resp., R-module) is said to be C-flat, C-projective (resp., C-injective) if it is isomorphic to  $C \otimes_R F$ ,  $C \otimes_R P$  (resp.,  $\operatorname{Hom}_S(C, I)$ ) for some R-flat, R-projective (resp., S-injective) module, F, P (resp., I), respectively. The class of C-flat, C-projective and C-injective modules will be denoted by  $\mathcal{F}_C(S), \mathcal{P}_C(S)$  and  $\mathcal{I}_C(R)$ , respectively; i.e.,

$$\mathcal{F}_C(S) := \{ C \otimes_R F : F \text{ is } R\text{-}flat \},\$$
$$\mathcal{P}_C(S) := \{ C \otimes_R P : P \text{ is } R\text{-}projective \},\$$
$$\mathcal{I}_C(R) := \{ \operatorname{Hom}_S(C, I) : I \text{ is } S\text{-}injective \}.$$

**Remark 2.5.** By Remark 2.1, it is easily seen that the Auslander class  $\mathcal{A}_C(R)$  (resp., Bass class  $\mathcal{B}_C(S)$ ) contains *R*-flat (resp., *S*-injective ) modules. Since the mappings  $C \otimes_R (-) : \mathcal{A}_C(R) \to \mathcal{B}_C(S)$  and  $\operatorname{Hom}_S(C, (-)) : \mathcal{B}_C(S) \to \mathcal{A}_C(R)$  constitute equivalence between the categories  $\mathcal{A}_C(R)$  and  $\mathcal{B}_C(R)$ , then we have the containments  $\mathcal{P}_C(S) \subseteq \mathcal{F}_C(S) \subseteq \mathcal{B}_C(S)$  and  $\mathcal{I}_C(R) \subseteq \mathcal{A}_C(R)$ .

**Definition 2.6.** Let M be an R-module and let  $\mathcal{F}$  be a class of R-modules. A linear map  $\varphi : F \to M$  where  $F \in \mathcal{F}$  is called an  $\mathcal{F}$ -precover of M if for each  $F' \in \mathcal{F}$  the mapping  $\operatorname{Hom}_R(id_{F'}, \varphi) :$  $\operatorname{Hom}_R(F', F) \to \operatorname{Hom}_R(F', M)$  is surjective. A precover is called a cover in case that for every endomorphism  $f \in \operatorname{End}_R(F)$ , the equality  $\varphi = \varphi \circ f$  implies that f is an automorphism of F. Dually, one can define preenvelope and envelope. The class  $\mathcal{F}$  is said to be precovering, covering, preenveloping, if every R-module has an  $\mathcal{F}$ -precover,  $\mathcal{F}$ -cover,  $\mathcal{F}$ -preenvelope,  $\mathcal{F}$ -envelope, respectively (see [5, Definition 5.1.1]).

**Definition 2.7.** Let  $\mathcal{F}$  be a class of R-modules and let M be an R-module. A complex  $\mathbb{X}$  is said to be  $\operatorname{Hom}(-, \mathcal{F})$  exact if for all  $F \in \mathcal{F}$  the complex  $\operatorname{Hom}(\mathbb{X}, F)$  is exact. The complex  $\mathbb{X}$  is said to be  $\operatorname{Hom}(\mathcal{F}, -)$  exact if for all  $F \in \mathcal{F}$  the complex  $\operatorname{Hom}(F, \mathbb{X})$  is exact. By a left  $\mathcal{F}$ -resolution of M we mean a  $\operatorname{Hom}(\mathcal{F}, -)$  exact complex  $\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$  (not necessarily exact) where  $F_i \in \mathcal{F}$ . By a right  $\mathcal{F}$ -resolution of M we mean a  $\operatorname{Hom}(-, \mathcal{F})$  exact complex  $0 \longrightarrow M \longrightarrow F^0 \longrightarrow F^1 \longrightarrow \cdots$  (not necessarily exact) where  $F_i \in \mathcal{F}$  (see [5, Definition 8.1.2]).

**Definition 2.8.** Let  $\mathcal{F}$  be a precovering class of *R*-modules an let *M* be an *R*-module. The  $\mathcal{F}$ -projective dimension of *M*, denoted by  $\mathcal{F}$ -pd( $_RM$ ), is

$$\mathcal{F}$$
-pd $(_RM)$  = inf{sup{ $n \mid F_n \neq 0$ } |  $F$  is a left  $\mathcal{F}$ -resolution of  $M$ }.

Dually,  $\mathcal{G}$ -injective dimension, denoted by  $\mathcal{G}$ -id $(_RM)$ , for a preenveloping class  $\mathcal{G}$ , is defined. For a precovering (resp., preenveloping) class  $\mathcal{F}$  (resp.,  $\mathcal{G}$ ) the class of modules with finite  $\mathcal{F}$ -projective (resp.,  $\mathcal{F}$ -injective) dimension will be denoted by  $\overline{\mathcal{F}}$ -pd (resp.,  $\overline{\mathcal{G}}$ -id).

**Theorem 2.9.** Let  ${}_{S}C_{R}$  be a semidualizing module.

- (i) The class  $\mathcal{F}_C(S)$  (resp.,  $\mathcal{P}_C(S)$ ) is covering (resp., precovering) on the category of S-modules and is closed under direct sum and direct summand.
- (ii) The class  $\mathcal{I}_C(R)$  is enveloping on the category of *R*-modules and is closed under direct product and direct summand.
- (iii) The class  $\mathcal{A}_C(R)$  contains *R*-modules of finite  $\mathcal{I}_C(R)$ -injective dimension and the class  $\mathcal{B}_C(S)$  contains *S*-modules of finite  $\mathcal{F}_C(S)$ -projective dimension and finite  $\mathcal{P}_C(S)$ -projective dimension.

**Remark 2.10.** Let  $\mathcal{F}$  be a class of R-modules. In general an  $\mathcal{F}$ -precover ( $\mathcal{F}$ -preenvelope) need not to be surjective (injective). It is easily seen that if  $\mathcal{F}$  is precovering (preenveloping) and containing projective modules (injective module) then an  $\mathcal{F}$ -precover ( $\mathcal{F}$ -preenvelope) is surjective (injective). By Theorem 2.9 we know that, on the category of S-modules,  $\mathcal{F}_C(S)$  is precovering. Indeed, a careful reading of the proof of [7, Proposition 5.10] shows that if  $\alpha : \mathcal{F} \longrightarrow \text{Hom}_S(C, M)$  is a flat precover of  $\text{Hom}_S(C, M)$ , that exists by [3, Theorem 3], then the composition

$$C \otimes_S F \xrightarrow{\operatorname{Id}_C \otimes \alpha} C \otimes_R \operatorname{Hom}_S(C, M) \xrightarrow{\mu_{CCM}} M$$

is an  $\mathcal{F}_C(S)$ -precover of M. Therefore, in case that the natural homomorphism  $\mu_{CCM} : C \otimes_S$ Hom<sub>S</sub> $(C, M) \longrightarrow M$  is a surjection, we will have a surjective  $\mathcal{F}_C(S)$ -precover. Similarly, if  $\mu_{CCM} : C \otimes_S$  Hom<sub>S</sub> $(C, M) \longrightarrow M$  is a surjection then we will have a surjective  $\mathcal{P}_C(S)$ -precover. Concerning  $\mathcal{I}_C(R)$ -preenvelopes, again by Theorem 2.9, we know that the class  $\mathcal{I}_C(R)$  is preenveloping. Actually, for an R-module N, if  $\beta : C \otimes_S N \longrightarrow E$  is the injective hull of  $C \otimes_S N$ , then the composition

