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Abstract In this note, we prove equality up to S(T )∪S(T ∗) between the generalized Drazin
spectrum and the generalized Kato spectrum, S(T ) is the set where T fails to have the SVEP.
As applications, we investigate some classes of operators as the supercyclic and multiplier op-
erators, also we give sufficient conditions which assure that the generalized Kato decomposition
spectrum of an upper triangular operator matrices is the union of its diagonal entries spectra.

1 Introduction and Preliminaries

Throughout, X denotes a complex Banach space and B(X) denotes the Banach algebra of all
bounded linear operators on X , we denote by T ∗, N(T ), R(T ), R∞(T ) =

∩
n≥0 R(T

n), K(T ),
H0(T ), ρ(T ), σ(T ), respectively the adjoint, the null space, the range, the hyper-range, the
analytic core, the quasinilpotent part, the resolvent set, the spectrum of T .

Recall that T ∈ B(X) is said to be Kato operator or semi-regular if R(T ) is closed and
N(T ) ⊆ R∞(T ). Denote by ρK(T ) :
ρK(T ) = {λ ∈ C : T − λI is Kato } the Kato resolvent and σK(T ) = C\ρK(T ) the Kato spec-
trum of T . It is well known that ρK(T ) is an open subset of C.
According to [1, Definition 1.40], we say that T ∈ B(X) admits a generalized Kato decom-
position, abbreviated GKD or pesudo-Fredholm operator if there exists a pair of T -invariant
closed subspaces (M,N) such that X = M ⊕ N , the restriction TpM is semi-regular, and TpN
is quasinilpotent. Obviously, every Kato operator admits a GKD because in this case M = X
and N = {0}, again the quasi-nilpotent operator admits a GKD: Take M = {0} and N = X.
If we suppose that TpN is nilpotent of order d ∈ N then T is said to be of Kato type of order
d. Finally T is said essentially semi-regular if it admits a GKD (M,N) such that N is finite-
dimensional. Evidently every essentially semi-regular operator is of Kato type. The generalized
Kato spectrum of T is defined by

σgK(T ) := {λ ∈ C : T − λI does not admit a generalized Kato decomposition}.

Evidently σgK(T ) ⊆ σK(T ). We refer to [1] for more information about the topics of GKD.

Next, let T ∈ B(X), T is said to have the single valued extension property at λ0 ∈ C (SVEP)
if for every open neighbourhood U ⊆ C of λ0, the only analytic function f : U −→ X which
satisfies the equation (T − zI)f(z) = 0 for all z ∈ U is the function f ≡ 0. T is said to have the
SVEP if T has the SVEP for every λ ∈ C. Denote by A(T ) = {λ ∈ C : T has the SVEP at λ}
and S(T ) = C\A(T ), by [13, proposition 1.2.16] A(T ) = C if and only if XT (∅) = {0}, if
and only if XT (∅) is closed where XT (Ω) is the local spectral subspace of T associated with the
open set Ω.
Obviously, every operator T ∈ B(X) has the SVEP at every λ ∈ ρ(T ), then T and T ∗ have the
SVEP at every point of the boundary ∂(σ(T )) of the spectrum.
An operator T ∈ B(X) is said to be decomposable if, for any open covering U1, U2 of the com-
plex plane C, there are two closed T-invariant subspaces X1 and X2 of X such that X1+X2 = X
and σ(T |Xk) ⊂ Uk, k = 1, 2.
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Note that T is decomposable implies that T and T ∗ have the SVEP.

Let T ∈ B(X), the ascent of T is defined by a(T ) = min{p ∈ N : N(T p) = N(T p+1)}, if
such p does not exist we let a(T ) = ∞. Analogously the descent of T is d(T ) = min{q ∈ N :
R(T q) = R(T q+1)}, if such q does not exist we let d(T ) = ∞ [14]. It is well known that if both
a(T ) and d(T ) are finite then a(T ) = d(T ) and we have the decomposition X = R(T p)⊕N(T p)
where p = a(T ) = d(T ).
The descent and ascent spectra of T ∈ B(X) are defined by :

