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Abstract All rings will be commutative with identity. A module M is called Π-semiartinian
if the direct product M I is a semiartinian module for every nonempty set I . A ring R is said
to be Π-semiartinian if every product of semiartinian R-modules is semiartinian. It is shown
that the class of Π-semiartinian R-modules is closed under isomorphic images, submodules,
factor modules and extensions. We prove that an R-module M is Π-semiartinian if and only if
R/Ann(M) is a semiartinian ring. We also provide a characterization of Π-semiartinian rings.

1 Introduction

Throughout this article, all rings considered are assumed to be commutative rings with an identity
and R denotes such a ring. All modules are unital. We denote respectively by Spec(R) and
Max(R) the set of all prime ideals of R and the set of all maximal ideals of R. Let M be an
R-module and let x ∈ M . By Ann(x) and Ann(M) we denote the annihilator of x and M ,
respectively; i.e. Ann(x) = {r ∈ R | rx = 0} and Ann(M) = {r ∈ R | rM = 0}. The notation
N ⊆ M means that N is a subset of M and N ≤ M means that N is a submodule of M . If M1
and M2 are two R-modules, HomR(M1,M2) will denote the set of R-homomorphisms from M1
to M2. By Z we denote the ring of integer numbers.

A module M is called semiartinian if every nonzero factor module of M has nonzero socle.
In Section 2, we investigate some basic properties of semiartinian modules and we provide a new
characterization of this kind of modules (Proposition 2.9).

In Section 3, we introduce the notions of Π-semiartinian rings and Π-semiartinian mod-
ules. We call a module M Π-semiartinian if the direct product M I is a semiartinian module
for every nonempty set I . A ring R is said to be Π-semiartinian if every product of semiar-
tinian R-modules is semiartinian. We prove that a module M is Π-semiartinian if and only
if R/Ann(M) is a semiartinian ring (Proposition 3.2). It is also shown that the class of Π-
semiartinian R-modules is closed under isomorphic images, submodules, factor modules and
extensions (Proposition 3.4). We show that the class of Π-semiartinian rings contains the class
of semilocal rings R such that m2 = m for every m ∈ Max(R) (Proposition 3.5). A characteri-
zation of Π-semiartinian rings is provided (Theorem 3.10).

2 Semiartinian Modules

Recall that an R-module M is called semiartinian if every nonzero factor module of M has
nonzero socle. A ring R is called semiartinian if it is semiartinian as an R-module. Note that a
ring R is semiartinian if and only if every R-module is semiartinian (see [14, p. 183 Proposition
2.5]). Recall that a subset I of a ring R is called T-nilpotent if for every sequence a1, a2, . . . in I
there exists an integer n ≥ 1 such that a1 . . . an = 0.

We begin with the following lemma which will be useful to our work in this article.

Lemma 2.1. (i) The class of semiartinian modules is closed under taking isomorphic images,
submodules, factor modules, direct sums and module extensions.

(ii) A ring R is semiartinian if and only if Rad(R) is T-nilpotent and R/Rad(R) is a semiar-
tinian ring.

(iii) If R is a semiartinian ring, then R/Rad(R) is a von Neumann regular ring.
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Proof. (i) See [6, p. 28-29].
(ii) See [14, p. 184 Proposition 2.8].
(iii) See [9, Corollary 3.33E]. 2

Example 2.2. From [4, Theorem P], it follows that every perfect ring is semiartinian.

The proof of the following lemma is straightforward and is omitted.

Lemma 2.3. Let I be a be a proper ideal of a ring R. Then R/I is a semiartinian ring if and
only if R/I is a semiartinian R-module.

The next lemma will be of interest.

Lemma 2.4. Let R be a commutative ring. Then:
(i) If R is a semiartinian ring, then R/a is a semiartinian ring for any proper ideal a of R.
(ii) R/a ∩ b and R/ab are semiartinian rings whenever a and b are proper ideals of R such

that R/a and R/b are semiatinian rings.

Proof. (i) This follows from Lemmas 2.1(i) and 2.3.
(ii) Assume that R/a and R/b are semiartinian rings. Then b/ab is a semiartinian R/a-module

and hence it is a semiartinian R-module. Moreover, R/b is a semiartinian R-module. We have
the following exact sequence of R-modules:

0 → b/ab → R/ab → R/b → 0.