$$N \xrightarrow{\nu_{CCN}} \operatorname{Hom}_{S}(C, C \otimes_{S} N) \xrightarrow{\operatorname{Hom}(\operatorname{id}_{C}, \alpha)} \operatorname{Hom}_{S}(C, E)$$

is an  $\mathcal{I}_C(R)$ -preenvelope of N. Therefore, if  $\nu_{CCN} : N \longrightarrow \operatorname{Hom}_R(C, C \otimes_S N)$  is an injection, then any  $\mathcal{I}_C(R)$ -preenvelope of N will be an injection. This means that an  $\mathcal{F}_C(S)$  or  $\mathcal{P}_C(S)$ precover (resp.,  $\mathcal{I}_C(R)$ -preenvelope) of an element of the Auslander class  $\mathcal{A}_C(S)$  (resp., Bass class  $\mathcal{B}_C(R)$ ) is a surjection (resp., an injection).

#### 3 The Results

**Definition 3.1.** (1) A complete C-projective resolution of an S-module M is a  $\operatorname{Hom}_S(-, \mathcal{P}_C(S))$ exact exact complex  $\cdots \longrightarrow P_{i-1} \xrightarrow{d_{i-1}} P_i \xrightarrow{d_i} P_{i+1} \xrightarrow{d_{i+1}} P_{i+2} \longrightarrow \cdots$  of C-projective modules  $P_i$ , such that  $M \cong \operatorname{Im} d_0$ . We will call M strongly weak Gorenstein C-projective (abbreviated as SWGC-projective) if it has a complete C-projective resolution such that  $P_i = P_{i+1}$  and  $d_i = d_{i+1}$ , for all  $i \in \mathbb{Z}$ .

(2) A complete C-injective resolution of an R-module N is a  $\operatorname{Hom}_R(\mathcal{I}_C(R), -)$  exact exact complex  $\cdots \longrightarrow I_{i-1} \xrightarrow{d_{i-1}} I_i \xrightarrow{d_i} I_{i+1} \xrightarrow{d_{i+1}} I_{i+2} \longrightarrow \cdots$  of C-injective modules  $I_i$ , such that  $N \cong \operatorname{Im} d_0$ . We will call N strongly weak Gorenstein C-injective (abbreviated as  $\mathcal{SWGC}$ -injective) if it has a complete C-injective resolution such that  $I_i = I_{i+1}$  and  $d_i = d_{i+1}$ , for all  $i \in \mathbb{Z}$ .

Now, we are going to examine the behaviour of SWGC-projective (resp., SWGC-injective) class with respect to direct sum (resp., direct product). Recall that, for an *R*-module *M*, the injective envelope of *M* is denoted by  $E_R(M)$ .

**Proposition 3.2.** Let  $\{M_i\}_{i \in I}$  be a family of SWGC-projective (resp., SWGC-injective) modules. Then,  $\prod_{i \in I} M_i$  (resp.,  $\prod_{i \in I} M_i$ ) is SWGC-projective (resp., SWGC-injective). Furthermore, if  $_SS$  is an Artinian ring and the injective hull of each simple S-module is finitely generated, then the direct sum of an arbitrary family of SWGC-injective modules is again SWGC-injective.

*Proof.* By Theorem 2.9, the classes  $\mathcal{P}_C(S)$  and  $\mathcal{I}_C(R)$  are closed under direct sum and direct product, respectively. Then, by [5, Proposition 1.2.6 and 1.2.7], the first assertion is obvious. Now, let  $\{N_i\}_{i \in I}$  be a family of SWGC-injective R-modules. For each  $i \in I$ , there exists an S-injective module  $E_i$  and an exact sequence

$$\mathbb{I}_{N_i}:\cdots\xrightarrow{d_i} \operatorname{Hom}_S(C,E_i) \xrightarrow{d_i} \operatorname{Hom}_S(C,E_i) \xrightarrow{d_i} \cdots$$

such that  $\text{Hom}_R(\text{Hom}_S(C, E), \mathbb{I}_{N_i})$  is an exact complex, for each S-injective module E. By Remark 2.1(2) and hom-tensor adjoint isomorphism, we have the following isomorphisms:

$$\operatorname{Hom}_{R}(\operatorname{Hom}_{S}(C, E), \operatorname{Hom}_{S}(C, E_{i})) \cong \operatorname{Hom}_{S}(C \otimes_{R} \operatorname{Hom}_{S}(C, E), E_{i})$$
(3.1)  
$$\cong \operatorname{Hom}_{S}(E, E_{i}).$$

By [5, page 16 exercise 2 and Theorem 3.1.17],

$$\coprod_{i\in I} \mathbb{I}_{N_i} : \cdots \xrightarrow{\coprod d_i} \operatorname{Hom}_S(C, \coprod_{i\in I} E_i) \xrightarrow{\coprod d_i} \operatorname{Hom}_S(C, \coprod_{i\in I} E_i) \xrightarrow{\coprod d_i} \cdots$$

is an exact complex of C-injective modules and  $\coprod_{i \in I} N_i = \ker(\coprod d_i)$ . Let E be an injective S-module. By [9, Theorem 6.6.4], there exists a family  $\{S_j\}_{j \in J}$  of simple S-modules such that

 $E = \coprod_{i \in J} E_S(S_i)$ . Now,

$$\operatorname{Hom}_{R}(\operatorname{Hom}_{S}(C, E), \operatorname{Hom}_{S}(C, \coprod_{i \in I} E_{i})) \cong \operatorname{Hom}_{S}(C \otimes_{R} \operatorname{Hom}_{S}(C, E), \coprod_{i \in I} E_{i})$$
$$\cong \operatorname{Hom}_{S}(\coprod_{j \in J} E_{S}(S_{j}), \coprod_{i \in I} E_{i})$$
$$\cong \prod_{j \in J} \operatorname{Hom}_{S}(E_{S}(S_{j}), \coprod_{i \in I} E_{i})$$
$$\cong \prod_{i \in J} \coprod_{i \in I} \operatorname{Hom}_{S}(E_{S}(S_{j}), E_{i})$$

where the first, second and fourth isomorphisms are true by hom-tensor adjoint isomorphism, Remark 2.1(2) and [5, page 16 exercise 2], respectively. So, by the isomorphism (3.1), exactness of Hom<sub>R</sub>(Hom<sub>S</sub>(C, E),  $\mathbb{I}_{N_i}$ ) and the above isomorphism, it is concluded that  $\coprod_{i \in I} \mathbb{I}_{N_i}$  is a complete  $\mathcal{I}_C(R)$ -resolution of  $\coprod_{i \in I} N_i$  and we are done.

Recall that a ring W is called a V-ring if each simple W-module is W-injective.

Corollary 3.3. If one of the following statement hold

- (i) S is a commutative Artinian ring.
- (ii) S is a commutative quasi-Frobenius ring.
- (iii) S = KG, where G is a finite Abelian group and K is an arbitrary field.
- (iv) S is an Artinian V-ring.

then the direct sum of every family of SWGC-injective S-modules is SWGC-injective.