σdes(T ) = {λ ∈ C, T − λI has not finite descent}

σac(T ) = {λ ∈ C, T − λI has not finite ascent }

In [9], Drazin.M.P introduced the concept of Drazin inverse for semigroups. T ∈ B(X) is
said to be a Drazin invertible if there exists a positive integer k and an operator S ∈ B(X) such
that

ST = TS, T k+1S = T k and S2T = S.

which is also equivalent to the fact that T = T1 ⊕ T2; where T1 is invertible and T2 is nilpotent.
Recall that an operator T is Drazin invertible if it has a finite ascent and descent. The concept of
Drazin invertible has been generalized by Koliha [12]. In fact T ∈ B(X) is generalized Drazin
invertible if and only if 0 /∈ accσ(T ), the set of accumulation points of σ(T ), which is also
equivalent to the fact that T = T1 ⊕ T2 where T1 is invertible and T2 is quasinilpotent. The
following statements are equivalent:

(i) T is generalized Drazin invertible,

(ii) 0 is an isolated point in the spectrum σ(T ) of T ;

(iii) K(T ) is closed and X = K(T )⊕H0(T ),

The Drazin and generalized Drazin spectra of T ∈ B(X) are defined by :

σgD(T ) = {λ ∈ C, T − λI is not generalized Drazin}

σD(T ) = {λ ∈ C, T − λI is not Drazin invertible }

Let E be a subset of X. E is said T -invariant if T (E) ⊆ E. If E and F are two closed T -invariant
subspaces of X such that X = E ⊕ F , we say that T is completely reduced by the pair (E,F )
and it is denoted by (E,F ) ∈ Red(T ). In this case we write T = TpE ⊕ TpF and say that T is the
direct sum of TpE and TpF .

In [7], M D. Cvetković and SČ. Živković-Zlatanović introduced and studied a new con-
cept of generalized Drazin invertibility of bounded operators as a generalization of general-
ized Drazin invertible operators. In fact, an operator T ∈ B(X) is said to be generalized
Drazin bounded below if H0(T ) is closed and complemented with a subspace M in X such that
(M,H0(T )) ∈ Red(T ) and T (M) is closed which is equivalent to there exists (M,N) ∈ Red(T )
such that TpM is bounded below and TpN is quasi-nilpotent, see [7, Theorem 3.6]. An operator
T ∈ B(X) is said to be generalized Drazin surjective if K(T ) is closed and complemented with
a subspace N in X such that N ⊆ H0(T ) and (K(T ), N) ∈ Red(T ) which is equivalent to there
exists (M,N) ∈ Red(T ) such that TpM is surjective and TpN is quasi-nilpotent, see [7, Theorem
3.7].
The generalized Drazin bounded below and surjective spectra of T ∈ B(X) are defined respec-
tively by:

σgDM(T ) = {λ ∈ C, T − λI is not generalized Drazin bounded below};

σgDQ(T ) = {λ ∈ C, T − λI is not generalized Drazin surjective}.

From [7], we have:
σgD(T ) = σgDM(T ) ∪ σgDQ(T ).

The aim of this paper is to present the relationship between σgK(.), σgDM(.) and σgDQ(.)
and we apply this results to same classes of operator as multipliers and supercyclic operators.
Finally, we prove that if A and B are decomposable, then for every C ∈ B(Y,X) we have :
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σgK(MC) = σgK(A) ∪ σgK(B) where MC =

(
A C

0 B

)

2 SVEP and generalized Kato spectrum

Lemma 2.1. Let T ∈ B(X). Suppose that T has the SVEP at λ ∈ C. Then :

T − λ is bounded below if and only if T − λ is semi regular

Proof. We have T − λ bounded below implies that T − λ is semi regular.
Conversely, if T−λ is semi regular then R(T−λ) is closed. Suppose that T−λ is not injectif then
N(T −λ) ̸= {0}, since T −λ is semi regular, then {0} ≠ N(T −λ) ⊆ R∞(T −λ) = K(T −λ),
hence N(T − λ) ∩K(T − λ) ̸= {0}, this contradict that T has the SVEP at λ (see [1, Theorem
2.22]. Therefore T − λ is bonded below.