But the class of semiartinian modules is closed under extensions (Lemma 2.1(i)). So R/ab is a
semiartinian R-module. In addition, since R/a ∩ b is a factor ring of R/ab, R/a ∩ b is also a
semiartinian ring by (i). 2

Corollary 2.5. Let a be a proper ideal of a ring R. The following conditions are equivalent:
(i) R/a is a semiartinian ring;
(ii) R/an is a semiatinian ring for every integer n ≥ 1;
(iii) R/am is a semiatinian ring for some integer m ≥ 1.

Proof. (i) ⇒ (ii) By induction and using Lemma 2.4(ii).
(ii) ⇒ (iii) This is clear.
(iii) ⇒ (i) Let m ≥ 1 such that R/am is semiartinian. Then R/a is a semiartinian ring being

a factor ring of R/am (see Lemma 2.4(i)). 2

Corollary 2.6. The following are equivalent for a ring R:
(i) R is a semiartinian ring;
(ii) There exists a maximal ideal m of R such that R/Ann(m) is a semiartinian ring;
(iii) There exists an ideal a of R such that R/a and R/Ann(a) are semiartinian rings.

Proof. (i) ⇒ (ii) This follows from the fact that any factor ring of a semiartinian ring is semiar-
tinian (Lemma 2.4(i)).

(ii) ⇒ (iii) It suffices to take a = m.
(iii) ⇒ (i) By Lemma 2.4(ii), R/(aAnn(a)) is a semiartinian ring. Therefore R is a semiar-

tinian ring as aAnn(a) = 0. 2

Recall that a ring R is said to be zero dimensional (or of Krull dimension zero), and we write
dim(R) = 0, if every prime ideal of R is maximal.

Example 2.7. Every commutative semiartinian ring is zero dimensional. To see this, if R is
such a ring and if J = Rad(R), then J is T-nilpotent and the ring R/J is von Neumann regular
(Lemma 2.1). Hence J is a nil ideal. This yields J = N , where N is the nil radical of R.
Therefore R/N is a von Neumann regular ring and so dim(R) = 0 (see [12, Theorem 1.16]).
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For an R-module M and an ideal I of R, I is said to be T-nilpotent on M if for every x ∈ M
and every sequence a1, a2, . . . ∈ I there exists an integer n ≥ 1 such that a1 . . . anx = 0.

Let M be an R-module. We say that a prime ideal p of R is an associated prime of M if
p = Ann(x) for some x ∈ M . The set of associated primes of M is denoted by Ass(M). The
support of M is Supp(M) = {p ∈ Spec(R) | p ⊇ Ann(x) for some x ∈ M}. We denote by
MaxSupp(M) the set of all maximal members in Supp(M). Let J(M) = ∩m∈MaxSupp(M)m.
In the case when M is finitely generated, it is easy to see that Supp(M) = {p ∈ Spec(R) | p ⊇
Ann(M)} and hence Rad(R/Ann(M)) = J(M)/Ann(M).

Lemma 2.8. Let M be a finitely generated R-module. Then:
(i) Rad(R/Ann(M)) = J(M)/Ann(M).
(ii) Rad(R/Ann(M)) is a T-nilpotent ideal of R/Ann(M) if and only if J(M) is T-nilpotent

on M .

Proof. (i) This is clear.
(ii) (⇒) This follows from (i).
(⇐) Assume that M = Rx1 + · · ·+ Rxn. Note that J(M)/Ann(M) = Rad(R/Ann(M)).

Let a1, a2, . . . be a sequence in J(M). For every i ∈ {1, . . . , n}, there exists an integer ki ≥ 1
such that a1 . . . akixi = 0 since J(M) is T-nilpotent on M . Let k = max(k1, . . . , kn). Then
a1 . . . akxi = 0 for every i ∈ {1, . . . , n}. This implies that a1 . . . ak ∈ Ann(M). Thus
(a1 . . . ak) + Ann(M) = 0 + Ann(M). Therefore Rad(R/Ann(M)) is a T-nilpotent ideal
of R/Ann(M). 2

We will say that an R-module M is a zero dimensional module, and we write dimM = 0, if
every prime ideal in Supp(M) is maximal, that is, Supp(M) = MaxSupp(M). It is clear that
dimM = 0 if and only if R/Ann(x) is a zero dimensional ring for any nonzero element x ∈ M .