*Proof.* First assume that S is a commutative Artinian ring. If E is an injective S-module then, by [5, Theorem 3.3.10], we have  $E \cong \prod_{n_i \in Max(R)} E_S(S/\mathfrak{n}_i)^{(\Lambda_i)}$ , for some index set  $\Lambda_i$ . By [5, Theorem 3.4.1 and Corollary 2.3.24],  $E_S(S/\mathfrak{n})$  is finitely generated, for each maximal ideal  $\mathfrak{n}$ . Hence, in this case, the result follows by Proposition 3.2. If G is a finite Abelian group then, by [12, Proposition 4.2.6], KG is a commutative quasi-Frobenius ring. Since quasi-Frobenius rings are Artinian, then (2) and (3) steam from (1). In case (4), by [9, Theorem 6.6.4], for each injective module E, there exists a family  $\{S_i\}_{i\in I}$  of simple S-modules such that  $E \cong \prod_{i\in I} E_S(S_i) \cong \prod_{i\in I} S_i$ . Therefore, the result follows from Proposition 3.2.

Now, we are going to give an example of an R-module which is simultaneously a SWGC-injective and SWGC-projective R-module, while it is neither C-injective nor C-projective. i.e; we have the inclusion  $\mathcal{P}_C(S) \subsetneq$  the class of SWGC-projectives and  $\mathcal{I}_C(R) \subsetneq$  the class of SWGC-injectives. Recall that a ring R is called n-Gorenstein if it is left and right Noetherian and  $\mathrm{id}(RR) \le n$  and  $\mathrm{id}(RR) \le n$ .

**Example 3.4.** Let R be a 1-Gorenstein ring, and let n a natural integer. Assume that x is a central R-regular element. Set  $R_n := \frac{R}{Rx^n}$  and  $X_{n,2n} := \frac{Rx^n}{Rx^{2n}}$ . Then (as  $R_{2n}$ -module)  $X_{n,2n}$  is SWGC-injective and SWGC-projective, while it is neither C-projective nor C-injective.

To see why this is true, consider that, the second change of rings theorem for the injective dimension, [8, Theorem 205], implies that  $R_n$  is quasi-Frobenius. Therefore, by [5, Theorem 9.1.10], an  $R_n$ -module is projective, if and only if it is injective, if and only if it is flat. Consider the exact sequence

 $\mathbb{P}_{_{n,2n}} := \cdots \xrightarrow{x^n} R_{_{2n}} \xrightarrow{x^n} R_{_{2n}} \xrightarrow{x^n} R_{_{2n}} \xrightarrow{x^n} \cdots$ 

of  $R_{2n}$ -injective (and so  $R_{2n}$ -projective) modules. As mentioned above if M is either  $R_{2n}$ -injective or  $R_{2n}$ -projective then the complexes

$$\operatorname{Hom}_{R_{2n}}(M,\mathbb{P}_{n,2n})$$
 and  $\operatorname{Hom}_{R_{2n}}(\mathbb{P}_{n,2n},M)$ 

are exact. Therefore,  $X_{n,2n}$  is simultaneously a SWGC-injective and SWGC-projective  $R_{2n}$ -module. However, it is easily seen that  $X_{n,2n}$  is not an  $R_{2n}$ -projective (and so neither an  $R_{2n}$ -injective nor  $R_{2n}$ -flat) module.

**Remark 3.5.** By Theorem 2.9, on the category of S-modules, the class  $\mathcal{P}_C(S)$  is precovering. Therefore, for every S-module M, there exists an R-projective module P and an S-module homomorphism  $\varphi : C \otimes_R P \longrightarrow M$  such that, for every C-projective module Q, the induced map  $\operatorname{Hom}_S(Q, C \otimes_R P) \longrightarrow \operatorname{Hom}_S(Q, M)$  is surjective. This means that, for every S-module M, one can construct a complex of C-projective modules  $Q_i$ ,

$$\mathbb{Y}_M: \cdots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow M \longrightarrow 0$$

such that  $\operatorname{Hom}_S(Q, \mathbb{Y}_M)$  is exact for each *C*-projective modules *Q*; i.e.,  $\mathbb{Y}_M$  is a left  $\mathcal{P}_C(S)$ -resolution of *M*. It is easy to see that if  $\mathbb{X}_M$  is another left  $\mathcal{P}_C(S)$ -resolution of *M* then we have a chain map  $f : \mathbb{Y}_M \to \mathbb{X}_M$  and any two such chain maps are homotopic. This gives rise to the well-defined cohomology modules  $\operatorname{Ext}^i_{\mathcal{P}_C(S)}(M, L)$ , for all *S*-modules *M* and *L*. Again, by Theorem 2.9, on the category of *R*-modules, the class  $\mathcal{I}_C(R)$  is enveloping. Consequently, for an arbitrary *R*-module *N* one can construct a complex

 $\mathbb{I}_N: 0 \longrightarrow N \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots$ 

of C-injective modules  $I^i$  such that  $\operatorname{Hom}_R(\mathbb{I}_N, J)$  is exact, for each C-injective module J; i.e.,  $\mathbb{I}_N$  is a right  $\mathcal{I}_C(R)$ -resolution of N. Then, as mentioned above, for all R-modules T and N, we have the well-defined cohomology modules  $\operatorname{Ext}^i_{\mathcal{I}_{C(R)}}(T, N)$ .

The following lemma was proved in [11, Theorem 4.1], in case that R = S is a commutative ring. For completeness we include the proof in our non-commutative situation  $C = {}_{S}C_{R}$ .

**Lemma 3.6.** Let M, L be S-modules and let N, T be R-modules. There exist isomorphisms:

- (i)  $\operatorname{Ext}^{i}_{\mathcal{P}_{C(S)}}(M,L) \cong \operatorname{Ext}^{i}_{R}(\operatorname{Hom}_{S}(C,M),\operatorname{Hom}_{S}(C,L))$  and
- (ii)  $\operatorname{Ext}^{i}_{\mathcal{I}_{\alpha(R)}}(T,N) \cong \operatorname{Ext}^{i}_{S}(C \otimes_{R} T, C \otimes_{R} N).$

*Proof.* First we prove (1). By Theorem 2.9, the class  $\mathcal{P}_C(S)$  is precovering. So let  $\mathcal{P} : \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$  be a left  $\mathcal{P}_C(S)$ -resolution of M, where  $P_i = C \otimes_R Q_i$  for some projective R-module  $Q_i$ . By Remark 2.5, Hom<sub>S</sub>( $C, \mathcal{P}$ ) :  $\cdots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow \text{Hom}_S(C, M) \longrightarrow 0$  is a projective resolution of Hom<sub>S</sub>(C, M). Then

$$\operatorname{Ext}_{R}^{i}(\operatorname{Hom}_{S}(C, M), \operatorname{Hom}_{S}(C, L)) \cong \operatorname{H}^{i}\left(\operatorname{Hom}_{R}(\operatorname{Hom}_{S}(C, \mathcal{P}), \operatorname{Hom}_{S}(C, L))\right)$$
$$\cong \operatorname{H}^{i}\left(\operatorname{Hom}_{S}(C \otimes_{R} \operatorname{Hom}_{S}(C, \mathcal{P}), L)\right)$$
$$\cong \operatorname{H}^{i}\left(\operatorname{Hom}_{S}(\mathcal{P}, L)\right)$$
$$\cong \operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i}(M, L),$$