By duality we have

Lemma 2.2. Let T ∈ B(X). Suppose that T ∗ has the SVEP at λ ∈ C. Then :

T − λ is surjectif if and only if T − λ is semi regular

Lemma 2.3. Let T ∈ B(X). Then:

S(T ) ⊂ σgDM(T ) and S(T ∗) ⊂ σgDQ(T ).

Proof. Let λ /∈ σgDM(T ), then T −λ is generalized Drazin bounded below, hence H0(T −λ) is
closed. By [2, Theorem 1.7], T has the SVEP at λ
Let λ /∈ σgDQ(T ), then T − λ is generalized Drazin surjective, hence K(T − λ) is closed and
K(T −λ)⊕N = X where N ⊆ H0(T −λ), then K(T −λ)+H0(T −λ) = X. By [2, Theorem
1.7], T ∗ has the SVEP at λ

Proposition 2.4. Let T ∈ B(X). Then :

σgDM(T ) = σgK(T ) ∪ S(T )

Proof. Since σgK(T ) ⊂ σgDM(T ), and by lemma 2.3 we have σgK(T ) ∪ S(T ) ⊂ σgDM(T ).
Now, let λ /∈ σgK(T ) ∪ S(T ), then T − λ is a pseudo Fredholm operator, hence there exists two
T -invariant closed subspaces of X, M and N such that (T −λ)pM is semi-regular and (T −λ)pN
is quasinilpotent. Since T has the SVEP at λ then (T − λ)pM and (T − λ)pN have the SVEP at λ
(see [1, Theorem 2.9]). By Lemma 2.1 (T − λ)pM is bounded below which implies that T − λ is
generalized Drazin bounded below. This complete the proof.

Corollary 2.5. Let T ∈ B(X) and suppose that T has SVEP, then :

σgDM(T ) = σgK(T )

Proposition 2.6. Let T ∈ B(X). Then :

σgDQ(T ) = σgK(T ) ∪ S(T ∗)

Proof. Since σgK(T ) ⊂ σgDQ(T ) and by lemma 2.3 we have σgK(T ) ∪ S(T ∗) ⊂ σgDQ(T ).
Let λ /∈ σgK(T ), then T − λ is a pseudo Fredholm operator, hence there exists two T - invari-
ant closed subspaces of X , M and N such that (T − λ)pM is semi-regular and (T − λ)pN is
quasinilpotent. Since T ∗ has the SVEP at λ this implies that (T − λ)∗pN⊥ and (T − λ)∗pM⊥ have
the SVEP at λ (see [1, Theorem 2.9]). By Lemma 2.2 (T −λ)pM is surjective which implies that
T − λ is generalized Drazin surjective. This complete the proof.

Corollary 2.7. Let T ∈ B(X) and suppose that T ∗ has SVEP, then:

σgDQ(T ) = σgK(T )

Example 2.8. Let Cp the Cesaro operator on the classical Hardy space Hp(D), where D the open
unit disc of C and 1 ≤ p < ∞, is given by:



Generalized Kato spectrum of operator matrices on the Banach space 39

Cpf(λ) := 1
λ

∫ λ

0

f(ζ)

1 − ζ
dζ

Cp has the SVEP whenever 1 < p < ∞ and σgK(Cp) = ∂Γp, Γp is the closed disc centered at p
2

with radius p
2 . Then σgDM(Cp) = ∂Γp.

Example 2.9. Let T be defined on l2(N) by :

T (x1, x2, ....) = (0, x1, x2, x3, ....)

We have σgD(T ) = {λ ∈ C, |λ| ≤ 1}. Since T has the SVEP then

σgK(T ) = σgDM(T )

Theorem 2.10. Let T ∈ B(X). Then:

σgD(T ) = σgK(T ) ∪ (S(T ) ∪ S(T ∗))

Proof. We have σgD(T ) ⊇ σgK(T ) ∪ (S(T ) ∪ S(T ∗)). Conversely, let λ /∈ σgK(T ) ∪ (S(T ) ∪
S(T ∗)), then λ /∈ σgK(T ) and λ /∈ (S(T ) ∪ S(T ∗)). By proposition 2.4 and proposition 2.6 we
have λ /∈ σgDQ(T ) ∪ σgDM(T ). Since σgD(T ) = σgDQ(T ) ∪ σgDM(T ), then λ /∈ σgD(T ).

