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Abstract Let A be a commutative ring and let I be an ideal of A. The amalgamated duplica-
tion of A along I is the subring of A × A given by A ◃▹ I = {(a, a + i)/a ∈ A, i ∈ I}. In this
paper, we are interested in understanding when A ◃▹ I is Cohen-Macaulay (resp. Gorenstein) in
the general (not necessarily local) case. .

1 Introduction

Throughout, all rings considered are commutative with unity and all modules are unital. Let A
be a ring and I and ideal of A, and π : A → A/I the canonical surjection. The amalgamated
duplication of A along I , denoted by A ◃▹ I , is the special pullback (or fiber product) of π and
π; i.e., the subring of A×A given by

A ◃▹ I := π ×A/I π = {(a, a+ i) | a ∈ A, i ∈ I}

This construction was introduced and its basic properties were studied by D’Anna and Fontana
in [5, 6] and then it was investigated by D’Anna in [4] with the aim of applying it to curve
singularities (over algebraic closed fields) where he proved that the amalgamated duplication
of an algebroid curve along a regular canonical ideal yields a Gorenstein algebroid curve [4,
Theorem 14 and Corollary 17]. Let A be a Noetherian local ring of Krull dimension d and I
be an ideal of A. In [4], it is proved that A ◃▹ I is Cohen-Macaulay if and only if A is Cohen-
Macaulay and I is a maximal Cohen-Macaulay A-module. Moreover, in [1], the authors showed
that A ◃▹ I is Gorenstein if and only if A is Cohen-Macaulay and I is a canonical module for
A, and then A/I is Cohen-Macaulay with dim (A/I) = d − 1 (if I is a non unit proper ideal).
In this paper, we study when A ◃▹ I is Cohen-Macaulay (resp. Gorenstein) in the general (not
necessarily local) case. As general reference for terminology and well-known results, we refer
the reader to [2].

2 Results

The study of Cohen-Macaulay (resp. Gorenstein) rings is based on the localization of rings with
their maximal ideals. Hence, we need the following lemma.

Lemma 2.1. Let m be a maximal ideal of A and set

m ◃▹ I := (m×A) ∩ (A ◃▹ I) = {(m,m+ i) | m ∈ m, i ∈ I}

and
m := (A×m) ∩ (A ◃▹ I) = {(a, a+ i) | a ∈ A, i ∈ I, a+ i ∈ m}

Let M be a maximal ideal of A ◃▹ I . Then,

(i) I × I ⊆ M ⇔ ∃m ∈ Max(A) such that I ⊆ m and M = m = m ◃▹ I .
In this case, we have

(A ◃▹ I)M
∼= Am ◃▹ Im
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(ii) I × I ̸⊆ M ⇔ ∃m ∈ Max(A) such that I ̸⊆ m and M = m or M = m ◃▹ I .
In this case,

(A ◃▹ I)M ∼= Am

Consequently, we have

Max (A ◃▹ I)) = {m,m ◃▹ I | m ∈ Max(A)}

Proof. (1) (⇒) Assume that I × I ⊆ M , and consider the ideal m of A given by

m := {m ∈ A | ∃i ∈ I such that (m,m+ i) ∈ M}

Clearly, the fact that I × I ⊆ M forces I ⊆ m. So, we can see easily that M = m ◃▹ I = m.
Moreover, by [4, Proposition 2.5], we have A◃▹I

m◃▹I
∼= A

m . Hence, m is a maximal ideal of A.
(⇐) Follows from the isomorphism of rings A◃▹I

m◃▹I
∼= A

m .
The last statement follows from [4, Proposition 2.7].
(2) (⇒) Assume I × I ̸⊆ M . Applying [7, Lemma 1.1.4(3)], to the the following conductor
square with conductor Ker(µ1) = I × I , where ι2 is the natural embedding, µ1 is the canonical
surjection, and for each a ∈ A and i ∈ I , µ2(a, a+ i) = a and ι1(a) = (a, a).

A ◃▹ I

µ2

����

ι2 // A×A

µ1

����
A

I

ι1 // A

I
× A

I

there is a unique prime Q of A×A such that I × I * Q and

M = Q ∩A ◃▹ I with
(
A×A

)
Q
=

(
A ◃▹ I

)
M
.