where the second and third isomorphisms are true by hom-tensor adjoint isomorphism and Remark 2.5, respectively. To prove (2) note that, again by Theorem 2.9, the class  $\mathcal{I}_C(R)$  is preenveloping. If  $\mathcal{E} : 0 \longrightarrow N \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots$  is a right  $\mathcal{I}_C(R)$ -resolution of N, where  $I^i = \operatorname{Hom}_S(C, E^i)$  for some injective S-module  $E^i$  then, hom-tensor adjoint isomorphism and Remark 2.5, implies that  $C \otimes_R \mathcal{E} : 0 \longrightarrow C \otimes_R N \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \cdots$  is an injective resolution of  $C \otimes_R N$ . Therefore,

$$\begin{aligned} \operatorname{Ext}_{S}^{i}(C \otimes_{R} T, C \otimes_{R} N) &\cong & \operatorname{H}^{i} \big( \operatorname{Hom}_{S}(C \otimes_{R} T, C \otimes_{R} \mathcal{E}) \big) \\ &\cong & \operatorname{H}^{i} \big( \operatorname{Hom}_{R}(T, \operatorname{Hom}_{S}(C, C \otimes_{R} \mathcal{E})) \big) \\ &\cong & \operatorname{H}^{i} \big( \operatorname{Hom}_{R}(T, \mathcal{E}) \big) \\ &\cong & \operatorname{Ext}_{\mathcal{I}_{C(R)}}^{i}(T, N) \big), \end{aligned}$$

where the second and third isomorphisms are true by hom-tensor adjoint isomorphism and Remark 2.5, respectively.

**Definition 3.7.** Let  $\mathcal{X}$  be a class of *R*-modules. The  $i^{th}$  associated left orthogonal class of  $\mathcal{X}$ , denoted by  $i^{\perp}\mathcal{X}$ , is defined as

$$i^{\perp} \mathcal{X} = \{ N \in R - mod \, | \, \operatorname{Ext}_{R}^{i}(N, X) = 0 \text{ for all } X \in \mathcal{X} \}.$$

Also, the *i*<sup>th</sup> associated right orthogonal class, denoted by  $\mathcal{X}^{\perp i}$ , is defined as

$$\mathcal{X}^{\perp i} = \{ N \in R - mod \,|\, \operatorname{Ext}^{i}_{R}(X, N) = 0 \text{ for all } X \in \mathcal{X} \}.$$

The next theorem provides some necessary an sufficient conditions for an S-module M to be SWGC-projective in terms of vanishing of the cohomology modules  $\{Ext^i_{\mathcal{T}_{\mathcal{T}}(S)}(M, \mathcal{P}_{C}(S))\}_{i\geq 1}$ .

**Theorem 3.8.** For an S-module M consider the following statements:

- (i) M is SWGC-projective;
- (ii) there exists a C-projective module,  $C \otimes_R P$  say, such that the sequence  $0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0$  is exact and  $\operatorname{Ext}_{\mathcal{P}_C(S)}^{\geq 1}(M,Q) = 0$  for each C-projective module Q;
- (iii) there exists a C-projective module,  $C \otimes_R P$  say, such that the sequence  $0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0$  is exact and  $\operatorname{Ext}_{\mathcal{P}_C(S)}^{\geq 1}(M,Q) = 0$  whenever, Q is C-projective or  $\operatorname{id}_{(R}\operatorname{Hom}_S(C,Q)) < \infty$ ;
- (iv) there exists a C-projective module,  $C \otimes_R P$  say, such that the sequence  $0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0$  is exact and  $\operatorname{Hom}_S(-,Q)$  leaves it exact whenever, Q is C-projective or  $\operatorname{id}_(R\operatorname{Hom}_S(C,Q)) < \infty$ ;
- (v) there exists a C-projective module,  $C \otimes_R P$  say, such that the sequence  $0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0$  is exact and for each C-projective module Q the sequence

$$0 \longrightarrow \operatorname{Hom}_{S}(M,Q) \longrightarrow \operatorname{Hom}_{S}(C \otimes_{R} P,Q) \longrightarrow \operatorname{Hom}_{S}(M,Q) \longrightarrow 0$$

is exact, too.

Then (1)  $\Leftrightarrow$  (5) and if pd( $_SC$ ) is finite, then (1)-(5) are equivalent.

*Proof.*  $(1) \Rightarrow (5)$  is obvious.

 $(5) \Rightarrow (1)$  From the short exact sequence  $0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0$  we have the following commutative diagram:



Let Q be a C-projective R-module. Applying  $\text{Hom}_S(-, Q)$  to the above commutative diagram and using our assumption we get that  $\text{Hom}_S(\mathbb{P}_M, Q)$  is exact. Therefore, M is a SWGCprojective module.

 $(1) \Rightarrow (2)$  Let Q be a C-projective module. By definition M has a complete  $\mathcal{P}_C(S)$ -resolution

$$\cdots \xrightarrow{d} C \otimes_R P \xrightarrow{d} C \otimes_R P \xrightarrow{d} C \otimes_R P \xrightarrow{d} \cdots$$
(3.2)

such that  $M = \ker d$ . From the short exact sequence

$$0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0 \tag{3.3}$$

we have the following long exact sequence:

$$\cdots \to \operatorname{Ext}_{S}^{i}(C, C \otimes_{R} P) \longrightarrow \operatorname{Ext}_{S}^{i}(C, M) \longrightarrow \operatorname{Ext}_{S}^{i+1}(C, M)$$
$$\longrightarrow \operatorname{Ext}_{S}^{i+1}(C, C \otimes_{R} P) \to \cdots .$$

By Remark 2.5 we have  $\mathcal{P}_C(S) \subseteq \mathcal{B}_C(S)$  and so, for each natural integer *i*, we have  $\operatorname{Ext}_S^{\geq 1}(C, C \otimes_R P) = 0$ . This means that  $\operatorname{Ext}_S^{i+1}(C, M) \cong \operatorname{Ext}_S^i(C, M)$ , for all  $i \geq 1$ . Since  $\operatorname{pd}(_S C)$  is finite, then  $\operatorname{Ext}_S^i(C, M)$  vanishes for large values of *i* and so  $\operatorname{Ext}_S^{\geq 1}(C, M) = 0$ . Therefore, from the short exact sequence (3.2), we obtain the following short exact sequence:

$$0 \longrightarrow \operatorname{Hom}_{S}(C, M) \longrightarrow \operatorname{Hom}_{S}(C, C \otimes_{R} P) \longrightarrow \operatorname{Hom}_{S}(C, M) \longrightarrow 0.$$

This means that  $C \otimes_R P \longrightarrow M \longrightarrow 0$  is a surjective  $\mathcal{P}_C(S)$ -percover of M and so

$$\cdots \xrightarrow{d} C \otimes_R P \xrightarrow{d} C \otimes_R P \xrightarrow{d} M \longrightarrow 0$$

is a left  $\mathcal{P}_C(S)$ -resolution of M. Since, for an arbitrary C-projective module Q,  $\operatorname{Hom}_S((3.2), Q)$  is an exact complex then  $\operatorname{Ext}_{\mathcal{P}_C(S)}^{\geq 1}(M, Q) = 0$ , as desired.