Corollary 2.11. Let T ∈ B(X) and suppose that T and T ∗ have the SVEP. Then :

σgD(T ) = σgK(T )

Corollary 2.12. Let T ∈ B(X), be decomposable. Then :

σgD(T ) = σgK(T )

Example 2.13. Let T be the unilateral weighted shift on l2(N) defined by:

Ten =

{
0, if n = p! for some p ∈ N
en+1 otherwise.

The adjoint operator of T is :

T ∗en =

{
0 if n = 0 or n = p! + 1 for some p ∈ N
en−1 otherwise.

We have σ(T ) = D(0, 1) the unit closed disc. The point spectrum of T and T ∗ are : σp(T ) =
σp(T ∗) = {0}, hence T and T ∗ have the SVEP. Then σap(T ) = σsu(T ) = σ(T ), hence σap(T )
cluster at every point where σsu(T ) and σap(T ) respectively the surjective and approximative
spectrum. From [11, Theorem 3.5], σgK(T ) = σ(T ) = D(0, 1)
According to corollaries, σgD(T ) = σgDQ(T ) = σgDM(T ) = σgK(T ) = D(0, 1).

In the next proposition, we prove equality up to σdes(T ) between the Drazin spectrum and
the generalized Drazin spectrum.

Proposition 2.14. Let T ∈ B(X). Then :

σD(T ) = σgD(T ) ∪ σdes(T )

Proof. Let λ /∈ σgD(T ) ∪ σdes(T ), without loss of generality we can assume that λ = 0, then
T = T1 ⊕ T2 with T1 is invertible operator and T2 is quasinilpotent. Since T has finite descent,
then T1 and T2 have finite descent. As, T2 is quasinilpotent with finite descent, then it is a
nilpotent operator (see [14]). Thus T is a Drazin invertible operator.
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3 Applications

A bounded linear operator T is called supercyclic provided there is some x ∈ X such that the
set {λTn, λ ∈ C , n = 0, 1, 2, ..} is dense in X . It is well now that if T is supercyclic then
σp(T ∗) = {0} or σp(T ∗) = {α} for some nonzero α ∈ C. Since an operator with countable
point spectrum has SVEP, then we have the following:

Proposition 3.1. Let T ∈ B(X), a supercyclic operator, then :

σgDQ(T ) = σgK(T )

Since, Every hyponormal operator T on a Hilbert space has the single valued extension prop-
erty, we have

Proposition 3.2. Let T a hyponormal operator on a Hilbert space, then:

σgDM(T ) = σgK(T )

In particular, If T is auto-adjoint, we have : σgDM(T ) = σgK(T )

Let A be a semi-simple commutative Banach algebra.
The mapping T : A −→ A is said to be a multiplier of A if T (x)y = xT (y) for all x, y ∈ A.
It is well known each multiplier on A is a continuous linear operator and that the set of all
multiplier on A is a unital closed commutative subalgebra of B(A) [13, Proposition 4.1.1]. Also
the semi-simplicity of A implies that every multiplier has the SVEP (see [13, Proposition 2.2.1]).
According to proposition 2.4, we have :

Proposition 3.3. Let T be a multiplier on a semi-simple commutative Banach algebra A, then
the following assertions are equivalent

(i) T is pseudo-Fredholm .

(ii) T is generalized Drazin bounded below.

Now if we assume in additional that A is regular and Tauberian (see [13, Definition 4.9.7]),
then every multiplier T ∗ has SVEP. Hence we have the following result,

Proposition 3.4. Let T be a multiplier on a semi-simple regular and Tauberian commutative
Banach algebra A, then the following assertions are equivalent:

(i) T is pseudo-Fredholm .

(ii) T is generalized Drazin invertible.

Let G a locally compact abelian group, with group operation + and Haar measure µ, let L1(G)
consist of all C-valued functions on G integrable with respect to Haar measure and M(G) the
Banach algebra of regular complex Borel measures on G. We recall that L1(G) is a regular
semi-simple Tauberian commutative Banach algebra. Then we have the following:

Corollary 3.5. Let G be a locally compact abelian group, µ ∈ M(G). Then every convolution
operator T : L1(G) −→ L1(G), T(k) = µ ⋆ k is pseudo Fredholm if and only if is generalized
Drazin invertible.