Then either Q = m × A or Q = A × m for some prime ideal m of A such that I * m. That is,
M = m or M = m ◃▹ I . Accordingly, we’ll have

(A ◃▹ I)M ∼= Am

Moreover, by [4, Proposition 2.5], we have A◃▹I
M

∼= A
m . Hence, m is a maximal ideal of A.

(⇐) Follows from that last isomorphism of rings.

The characterization of A ◃▹ I to be Cohen-Macaulay (resp. Gorenstein) is already done in
the local case in [1, 4]. The results found are formed as follows.

Lemma 2.2 ([1, Theorem 1.8]). Let A be a local ring and I a non-zero prpoer ideal of A. Then,

(i) The ring A ◃▹ I is Cohen-Macaulay if and only if A is Cohen-Macaulay and I is a maximal
Cohen-Macaulay A-module.

(ii) The ring A ◃▹ I is Gorenstein if and only if A is Cohen-Macaulay and I is a canonical
A-module.

Remark 2.3. In our proofs, we encountered two trivial cases. The first one is when I = A. In
this case, A ◃▹ A = A × A (which is not local certainly) but it is well known that A × A is
Cohen-Macaulay (resp. Gorenstein) if and only if A is Cohen-Macaulay (resp. Gorenstein), and
certainly I = A is a maximal Cohen-Macaulay (resp. canonical) A-module. The second trivial
case is when I = (0). In this case A ◃▹ (0) ∼= A which is trivially Cohen-Macaulay (resp.
Gorenstein) when A is Cohen-Macaulay (resp. Gorenstein).

The notations and the facts of the previous lemmas and remark will be used in the sequel
without explicit reference.

The first result characterize when A ◃▹ I is Cohen-Macaulay (resp. Gorenstein) in the general
case. For a given A-module M , let Supp(M) denote the support of M , that is;

Supp(M) = {p ∈ Spec(A) | Mp ̸= (0)}
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Proposition 2.4. Let A be a ring and I a non zero ideal of A. Then,

(i) the ring A ◃▹ I is Cohen-Macaulay if and only if A is Cohen-Macaulay and Im is a maximal
Cohen-Macaulay Am-module for each m ∈ Supp(I) ∩ Max(A).

(ii) the ring A ◃▹ I is Gorenstein if and only if A is Cohen-Macaulay, Im is a canonical Am-
module for each m ∈ Supp(I)∩Max(A) and type(Am) = 1 for each m ∈ Max(A)\Supp(I).

Proof. Assume that A ◃▹ I is a Cohen-Macaulay rings (resp. Gorenstein ring) and let m be a
maximal ideal of A. If I ⊆ m, then m ◃▹ I is a maximal ideal of A ◃▹ I and (A ◃▹ I)m◃▹I

∼= Am ◃▹
Im is a Cohen-Macaulay ring (resp. Gorenstein ring). Then, either Im = (0) and Am ◃▹ Im ∼= Am

is a Cohen-Macaulay ring (resp. Gorenstein ring and so Cohen-Macaulay of type 1 by [2, Theo-
rem 3.2.10]), or Im ̸= (0), and so Am is Cohen-Macaulay and Im is a maximal Cohen-Macaulay
(resp. canonical) Am-module. Now, if I * m. There exists a maximal ideal M of A ◃▹ I
such that (A ◃▹ I)M ∼= Am, and then Am is Cohen-Macaulay (resp. Gorenstein and so Cohen-
Macaulay) and Im = Am is a maximal Cohen-Macaulay (resp. canonical) Am-module. Conse-
quently, A is Cohen-Macaulay, Im is a maximal Cohen-Macaulay (resp. canonical) Am-module
for each m ∈ Supp(I) ∩ Max(A) (resp. and Am of type 1 for each m ∈ Max(A)\Supp(I)).
Now, we will prove the converse implication in the assertion (1) (resp. (2)). Let M be a maximal
ideal of A ◃▹ I . If I × I ⊆ M , there exists a maximal ideal I ⊆ m of A such that M = m ◃▹ I
and we have (A ◃▹ I)M ∼= Am ◃▹ Im. If Im = (0), then (A ◃▹ I)M ∼= Am which is a Cohen-
Macaulay ring (resp. Cohen-Macaulay ring of type 1, and so Gorenstein). Otherwise, Im is a
maximal Cohen-Macaulay (resp. canonical) Am-module and certainly Am is a Cohen-Macaulay
ring. Thus, (A ◃▹ I)M is a Cohen-Macaulay ring (resp. Gorenstein ring). Now, suppose that
I × I * M . There exist a maximal ideal m of A such that I * m and (A ◃▹ I)M ∼= Am which
is Cohen-Macaulay (resp. and Im = Am is a canonical module, on so Am is Gorenstein by [2,
Theorem 3.3.7]). Accordingly, A ◃▹ I is a Cohen-Macaulay ring (resp. Gorenstein ring).