(2)  $\Rightarrow$  (3) As discussed above  $\operatorname{Ext}_{S}^{\geq 1}(C, M) = 0$ . Therefore, for an arbitrary projective *R*-module *T*, from the short exact sequence (3.3) we obtain the following short exact sequence

$$0 \to \operatorname{Hom}_{S}(C \otimes_{R} T, M) \to \operatorname{Hom}_{S}(C \otimes_{R} T, C \otimes_{R} P) \to \operatorname{Hom}_{S}(C \otimes_{R} T, M) \to 0$$

By Theorem 2.9,  $\mathcal{P}_C(S)$  is precovering. Hence, by [5, Theorem 8.2.3], we have the following long exact sequence:

$$\cdots \to \operatorname{Ext}^{i}_{\mathcal{P}_{C}(S)}(C \otimes_{R} P, Q) \longrightarrow \operatorname{Ext}^{i}_{\mathcal{P}_{C}(S)}(M, Q) \longrightarrow \operatorname{Ext}^{i+1}_{\mathcal{P}_{C}(S)}(M, Q)$$
$$\longrightarrow \operatorname{Ext}^{i+1}_{\mathcal{P}_{C}(S)}(C \otimes_{R} P, Q) \to \cdots .$$

Therefore, for each  $i \ge 1$ ,

$$\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i}(M,Q) \cong \operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i+1}(M,Q)$$
$$\cong \operatorname{Ext}_{R}^{i+1}(\operatorname{Hom}_{S}(C,M),\operatorname{Hom}_{S}(C,Q))$$

where the last isomorphism is true by Lemma 3.6. Since  $id(_RHom_S(C,Q))$  is finite, then the last modules vanish for large values of *i*. Hence,  $Ext_{\overline{P}_{C}(S)}^{\geq 1}(M,Q) = 0$  and we are done.

 $(3) \Rightarrow (4)$  Form the short exact sequence (3.3) we have the commutative diagram

$$\begin{array}{cccc} C \otimes_R \operatorname{Hom}_S(C, M) & \longrightarrow & C \otimes_R P & \longrightarrow & C \otimes_R \operatorname{Hom}_S(C, M) & \longrightarrow & 0 \\ & & & & & \\ \mu_{CCM} \downarrow & & & & \\ 0 & \longrightarrow & M & \longrightarrow & C \otimes_R P & \longrightarrow & M & \longrightarrow & 0 \end{array}$$

which implies that  $\mu_{CCM}$  is surjective and so, by snake lemma,  $\mu_{CCM}$  will be an isomorphism. Therefore, by Remark 2.10, we deduce that  $\operatorname{Ext}^{0}_{\mathcal{P}_{C}(S)}(M,N) \cong \operatorname{Hom}_{S}(M,N)$ , for every R-module N. By the proof of the implication  $(2) \Rightarrow (3)$  we can write long exact sequence for the contravariant functors  $\{\operatorname{Ext}^{i}_{\mathcal{P}_{C}(S)}(-,Q)\}_{i\geq 0}$  with respect to the short exact sequences of the form  $0 \longrightarrow M \longrightarrow C \otimes_{R} P \longrightarrow M \longrightarrow 0$ , where P is a projective R-module and we are done. (4)  $\Rightarrow (5)$  Evident.

**Corollary 3.9.** Assume that S is a left Noetherian ring and  $id(_SS) \le n$  for some non-negative integer n. If  $fd(_SC)$  is finite, then, for an S-module M, the statements (1)-(5) of Theorem 3.8 are equivalent.

*Proof.* By [5, Proposition 9.1.2], we have  $pd(_SC)$  is finite. Now, the proof proceeds as it was done in the proof of Theorem 3.8.

The following Corollary provides some class of S-modules at which the statements (1)-(5) of Theorem 3.8 are equivalent for a semidualizing module C.

**Corollary 3.10.** Let M be an S-module. If  $id(_SM)$  is finite or  $M \in \mathcal{P}_C(S)^{\perp 1}$  then the statements (1)-(5) of Theorem 3.8 are equivalent for M.

*Proof.* According to the implication  $(1) \Rightarrow (2)$  in the proof of Theorem 3.8, for all  $i \ge 1$ , we have  $\operatorname{Ext}_{S}^{i}(C, M) \cong \operatorname{Ext}_{S}^{i+1}(C, M)$ . In both cases, our assumptions imply that  $\operatorname{Ext}_{S}^{\geq 1}(C, M) = 0$  which, by Theorem 2.9 and [5, Theorem 8.2.3], allows us to write long exact sequence for the contravariant functors  $\{\operatorname{Ext}_{P_{C(S)}}^{i}(-, N)\}_{i\ge 0}$  with respect to the short exact sequences of the form  $0 \longrightarrow M \longrightarrow C \otimes_{R} P \longrightarrow M \longrightarrow 0$ , where P is a projective R-module. Now, the proof proceed as it was done in the proof of Theorem 3.8.

**Corollary 3.11.** Every C-projective module is SWGC-projective. In particular, C is a SWGC-projective module.

*Proof.* First, we show that each C-projective module belongs to the class  $\mathcal{P}_C(S)^{\perp i}$ , for each natural integer *i*. Let P, Q be arbitrary projective R-modules and choose K in a way that  $Q \oplus K \cong S^{(\Lambda)}$ . Then

$$\operatorname{Ext}_{S}^{i}(C \otimes_{R} Q, C \otimes_{R} P) \oplus \operatorname{Ext}_{S}^{i}(C \otimes_{R} K, C \otimes_{R} P) \cong \operatorname{Ext}_{S}^{i}(C \otimes_{S} S^{(\Lambda)}, C \otimes_{R} P)$$
$$\cong \prod_{\lambda \in \Lambda} \operatorname{Ext}_{S}^{i}(C, C \otimes_{R} P)$$
$$\cong 0,$$

where the last equality is true by Remark 2.5. Now, the result follows from the split short exact sequence

$$0 \longrightarrow C \otimes_R P \longrightarrow (C \otimes_R P) \oplus (C \otimes_R P) \longrightarrow C \otimes_R P \longrightarrow 0,$$

and Corollary 3.10, as desired.

The following Theorem is a generalization of the fact that "A Gorenstein projective module of finite projective dimension is projective" (see [5, Proposition 10.2.3]).

**Theorem 3.12.** A SWGC-projective module is C-projective if and only if its  $\mathcal{P}_C(S)$ -projective dimension is finite. In other words, the equality  $SWGC(S) \cap \overline{\mathcal{P}_C(S)} = \mathcal{P}_C(S)$  holds where SWGP(S) is the class of SWGC-projective modules.