Let M be an R-module. An R-module N is called M -generated if it is a homomorphic
image of a direct sum of copies of M . An R-module N is said to be subgenerated by M if N is
isomorphic to a submodule of an M -generated module. Let R-Mod denotes the category of all
R-modules. We denote by σ[M ] the full subcategory of R-Mod whose objects are all R-modules
subgenerated by M .

Next, we exhibit a characterization of semiartinian modules.

Proposition 2.9. The following statements are equivalent for a nonzero R-module M :

(i) M is a semiartinian R-module;

(ii) Every nonzero cyclic submodule of M is semiartinian;

(iii) Every nonzero finitely generated submodule N of M is semiartinian;

(iv) R/Ann(x) is a semiartinian ring for every 0 ̸= x ∈ M ;

(v) R/Ann(N) is a semiartinian ring for every nonzero finitely generated submodule N of M ;

(vi) R/J(Rx) is semiartinian and J(Rx) is T-nilpotent on Rx for every 0 ̸= x ∈ M ;

(vii) R/J(N) is semiartinian and J(N) is T-nilpotent on N for every nonzero finitely generated
submodule N of M ;

(viii) dim(M) = 0 and Ass(N) ̸= ∅ for any 0 ̸= N ∈ σ[M ].

Proof. Since the class of semiartinian modules is closed under submodules, factor modules and
direct sums (Lemma 2.1), it follows that for any family {Ni}i∈I of submodules of a module M ,
the sum

∑
i∈I Ni is a semiartinian module if and only if each Ni is a semiartinian module (see

also [6, p. 29]). From this remark it is easy to deduce the equivalences (i) ⇔ (ii) ⇔ (iii).
(ii) ⇔ (iv) If 0 ̸= x ∈ M , then Rx ∼= R/Ann(x). So, Rx is a semiartinian R-module if and

only if R/Ann(x) is a semiartinian ring.
(v) ⇒ (iv) Clear.
(iv) ⇒ (v) Let N = Rx1 + · · ·+ Rxn be a nonzero finitely generated submodule of M such

that xi ̸= 0 for every i ∈ {1, . . . , n}. Note that Ann(N) = ∩n
i=1Ann(xi). By hypothesis,

R/Ann(xi) is a semiartinian ring for each i ∈ {1, . . . , n}. By using (ii) of Lemma 2.4 and by
induction on n, we see that R/Ann(N) is a semiartinian ring.
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(iv) ⇔ (vi) Let 0 ̸= x ∈ M . By Lemma 2.1, A = R/Ann(x) is a semiartinian ring if and
only if A/Rad(A) is a semiartinian ring and Rad(A) is a T-nilpotent ideal of A. Using Lemma
2.8, we obtain the equivalence.

(v) ⇔ (vii) Similar to the proof of the equivalence (iv) ⇔ (vi).
(ii) ⇒ (viii) Let 0 ̸= x ∈ M . Then R/Ann(x) is semiartinian and so it is a zero dimensional

ring (Example 2.7). Hence dim(M) = 0. Let 0 ̸= N ∈ σ[M ]. By (i) of Lemma 2.1, N is
also semiartinian. Thus Soc(N) ̸= 0. Let Ry be a simple submodule of N . Then Ann(y) is a
maximal ideal of R and so Ann(y) ∈ Ass(N).

(viii) ⇒ (i) Let 0 ̸= N ≤ M . Then M/N ∈ σ[M ] and so Ass(M/N) ̸= ∅. Let p ∈
Ass(M/N). Then there exists 0 ̸= y ∈ M/N such that p = Ann(y). Since dim(M) = 0, it is
easy to see that dim(M/N) = 0. It follows that p is a maximal ideal of R. Therefore, Ry is a
simple submodule of M/N . This implies that M is a semiartinian module. 2

Example 2.10. (i) From Proposition 2.9, it follows immediately that a Z-module M is semiar-
tinian if and only if M is a torsion module.

Corollary 2.11. Let M be a semiartinian module. Then J(M) is T-nilpotent on M .

Proof. Let 0 ̸= x ∈ M . By Proposition 2.9, J(Rx) is T-nilpotent on Rx. But J(M) ⊆ J(Rx).
So J(M) is T-nilpotent on Rx. The result follows. 2

Remark 2.12. Let M be an R-module. Since Rad(R) ⊆ J(M), it follows that Rad(R) is T-
nilpotent on every semiartinian R-module by Corollary 2.11. This shows that Corollary 2.11 is
a generalization of [14, Proposition 2.6] in the commuative case.