Corollary 2.5. Let A be a ring and I a non zero ideal of A. Then,

(i) If A is a Cohen-Macaulay ring and I is a maximal Cohen-Macaulay A-module, then A ◃▹ I
is a Cohen-Macaulay ring.

(ii) If A is Cohen-Macaulay ring and I is a canonical A-module, then A ◃▹ I is a Gorenstein
ring.

Proof. By definition, I is a maximal Cohen-Macaulay (resp. canonical) A-module if Im is a
maximal Cohen-Macaulay (canonical) Am-module for each m ∈ Max(A). Moreover, it is known
that if I is a canonical A-module then Supp(I) = Spec(A) and so Max(A)\Supp(I) = ∅. Thus,
our corollary follows directly from Proposition 2.4.

Corollary 2.6. Let I be a proper ideal of A such that ann(I) ⊆ Jac(A). Then,

(i) the ring A ◃▹ I is Cohen-Macaulay ring if and only if A is Cohen-Macaulay and I is a
maximal Cohen-Macaulay A-module.

(ii) the ring A ◃▹ I is Gorenstein ring if and only if A is Cohen-Macaulay and I is a canonical
A-module.

Proof. Since annA(I) ⊆ Jac(A), we have I ̸= (0). Moreover, since A must be Noetherian
in the context of our corollary (by [4, Remark 2.1]), we have Supp(I) = V(annA(I)) (by [8,
Theorem 3.3.22]). Hence, Supp(I) ∩ Max(A) = Max(A) and Max(A)\Supp(I) = ∅. Thus, the
equivalences in (1) and (2) follow immediately from Proposition 2.4.

In [4, Theorem 11], D’Anna proved that if A is a local Cohen-Macaulay ring and I is proper
ideal, then A ◃▹ I is Gorenstein if and only of A has a canonical module ωA and I ∼= ωA. In
D’Anna’s proof, this is deduced from [4, Proposition 3]. But Shapiro (in [10]) pointed an error
in [4, Proposition 3] and showed that it is true if and only if ann(I) = (0) ([10, Lemma 2.1].
Thus, we conclude that if A is a local Cohen-Macaulay ring and I is proper ideal containing
a non-zerodivisor element such that A ◃▹ I is Gorenstein then I is a canonical module. The
next corollary which a particular case of Corollary 2.7 recovers the D’Anna’s result corrected by
Shapiro.
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Corollary 2.7. Let I be a proper ideal of A such that ann(I) = (0). Then,

(i) the ring A ◃▹ I is Cohen-Macaulay ring if and only if A is Cohen-Macaulay and I is a
maximal Cohen-Macaulay A-module.

(ii) the ring A ◃▹ I is Gorenstein ring if and only if A is Cohen-Macaulay and I is a canonical
A-module.

Recall that a ring R is called quasi-Frobenius [9] if it Noetherian and self injective. The
quotient R/I where R is a principal ideal domain and I is any nonzero ideal of R is a classical
example of quasi-Frobenius ring. Several characterizations of quasi-Frobenius rings were given
in [9]. The characterization of R ◃▹ I to be quasi-Frobenius was done in [3]. However, we will
find it again by using Proposition 2.4.

Corollary 2.8. The ring A ◃▹ I is quasi-Frobenius if and only if A is quasi-Frobenius and I is
generated by an idempotent.