*Proof.* Let M be a SWGC-projective S-module such that  $\mathcal{P}_C(S)$ -pd(M) is finite. By Theorem 3.8, there exists the short sequence  $0 \longrightarrow M \longrightarrow C \otimes_R P \longrightarrow M \longrightarrow 0$  where P is a projective R-module. By Theorem 2.9,  $M \in \mathcal{B}_C(S)$  and so  $\operatorname{Ext}_S^{\geq 1}(C, M) = 0$ . Therefore, as discussed in the implication  $(2) \Rightarrow (3)$  of the proof of Theorem 3.8, for an arbitrary S-module N, we have the following long exact sequence:

$$\cdots \longrightarrow \operatorname{Ext}^{i}_{\mathcal{P}_{C}(S)}(C \otimes_{R} P, N) \longrightarrow \operatorname{Ext}^{i}_{\mathcal{P}_{C}(S)}(M, N) \longrightarrow \operatorname{Ext}^{i+1}_{\mathcal{P}_{C}(S)}(M, N)$$
$$\longrightarrow \operatorname{Ext}^{i+1}_{\mathcal{P}_{C}(S)}(C \otimes_{R} P, N) \longrightarrow \cdots .$$

As  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(C \otimes_{R} P, N) = 0$ , then  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i}(M, N) \cong \operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i+1}(M, N)$ , for all  $i \geq 1$ . Since  $\mathcal{P}_{C}(S)$ pd(M) is finite, then  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{i}(M, N) = 0$  for large values of i. This implies that  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M, N) = 0$ . As discussed in the implication (3)  $\Rightarrow$  (4) of Theorem 3.8, we have  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{0}(M, N) \cong$  $\operatorname{Hom}_{S}(M, N)$ . Thinking of the fact that N is an arbitrary S-module, we deduce that  $0 \longrightarrow M \longrightarrow C \otimes_{R} P \longrightarrow M \longrightarrow 0$  splits. Now, Theorem 2.9(1), implies that M is C-projective, as desired.

The next theorem characterizes the SWGC-injectivity of an R-module N in terms of vanishing of cohomology modules  $\{\operatorname{Ext}^{i}_{\mathcal{I}_{C}(R)}(\mathcal{I}_{C}(R), N)\}_{i \geq 1}$ .

**Theorem 3.13.** For an *R*-module *N* consider the following statements:

- (i) N is SWGC-injective;
- (ii) there exists a C-injective module,  $\operatorname{Hom}_{S}(C, I)$  say, such that the sequence  $0 \longrightarrow N \longrightarrow$  $\operatorname{Hom}_{S}(C, I) \longrightarrow N \longrightarrow 0$  is exact and  $\operatorname{Ext}_{\mathbb{Z}_{r}(R)}^{\geq 1}(J, N) = 0$  for each C-injective module J;

- (iii) there exists a C-injective module,  $\operatorname{Hom}_{S}(C, I)$  say, such that the sequence  $0 \longrightarrow N \longrightarrow \operatorname{Hom}_{S}(C, I) \longrightarrow N \longrightarrow 0$  is exact and  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{\geq 1}(J, N) = 0$  whenever J is C-injective or  $\operatorname{pd}_{S}(S \otimes_{R} J) < \infty$ ;
- (iv) there exists a C-injective module,  $\operatorname{Hom}_S(C, I)$  say, such that the sequence  $0 \longrightarrow N \longrightarrow \operatorname{Hom}_S(C, I) \longrightarrow N \longrightarrow 0$  is exact and  $\operatorname{Hom}_S(J, -)$  leaves it exact whenever, J is C-injective or  $\operatorname{pd}({}_SC \otimes_R J) < \infty$ ;
- (v) there exists a C-injective module,  $\operatorname{Hom}_S(C, I)$  say, such that the sequence  $0 \longrightarrow N \longrightarrow$  $\operatorname{Hom}_S(C, I) \longrightarrow N \longrightarrow 0$  is exact and for each C-injective module J the sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(J, N) \longrightarrow \operatorname{Hom}_{R}(J, \operatorname{Hom}_{S}(C, I)) \longrightarrow \operatorname{Hom}_{R}(J, N) \longrightarrow 0$$

is exact, too.

Then  $(1) \Leftrightarrow (5)$  and if  $fd(C_R)$  is finite, then (1)-(5) are equivalent.

*Proof.*  $(1) \Rightarrow (5)$  Is obvious.

 $(5) \Rightarrow (1)$  It proceeds as the implication  $(5) \Rightarrow (1)$  in the proof of Theorem 3.8.

(1)  $\Rightarrow$  (2) By definition N has a complete  $\mathcal{I}_C(R)$ -resolution

$$\cdots \xrightarrow{d} \operatorname{Hom}_{S}(C, I) \xrightarrow{d} \operatorname{Hom}_{S}(C, I) \xrightarrow{d} \operatorname{Hom}_{S}(C, I) \xrightarrow{d} \cdots$$
(3.4)

such that  $N \cong \ker(d)$ . From the short exact sequence

$$0 \longrightarrow N \longrightarrow \operatorname{Hom}_{R}(C, I) \longrightarrow N \longrightarrow 0$$
(3.5)

we have the following long exact sequence:

$$\cdots \to \operatorname{Tor}_{i+1}^R(C, \operatorname{Hom}_R(C, I)) \longrightarrow \operatorname{Tor}_{i+1}^R(C, N) \longrightarrow \operatorname{Tor}_i^R(C, N)$$
$$\longrightarrow \operatorname{Tor}_i^R(C, \operatorname{Hom}_R(C, I)) \to \cdots .$$

By Remark 2.5, we have  $\operatorname{Tor}_{\geq 1}^{R}(C, \operatorname{Hom}_{S}(C, I)) = 0$ . Therefore form the above long exact sequence it is concluded that  $\operatorname{Tor}_{i+1}^{R}(C, N) \cong \operatorname{Tor}_{i}^{R}(C, N)$ . Since  $\operatorname{fd}(C_{R})$  is finite then  $\operatorname{Tor}_{i}^{R}(C, N)$  vanishes for large values of i and so  $\operatorname{Tor}_{\geq 1}^{R}(C, N) = 0$ . Let  $J = \operatorname{Hom}_{S}(C, E)$  be a C-injective R-module. Then, from the short exact sequence (3.5) we obtain the short exact sequence  $0 \to C \otimes_{R} N \to C \otimes_{R} I \to C \otimes_{R} N \to 0$ , which leads (by injectivity of E and homtensor adjoint isomorphism) to the short exact sequence  $0 \to \operatorname{Hom}_{R}(N, J) \to \operatorname{Hom}_{R}(I, J) \to \operatorname{Hom}_{R}(N, J) \to 0$ . This means that  $0 \to N \to I$  is an  $\mathcal{I}_{C}(R)$ -preenvelope of N and so  $0 \longrightarrow N \xrightarrow{\operatorname{inc}} I \xrightarrow{d} I \xrightarrow{d} \cdots$  is a right  $\mathcal{I}_{C}(R)$ -resolution of N. Since  $\operatorname{Hom}_{R}(J, (3.4))$  is an exact complex, then  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{\geq 1}(J, N) = 0$ , as desired.