4 Generalized Kato Decomposition for Operator Matrices

Let X and Y be Banach spaces and B(X,Y ) denote the space of all bounded linear operator
from X to Y . For A ∈ B(X), B ∈ B(Y ), we denote by MC ∈ B(X ⊕ Y ) the operator defined
on X ⊕ Y by (

A C

0 B

)
It is well known that, in the case of infinite dimensional, the inclusion σ(MC) ⊂ σ(A) ∪ σ(B),
may be strict. This motivates serval authors to study the defect (σ∗(A)∪σ∗(B))\σ∗(MC) where
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σ∗ runs different type spectra.
In [8], they proved that : σgD(MC) ⊂ σgD(A) ∪ σgD(B), this inclusion may be strict (see [18,
Example 3.4]. In this section we interested and motivated by the relationship between σgK(MC)
and σgK(A) ∪ σgK(B). We start by the following :

Proposition 4.1. Let A ∈ B(X), B ∈ B(Y ) and C ∈ B(Y,X). Then:

σgK(MC) = σgK(A) ∪ σgK(B) =⇒ σgD(MC) = σgD(A) ∪ σgD(B)

Proof. Let λ /∈ σgD(MC), then λ /∈ σgK(MC) = σgK(A) ∪ σgK(B) this implies that λ /∈
σgK(A) and λ /∈ σgK(B). Suppose that λ ∈ σgD(A), from Theorem 2.10 λ ∈ S(A) ∪ S(A∗).
Then S(A)∪S(A∗) ⊂ S(MC)∪S(M∗

C) ⊂ σgD(MC). This contradict that λ /∈ σgD(MC). Hence
λ /∈ σgD(A). According to [19, Lemmma 2.4], λ /∈ σgD(B). Thus λ /∈ σgD(A) ∪ σgD(B). We
conclude that σgD(A) ∪ σgD(B) ⊂ σgD(MC). Since σgD(MC) ⊂ σgD(A) ∪ σgD(B). This
complete the proof.

Proposition 4.1 and [18, Proposition 3.12] give the following:

Corollary 4.2. Let A ∈ B(X), B ∈ B(Y ) and C ∈ B(Y,X). Then :

σgK(MC) = σgK(A) ∪ σgK(B) =⇒ σ(MC) = σ(A) ∪ σ(B)

Remark 4.3. Let A,B,C ∈ B(l2(N)) defined by:

A(x1, x2, x3, ....) = (0, x1, x2, x3, ....);

B = A∗;

C = I −AB.

We have σgK(A)∪σgK(B) = {λ ∈ C, |λ| ≤ 1}. MC is unitary, then σgK(MC) ⊆ {λ ∈ C; |λ| =
1}. So σgK(MC) ̸= σgK(A) ∪ σgK(B). Note that A∗ and B have not the SVEP. This result will
lead to us a sufficient condition that ensures the equality.

In the following theorem, we give sufficient condition for σgK(MC) = σgK(A) ∪ σgK(B)
holds for every C ∈ B(Y,X).

Theorem 4.4. Let A ∈ B(X), B ∈ B(Y ). If A, A∗, B and B∗ have the SVEP, then for every
C ∈ B(Y,X) we have:

σgK(MC) = σgK(A) ∪ σgK(B)

Proof. A, A∗, B and B∗ have the SVEP according to [10, Proposition 3.1], MC and M∗
C have

the SVEP. Hence by corollary 2.11

σgK(MC) = σgD(MC)

σgK(A) = σgD(A) and σgK(B) = σgD(B)

By [18, Corollary 3.6] and Corollary 2.11, we have

σgD(MC) = σgD(A) ∪ σgD(B) = σgK(A) ∪ σgK(B).

Therefore :
σgK(MC) = σgK(A) ∪ σgK(B)

Corollary 4.5. Let A ∈ B(X), B ∈ B(Y ). If A and B are decomposable , then for every
C ∈ B(Y,X) we have:

σgK(MC) = σgK(A) ∪ σgK(B)

In particular, If A and B are algebraic or compact.
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