Recall that a ring R (not necessarily commutative) is said to be π-regular if for any a ∈ R,
there is an integer n ≥ 1 and b ∈ R such that an = anban. The ring R is called strongly π-regular
if for each a ∈ R, there is an integer n ≥ 1 and b ∈ R such that an = an+1b. It is shown in [15,
Lemma 5.6] that a commutative ring R is π-regular if and only if dim(R) = 0.

Corollary 2.13. Let M be a finitely generated R-module. Then the following statements are
equivalent:

(i) M is a semiartinian module;
(ii) R/Ann(M) is a semiartinian ring;
(iii) R/J(M) is semiartinian and J(M) is T-nilpotent on M ;
Moreover, if M is a semiartinian module, then EndR(M) is a strongly π-regular ring.

Proof. (i) ⇔ (ii) and (i) ⇒ (iii) These follow from Proposition 2.9.
(iii) ⇒ (ii) Since M is finitely generated, it follows that J(M) is T-nilpotent on M if and only

if Rad(R/Ann(M)) = J(M)/Ann(M) is a T -nilpotent ideal of A = R/Ann(M) (Lemma 2.8).
In addition, it is clear that R/J(M) is semiartinian if and only if A/Rad(A) is semiartinian. Now
apply (ii) of Lemma 2.1.

Now assume that M is a semiartinian R-module. Hence R/Ann(M) is a semiartinian ring.
Therefore dim(R/Ann(M)) = 0 (Example 2.7). By [2, Theorem 1], EndR(M) is a strongly
π-regular ring. 2

Proposition 2.14. Let M be an R-module. Then M is a semiartinian R-module if and only if
M ⊗N is a semiartinian R-module for every R-module N .

Proof. (⇒) Let N be an R-module and let 0 ̸= x =
∑n

i=1 xi ⊗ yi ∈ M ⊗ N where xi ∈ M
and yi ∈ N for every i ∈ {1, . . . , n}. Let M ′ = Rx1 + · · · + Rxn. Therefore Ann(M ′) ⊆
Ann(Rx) and M ′ is semiartinian as M ′ is a submodule of the semiartinian module M . Since
R/Ann(Rx) ∼= R/Ann(M ′)

Ann(Rx)/Ann(M ′) (as rings) and R/Ann(M ′) is a semiartinian ring (Corollary
2.13), R/Ann(Rx) is also a semiartinian ring by Lemma 2.4(i). Applying Proposition 2.9, we
conclude that M ⊗N is a semiartianian R-module.

(⇐) This follows by taking N = R and using the fact that M ⊗R ∼= M . 2
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3 Π-Semiartinian Modules

In this section, we wish to investigate the class of rings R for which every direct product of semi-
artinain R-modules is semiartinian. First we introduce the notion of Π-semiartinian modules.

Definition 3.1. An R-module M is called a Π-semiartinian module if the direct product M I is a
semiartinian module for every nonempty set I .

Proposition 3.2. Let M be a nonzero R-module. The following conditions are equivalent:
(i) M is a Π-semiartinian R-module;
(ii) R/Ann(M) is a semiartinian ring;
(iii) HomR(M,M) is a semiartinian R-module.

Proof. (i) ⇒ (ii) Let {xi}i∈I be a familly of generators of M . Consider the map f : R → M I

defined by f(a) = (axi)i∈I for every a ∈ R. Then f is R-linear and Kerf = Ann(M).
It follows that R/Ann(M) is isomorphic to a submodule of the semiartinian R-module M I .
Hence R/Ann(M) is semiartinian as R-module. Therefore R/Ann(M) is a semiartinian ring.

(ii) ⇒ (iii) Let 0 ̸= f ∈ HomR(M,M). Note that Ann(M) ⊆ Ann(Rf). Therefore
R/Ann(Rf) ∼= R/Ann(M)

Ann(Rf)/Ann(M) . But R/Ann(M) is a semiartinian ring. So R/Ann(Rf)

is a semiartinian ring (Lemma 2.4(i)). By Proposition 2.9, HomR(M,M) is a semiartinian
R-module.