Proof. Following [4, Remark 2.1], dim(R ◃▹ I) = dim(R), and R ◃▹ I is Noetherian if and only
if R is Noetherian. Thus, A ◃▹ I is Artinian if and only if A is Artinian. Moreover, recall that a
ring is quasi-Frobenius if and only if it an Artinian Gorenstein ring.
(⇒) Assume that A ◃▹ I is quasi-Frobenius. Then, A ◃▹ I is Artinian, and so is A. Then, Am

is Artinian for each m ∈ Max(A). On the other hand, over local Artinian rings, the canonical
module is the injective hull of the residue field. Thus, following Proposition 2.4, for each m ∈
Max(A), Im is (0) or injective. Thus, I is an injective ideal since A is Noetherian and so it is
generated by an idempotent element. Consequently, Im = (0) or Im = Am. If Im = (0), we
have, by Proposition 2.4 again, type(Am) = 1. Thus, Am a Gorenstein Artinian ring, and so
quasi-Frobenius. If Im = Am then Am is self injective. Consequently, A is self injective, and so
it is quasi-Frobenius.
(⇐) Assume that A is quasi-Frobenius and I is generated by an idempotent. For each m ∈
Max(A), Am is Gorenstein, and so type(Am) = 1. Moreover, for each m ∈ Supp(I) ∩ Max(A),
Im = Am, and so it is a canonical Am-module. Thus, A ◃▹ I is Gorenstein. Hence, since A ◃▹ I
is Artinian (because A is Artinian), we conclude that A ◃▹ I is quasi-Frobenius.

Cohen-Macaulay (resp. canonical) modules have not necessary a finite projective dimension.
However, when this is the case, we have the following result.

Proposition 2.9. Let I be a proper ideal of A such that pdR(I) < ∞. Then,

(i) the ring A ◃▹ I is a Cohen-Macaulay ring if and only if A is Cohen-Macaulay and I is
projective.

(ii) the ring A ◃▹ I is a Gorenstein ring if and only if A is Gorenstein and I is projective.

Proof. (1) (⇒) Assume that A ◃▹ I is a Cohen-Macaulay ring. Following Proposition 2.4,
it suffices to prove that I is projective. Since A is Noetherian, we have to prove that Im is
projective for each m ∈ Max(A) such that Im ̸= (0). Let m be such maximal ideal of A. Using
Auslander-Buchsbaum formula (since pdAm

(Im) < ∞), we have

pdAm
(Im) + depth(Im) = depth(Am)

On the other hand, from Proposition 2.4, Im is a maximal Cohen-Macaulay Am. Thus, depth(Im) =
depth(Am), and so pdAm

(Im) = 0. Consequently, I is projective.
(⇐) Assume that A is Cohen-Macaulay and I is projective. Let m be a maximal ideal of A such
that Im ̸= (0). Then, Im is a non zero free ideal of Am. Thus, it is generated by a non-zerodivisor
element, and so dim(Im) = dim(Am). On the other hand, by the Auslander-Buchsbaum formula,
we have depth(Im) = depth(Am). Thus, since depth(Am) = dim(Am), it is clear that Im is a
maximal Cohen-Macaulay Am-module. Consequently, from Proposition 2.4, A ◃▹ I is a Cohen-
Macaulay ring.
(2)(⇒) Assume that A ◃▹ I is a Gorenstein ring. From (1), it suffices to prove that A is Goren-
stein. Let m ∈ Max(A). If Im = (0), from Proposition 2.4, Am is a Cohen-Macaulay ring of
type 1, and so it is a Gorenstein ring. Otherwise, Im is a canonical Am-module. Moreover, since
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I is projective, Im is non zero free ideal of Am. Hence, Im ∼= Am. Thus, from [2, Theorem
3.3.7], Am is Gorenstein. Consequently, A is Gorenstein.
(⇐) Assume that A is Gorenstein and I is projective. Then, for each m ∈ Max(A), Am is
Gorenstein, and so type(Am) = 1. Thus, following Proposition 2.4, it suffices to show that
Im is a canonical Am-module for each m ∈ Supp(I) ∩ Max(A). As in (1)(⇐), we can prove
that, for each m ∈ Supp(I) ∩ Max(A), Im is a maximal Cohen-Macaulay Am-module which is
generated by a non-zerodivisor element. Thus, Im ∼= Am. Hence, idAm(Im) = idAm(Am) <
∞, and dimAm/mAm

ExttAm

(
Am/mAm, Im

)
= dimAm/mAm

ExttAm

(
Am/mAm, Am

)
= 1 with

t = depth(Am) = depth(Im). Thus, Im is a canonical Am-module. Consequently, A ◃▹ I is a
Gorenstein ring.
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