(2)  $\Rightarrow$  (3) Let  $J = \text{Hom}_{S}(C, E)$  be a *C*-injective *R*-module. For an arbitrary *R*-module *A* and for large values of *i*, by finiteness of  $\text{fd}(C_R)$ , we have  $\text{Tor}_{i}^{R}(C, A) = 0$ . By [5, Theorem 3.2.1], we have

$$\operatorname{Ext}_{R}^{i}(A, J) \cong \operatorname{Ext}_{R}^{i}(A, \operatorname{Hom}_{S}(C, E)) \cong \operatorname{Hom}_{S}(\operatorname{Tor}_{i}^{R}(C, A), E).$$

Therefore,  $\operatorname{Ext}_{R}^{i}(A, J)$  vanishes for large values of *i*, which in turn implies that  $\operatorname{id}(_{R}J)$  is finite. Now, from the short exact sequence (3.5), we have the following long exact sequence:

$$\begin{split} \cdots &\to \operatorname{Ext}_R^i(\operatorname{Hom}_{\scriptscriptstyle S}(C,I),J) \to \operatorname{Ext}_R^i(N,J) \to \operatorname{Ext}_R^{i+1}(N,J) \\ &\to \operatorname{Ext}_R^{i+1}(\operatorname{Hom}_{\scriptscriptstyle S}(C,I),J) \to \cdots . \end{split}$$

For an arbitrary natural integer i we have

$$\operatorname{Ext}_{R}^{i}(\operatorname{Hom}_{S}(C, I), J) \cong \operatorname{Hom}_{S}(\operatorname{Tor}_{i}^{R}(C, \operatorname{Hom}_{S}(C, I)), E) \cong 0,$$

where the first isomorphisms is true by [5, Theorem 3.2.1] and the second equality holds by Remark 2.5. Therefore,  $\operatorname{Ext}_{R}^{i}(N,J) \cong \operatorname{Ext}_{R}^{i+1}(N,J)$  for all integers  $i \geq 1$ . As  $\operatorname{id}(_{R}J)$  is finite, then  $\operatorname{Ext}_{R}^{\geq 1}(N, J) = 0$ . Now, by [5, Theorem 8.2.5], we have the following long exact sequence:

$$\begin{split} \cdots &\to \operatorname{Ext}^{i}_{{}^{\mathcal{I}_{C}(R)}}\!\!\left(J,\operatorname{Hom}_{\scriptscriptstyle S}\!(C,I)\right) \to \operatorname{Ext}^{i}_{{}^{\mathcal{I}_{C}(R)}}\!\!\left(J,N\right) \to \operatorname{Ext}^{i+1}_{{}^{\mathcal{I}_{C}(R)}}\!\left(J,N\right) \\ &\to \operatorname{Ext}^{i+1}_{{}^{\mathcal{I}_{C}(R)}}\!\left(J,\operatorname{Hom}_{\scriptscriptstyle S}(C,I)\right) \to \cdots \end{split}$$

Since  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{\geq 1}(J, \operatorname{Hom}_{S}(C, I)) = 0$ , then  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{i}(J, N) \cong \operatorname{Ext}_{\mathcal{I}_{C}(R)}^{i+1}(J, N)$ , for each  $i \geq 1$ . By Lemma 3.6,  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{i}(J, N) \cong \operatorname{Ext}_{S}^{i}(C \otimes_{R} J, C \otimes_{R} N)$  and by assumption  $\operatorname{Ext}_{S}^{i}(C \otimes_{R} J, C \otimes_{R} N)$ vanishes for large values of *i*, then  $\operatorname{Ext}_{\mathcal{I}_{C}(R)}^{\geq 1}(J, N) = 0$ , as desired.

 $(3) \Rightarrow (4)$  As proved in the implication  $(2) \Rightarrow (3)$  from the short exact sequence (3.5) we have the short exact sequence

$$0\longrightarrow C\otimes_R N\longrightarrow I\longrightarrow C\otimes_R N\longrightarrow 0,$$

that leads to the commutative diagram

which in turn implies that  $\nu_{CCN}$  is an injection and so, by snake lemma,  $\nu_{CCN}$  will be an isomorphism. Then, by Remark 2.10, we deduce that  $\operatorname{Ext}^{0}_{\mathcal{I}_{\mathcal{A}(R)}}(J,N) \cong \operatorname{Hom}_{R}(J,N)$ . By implication (2)  $\Rightarrow$  (3), we can write long exact sequence for the covariant functors  $\{\text{Ext}^{i}_{\mathcal{I}_{r}(R)}(N,-)\}_{i\geq 0}$ , with respect to the short exact sequence (3.5). This makes every thing obvious. П

 $(4) \Rightarrow (5)$  It is Obvious.

The following corollary provides some class of R-modules that, for an arbitrary semidualizing module C, the statements (1)-(5) of Theorem 3.13 are equivalent.

**Corollary 3.14.** Let N be an R-module. If  $N \in {}^{1\perp}\mathcal{I}_C(R)$  or  $pd(_RN)$  is finite then the statements (1)-(5) of Theorem 3.13 are equivalent for N.

Proof. Let I be a C-injective R-module. For each C-injective module J, from the short exact sequence  $0 \longrightarrow N \longrightarrow I \longrightarrow 0$  we get the following long exact sequence:

$$\cdots \to \operatorname{Ext}^{i}_{R}(I,J) \to \operatorname{Ext}^{i}_{R}(N,J) \to \operatorname{Ext}^{i+1}_{R}(N,J) \to \operatorname{Ext}^{i+1}_{R}(I,J) \to \cdots$$

By [5, Theorem 3.2.1] and Remark 2.5, it is concluded that  $\operatorname{Ext}_{R}^{\geq 1}(I,J) = 0$  and so, for all  $i \ge 1$ ,  $\operatorname{Ext}_{R}^{i}(N, J) \cong \operatorname{Ext}_{R}^{i+1}(N, J)$ . In both cases our assumption implies that  $\operatorname{Ext}_{S}^{\ge 1}(N, I) = 0$ , at which, by Theorem 2.9(2) and [5, Theorem 8.2.5], allows us to write long exact sequences for the covariant functors  $\{\operatorname{Ext}^{i}_{\mathcal{I}_{C(R)}}(N, -)\}_{i \geq 0}$  with respect to the short exact sequences of the form  $0 \longrightarrow N \longrightarrow \operatorname{Hom}_{S}(C, E) \longrightarrow N \longrightarrow 0$ , where E is an S-injective module. Now, the result follows as in the proof of Theorem 3.13. 

Corollary 3.15. Every C-injective module is SWGC-injective.

*Proof.* Let E and E' be S-injective modules. By [5, Theorem 3.2.1] and Remark 2.5, we have  $\operatorname{Ext}_{R}^{\geq 1}(\operatorname{Hom}_{S}(C, E), \operatorname{Hom}_{S}(C, E')) = 0$ . So,  $\mathcal{I}_{C}(R) \subseteq {}^{1\perp}\mathcal{I}_{C}(R)$ . Now, for an S-injective module I, the result follows from the split short exact sequence

$$0 \longrightarrow \operatorname{Hom}_{S}(C, I) \longrightarrow \operatorname{Hom}_{S}(C, I) \oplus \operatorname{Hom}_{S}(C, I) \longrightarrow \operatorname{Hom}_{S}(C, I) \longrightarrow 0$$

and Corollary 3.14, as desired.

The following theorem is a generalization of the fact that "A Gorenstein injective module of finite injective dimension is injective" (see [5, Proposition 10.1.2]).

**Theorem 3.16.** A SWGC-injective module is C-injective if and only if its  $\mathcal{I}_C(R)$ -injective dimension is finite. In other words, the equality  $SWGC(R) \cap \overline{\mathcal{I}_C(R)} = \mathcal{I}_C(R)$  holds where SWGC(R) is the class of SWGC-injective modules.