(iii) ⇒ (ii) Consider the R-homorphism Ψ : R → HomR(M,M) such that for every r ∈ R,
Ψ(r) is the endomorphism of the R-module M defined by Ψ(r)(x) = rx for every x ∈ M . We
have KerΨ = Ann(M). Hence R/Ann(M) is isomorphic to a submodule of HomR(M,M).
By Lemma 2.1, R/Ann(M) is a semiartinian R-module and so R/Ann(M) is a semiartinian
ring.

(ii) ⇒ (i) Let I be a nonempty set. Since Ann(M I) = Ann(M) and R/Ann(M) is a semi-
artinian ring, the direct product M I is semiartinian as an R/Ann(M)-module and hence also as
an R-module. This completes the proof. 2

Combining Corollary 2.13 and Proposition 3.2, we get the following corollary.

Corollary 3.3. The following conditions are equivalent for a finitely generated R-module M :
(i) M is a Π-semiartinian R-module;
(ii) M is a semiartinian R-module;
(iii) HomR(M,M) is a semiartinian R-module.

Proposition 3.4. Let R be a ring. Then the class of Π-semiartinian R-modules is closed under
isomorphic images, submodules, factor modules and extensions.

Proof. It is easy to see that the class of Π-semiartinian R-modules is closed under isomorphic
images. Let M be an R-module and let N be a submodule of M .

Assume that M is a Π-semiartinian R-module. It is clear that Ann(M) ⊆ Ann(N) and
Ann(M) ⊆ Ann(M/N). Moreover, we have the following two ring isomorphisms:

R/Ann(N) ∼= R/Ann(M)
Ann(N)/Ann(M) and R/Ann(M/N) ∼= R/Ann(M)

Ann(M/N)/Ann(M) .

But the ring R/Ann(M) is semiartinian by Proposition 3.2. So R/Ann(N) and R/Ann(M/N)
are semiartinian rings by Lemma 2.4(i). From Proposition 3.2, it follows that N and M/N are
Π-semiartinian R-modules.

Now suppose that N and M/N are Π-semiartinian R-modules and let us show that M is a
Π-semiartinian module. By Proposition 3.2, R/Ann(N) and R/Ann(M/N) are semiartinian
rings. Applying Lemma 2.4(ii), we deduce that the ring R/(Ann(N) ∩ Ann(M/N)) is semi-
artinian. Therefore R/(Ann(N) ∩ Ann(M/N))2 is also a semiartinian ring by Corollary 2.5.
But (Ann(N) ∩ Ann(M/N)2 ⊆ Ann(M). Hence R/Ann(M) is also a semiartinian ring. By
Proposition 3.2, M is a Π-semiartinian R-module. 2

We call a ring R Π-semiartinian if every product of semiartinian R-modules is semiartinian.

Proposition 3.5. Let R be a semilocal ring such that m2 = m for every maximal ideal m of R.
Then R is a Π-semiartinian ring.
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Proof. Let {Mλ}λ∈Λ be a family of semiartinian R-modules and let M =
∏

λ∈Λ Mλ. Using [7,
Corollary 2.7] and [5, Theorem 5], we conclude that each Mλ (λ ∈ Λ) is semisimple. But over
a semilocal ring any product of semisimple modules is semisimple (see [1, Proposition 15.17]).
Therefore M is a semiartinian module. This proves the proposition. 2

Example 3.6. Let F be a field and let R be the ring of polynomials in countably many commuting
variables x1, x2, . . ., over F subject to the relations x2

1 = 0 and x2
n = xn−1 for n ≥ 2. This ring

appears in [16] in another context. The ring R is local and its maximal ideal m is generated by
all the xi, (i ≥ 1). Moreover, we have m2 = m. From Proposition 3.5, it follows that R is a
Π-semiartinian ring.

A ring R is called a valuation ring (or a chain ring) if any two ideals of R are comparable. It
is clear that if R is a valuation ring, then R is local and any finitely generated ideal of R is cyclic.

Lemma 3.7. Let R be a valuation ring and let m be its maximal ideal. If m is not finitely
generated, then m2 = m. The converse holds when R is not a field.

Proof. Suppose that m is not finitely generated and let A = R/ ∩n≥1 mn. Then A is a valuation
ring with Rad(A) = m/ ∩n≥1 mn and ∩n≥1(m/ ∩n≥1 mn)n = 0. By [8, Proposition 5.3], A is a
noetherian ring and so m/∩n≥1 mn is a cyclic ideal generated by an element a+∩n≥1mn, where
a ∈ m. Therefore m = Ra + ∩n≥1mn. If ∩n≥1mn ⊆ Ra, then m = Ra which is impossible
since m is not finitely generated. So Ra ⊆ ∩n≥1mn and hence m = ∩n≥1mn. Consequently,
m2 = m.

Now suppose that R is not a field and m2 = m. Then m is not finitely generated, since oth-
erwise m will be a direct summand of R and so R will be a field (see, for example, [1, p. 103
Exercise 12(3)]). 2

Corollary 3.8. Let R be a valuation ring and let m be its maximal ideal. If m is not finitely
generated, then R is a Π-semiartinian ring.

Proof. By Proposition 3.5 and Lemma 3.7. 2

Remark 3.9. Since the class of semiartinian R-modules is closed under submodules, factor mod-
ules and direct sums (Lemma 2.1), every module M has a semiartinian submodule Sa(M) which
is maximal for this property (see also [6, p. 29]) and we have

Sa(M) = {x ∈ M | Rx is a semiartinian R-module}.

Moreover, we have Sa(M) = {x ∈ M | x = 0 or R/Ann(x) is a semiartinian ring}.

Let R be a ring. If I is an ideal of R such that R/I is a semiartinian ring then we call I a
cosemiartinian ideal. Let S(R) denote the intersection of all cosemiartinian ideals of R. Clearly,
S(R) ⊆ Rad(R). Also, for every maximal ideal m of R, we have S(R) ⊆ ∩∞

k=1m
k (Corollary

2.5).
Let M be an R-module and let a be an ideal of R. We will denote by AnnM (a) the set

{m ∈ M | rm = 0 for every r ∈ a}.
Next, we characterize rings R for which the class of semiartinian R-modules is closed under

direct products.

Theorem 3.10. The following statements are equivalent for a ring R:

(i) The class of semiartinian R-modules is closed under direct products (that is, R is a Π-
semiartinian ring);

(ii) The class of Π-semiartinian R-modules is closed under direct sums;

(iii) The class of Π-semiartinian R-modules is closed under direct products;

(iv) Every semiartinian R-module is Π-semiartinian;



SEMIARTINIAN AND Π-SEMIARTINIAN MODULES 105

(v) For every nonzero R-module M , M is semiartinian if and only if R/Ann(M) is a semiar-
tinian ring;

(vi) For every family {Iλ}λ∈Λ of ideals of R such that each R/Iλ (λ ∈ Λ) is a semiartinian
ring, R/ ∩λ∈Λ Iλ is a semiartinian ring;

(vii) R/S(R) is a semiartinian ring;

(viii) For every R-module M , Sa(M) = AnnM (S(R)).

Proof. (i) ⇒ (iv) This is evident.
(iv) ⇒ (ii) This follows from the fact that any direct sum of semiartinian modules is semiar-

tinian (Lemma 2.1).
(ii) ⇒ (vi) Let {Iλ}λ∈Λ be a family of ideals of R such that R/Iλ is a semiartinian ring for

all λ ∈ Λ. Then R/Iλ is a Π-semiartinian R-module by Corollary 3.3. By hypothesis, M =
⊕λ∈ΛR/Iλ is a Π-semiartinian R-module. Hence R/Ann(M) = R/ ∩λ∈Λ Iλ is a semiartinian
ring by Proposition 3.2.

(vi) ⇒ (vii) This is immediate.
(vii) ⇒ (viii) Let M be a nonzero R-module and let 0 ̸= x ∈ M . Thus,
x ∈ Sa(M) ⇔ R/Ann(x) is a semiartinian ring.

⇔ S(R) ⊆ Ann(x) since R/S(R) is a semiartinian ring.
⇔ x ∈ AnnM (S(R)).

It follows that Sa(M) = AnnM (S(R)).
(viii) ⇒ (i) Let {Mλ}λ∈Λ be a family of semiartinian R-modules and let M =

∏
λ∈Λ Mλ. By

hypothesis, we have S(R)Mλ = 0 for all λ ∈ Λ. This clearly forces S(R)M = 0. It follows
that AnnM (S(R)) = M . But Sa(M) = AnnM (S(R)). Then M = Sa(M) is a semiartinian
module. Consequently, R is a Π-semiartinian ring.