*Proof.* Let N be a SWGC-injective R-module such that  $\mathcal{I}_C(R)$ -id(N) is finite. By Theorem 3.13, there exists an S-injective module I such that the sequence

$$0 \longrightarrow N \longrightarrow \operatorname{Hom}_{S}(C, I) \longrightarrow N \longrightarrow 0$$
(3.6)

is exact. By Theorem 2.9, we have  $N \in \mathcal{A}_C(R)$  and so  $0 \longrightarrow C \otimes_R N \longrightarrow I \longrightarrow C \otimes_R N \longrightarrow 0$  is exact. Therefore, for an arbitrary S-injective module E, by the hom-tensor adjoint isomorphism, we get the short exact sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(N, \operatorname{Hom}_{S}(C, E)) \longrightarrow \operatorname{Hom}_{S}(I, E) \longrightarrow \operatorname{Hom}_{R}(N, \operatorname{Hom}_{S}(C, E)) \longrightarrow 0,$ 

where, by using the short exact sequence (3.6) and the fact that  $\mathcal{I}_C(R) \subseteq {}^{1\perp}\mathcal{I}_C(R)$ , implies that  $\operatorname{Ext}^1_R(N, \operatorname{Hom}_S(C, E)) = 0$ . By the proof of Corollary 3.14, for an arbitrary *R*-module *T* and for each natural integer *i*, we have  $\operatorname{Ext}^i_{\mathcal{I}_C(R)}(T, N) \cong \operatorname{Ext}^{i+1}_{\mathcal{I}_C(R)}(T, N)$ . Since  $\mathcal{I}_C(R)$ -id(*N*) is finite, then  $\operatorname{Ext}^i_{\mathcal{I}_C(R)}(T, N)$  vanishes for large values of *i*. Thus  $\operatorname{Ext}^{\geq 1}_{\mathcal{I}_C(R)}(T, N) = 0$ . It was discussed in the implication (3)  $\Rightarrow$  (4) of Theorem 3.13, that  $\operatorname{Ext}^0_{\mathcal{I}_C(R)}(T, N) \cong \operatorname{Hom}_R(T, N)$ . Since *T* is arbitrary, then it is deduced that the short exact sequence  $0 \longrightarrow N \longrightarrow \operatorname{Hom}_S(C, I) \longrightarrow N \longrightarrow 0$  splits. Therefore, by Theorem 2.9(2), we conclude that *N* is *C*-injective.

In Theorem 3.8 it is proved that an S-module M is SWGC-projective if and only if all of the cohomology modules  $\{Ext^i_{\mathcal{P}_C(S)}(M, \mathcal{P}_C(S))\}_{i\geq 1}$  vanish. It is natural to ask what is the result of vanishing of cohomology modules  $\{Ext^i_{\mathcal{P}_C(S)}(M, \mathcal{F}_C(S))\}_{i\geq 1}$ . The next theorem explore this question under some circumferences.

**Theorem 3.17.** Let S = R be Noetherian rings and let M be an S-module. If  $pd(_SM)$  or  $id(_SC)$  is finite, then the following statements are equivalent:

- (i) *M* is a finitely generated SWGC-projective module;
- (ii) there exists a finitely generated projective module P, such that the sequence

 $0 \longrightarrow M \longrightarrow C \otimes_S P \longrightarrow M \longrightarrow 0$ 

is exact and  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M,C) = 0;$ 

(iii) there exists a finitely generated projective module P, such that the sequence

 $0 \longrightarrow M \longrightarrow C \otimes_S P \longrightarrow M \longrightarrow 0$ 

is exact and  $\operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M, C \otimes_{S} F) = 0$ , for all flat modules F.

*Proof.* By Theorem 3.8, there exists an S-projective module P such that the sequence

$$0 \longrightarrow M \longrightarrow C \otimes_S P \longrightarrow M \longrightarrow 0 \tag{3.7}$$

is exact. Since M is a finitely generated module then, by exactness of (3.7), left exactness of  $\operatorname{Hom}_S(C, -)$  and Remark 2.1, one deduces that  $P \cong \operatorname{Hom}_S(C, C \otimes_S P)$  is finitely generated. By Lazard's Theorem [10, Theorem 5.40], there exists a family  $\{F_i\}_{i \in I}$ , of finitely generated free modules, such that  $F \cong \lim_{i \to I} F_i$ . Then,

$$\begin{aligned} \operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M, C \otimes_{S} F) &\cong \operatorname{Ext}_{S}^{\geq 1}(\operatorname{Hom}_{S}(C, M), \operatorname{Hom}_{S}(C, C \otimes_{S} F)) \\ &\cong \operatorname{Ext}_{S}^{\geq 1}(\operatorname{Hom}_{S}(C, M), \lim_{i \in I} \operatorname{Hom}_{S}(C, C \otimes_{S} F_{i})) \\ &\cong \lim_{i \in I} \operatorname{Ext}_{S}^{\geq 1}(\operatorname{Hom}_{S}(C, M), \operatorname{Hom}_{S}(C, C \otimes_{S} F_{i})) \\ &\cong \lim_{i \in I} \operatorname{Ext}_{\mathcal{P}_{C}(S)}^{\geq 1}(M, C \otimes_{S} F_{i}), \end{aligned}$$

where the first isomorphism is true by Lemma 3.6, the second and third by [5, Lemma 3.1.16]. Now, by the proof of Theorem 3.8, every thing is evident.  $\Box$ 

#### References

- Maurice Auslander and Mark Bridger, *Stable module theory*, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969.
- [2] Driss Bennis and Najib Mahdou, Strongly Gorenstein projective, injective, and flat modules, *J. Pure Appl. Algebra* **210** (2007), no. 2, 437-445.
- [3] Ladislav Bican, Robert El Bashir and Edgar E. Enochs, All modules have flat covers, *Bull. London Math. Soc.*, **33(4)** (2001), 385-390.
- [4] Edgar E. Enochs and Overtoun M. G. Jenda, Gorenstein injective and projective modules, *Math. Z.* 220 (1995), no. 4, 611-633.
- [5] Edgar E. Enochs and Overtoun M. G. Jenda, *Relative Homological Algebra*, Volume 1, volume 30 of de Gruyter Exp. Math., Walter de Gruyter GmbH & Co. KG, Berlin, extended edition, 2011.
- [6] Edgar E. Enochs, Overtoun M. G. Jenda and Jin Zhong Xu, Foxby duality and Gorenstein injective and projective modules, *Trans. Amer. Math. Soc.* 348 (1996), no. 8, 3223-3234.
- [7] Henrik Holm and Diana White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808.
- [8] Irving Kaplansky, *Commutative rings*, The University of Chicago Press, Chicago, Ill.-London, revised edition, 1974.
- [9] Friedrich Kasch, *Modules and rings*, volume 17 of London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from the German and with a preface by D. A. R. Wallace.
- [10] Joseph J. Rotman, *An introduction to homological algebra*, second edition, Universitext, Springer, New York, 2009.
- [11] Ryo Takahashi and Diana White, Homological aspects of semidualizing modules, *Math. Scand.* **106** (2010), no. 1, 5-22.
- [12] Charles A. Weibel, An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

#### **Author information**

A. Azari, A. Khojali and N. Zamani, Faculty of Sciences, Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, PoBox: 56199-11367, Iran. E-mail: khojali@uma.ac.ir, naserzaka@yahoo.com