(ii) ⇔ (iii) Let {Mλ}λ∈Λ be a familly of Π-semiartinian R-modules. Then

Ann(⊕λ∈ΛMλ) = Ann(
∏
λ∈Λ

Mλ) = ∩λ∈ΛAnn(Mλ).

Now use Proposition 3.2.
(iv) ⇔ (v) This follows from Proposition 3.2. 2

Recall that an R-module M is called a max module if every nonzero submodule of M contains
a maximal submodule. A ring R is called a max ring if every nonzero R-module is a max module.
Combining [9, Corollary 3.33E] and [10, Theorem A], we see that any semiartinian ring is a max
ring. A module M is called tall if it contains some submodule N such that both M/N and N
are non-noetherian. A ring R is called tall if every non-noetherian R-module is tall. By [13,
Corollary 1.2], every max ring is tall. Therefore every semiartinian ring is tall.

Corollary 3.11. Let R be a Π-semiartinian ring. Then the following hold:
(i) R/Rad(R) is a semiartinian von Neumann regular ring.
(ii) R/ ∩n≥1 mn is a semiartinian ring for every maximal ideal m of R.
(iii) R is a tall ring.

Proof. (i) By Theorem 3.10, R/S(R) is a semiartinian ring. But R/Rad(R) is a factor ring of
R/S(R) since S(R) ⊆ Rad(R). Thus R/Rad(R) is a semiartinian ring and hence it is also a
von Neumann regular ring (see Lemma 2.1(iii)).

(ii) Let m ∈ Max(R) and let n ≥ 1. Then R/mn is a semiartinian ring by Corollary 2.5.
From Theorem 3.10, it follows that R/ ∩n≥1 mn is a semiartinian ring.

(iii) Let m ∈ Max(R). By (ii), R/∩n≥1 mn is a semiartinian ring and hence it is a max ring.
By [13, Corollary 1.2], R/ ∩n≥1 mn is a tall ring. Therefore R is a tall ring by [13, Corollary
2.7]. 2

Proposition 3.12. Let R be a ring.
(i) Assume that R is noetherian. Then R is Π-semiartinian if and only if R is artinian.
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(ii) Assume that R is a Prüfer domain. If R is Π-semiartinian, then m2 = m for every
maximal ideal m of R.

(iii) Assume that R is a valuation ring with maximal ideal m. Then R is Π-semiartinian if
and only if R is artinian or m is not finitely generated.

Proof. (i) (⇒) By Corollary 3.11, R is a tall ring. Now use [13, Proposition 2.10].
(⇐) This follows from the fact that every artinian ring is semiartinian.
(ii) Let m ∈ Max(R). By Corollary 3.11, A = R/ ∩n≥1 mn is a semiartinian ring and so it

is zero dimensional (Example 2.7). By [3, Theorem 2.7], we have
√∩n≥1mn = ∩n≥1mn. This

implies that A is a reduced ring. Therefore A is a von Neumann regular ring by [12, Theorem
1.16]. Consequently, (m/ ∩n≥1 mn)2 = m/ ∩n≥1 mn. Thus, m2 = m.

(iii) (⇒) By Corollary 3.11, R is a tall ring. Now apply [13, Corollary 2.11].
(⇐) If R is artinian, then R is semiartinian and so it is Π-semiartinian. Now if m is not

finitely generated, then R is Π-semiartinian by Corollary 3.8. 2

Corollary 3.13. Let R be a valuation domain which is not a field with maximal ideal m. Then
the following conditions are equivalent:

(i) R is a Π-semiartinian ring;
(ii) m is not finitely generated;
(iii) m2 = m.

Proof. This follows easily from Lemma 3.7 and Proposition 3.12(iii). 2

Next, we present an example showing that the class of semiartinian rings is larger than that
of Π-semiartinian rings.

Remark 3.14. (i) Let Z be the ring of integers. Since Rad(Z) = 0 and Z is not a von Neumann
regular ring, Z is not a Π-semiartinian ring by Corollary 3.11.

(ii) It is shown in [11, Example 8.4.8] that there exists a valuation domain R which not a
field such that the maximal ideal of R is idempotent. Clearly, the ring R is not semiartinian as
Soc(R) = 0. On the other hand, R is a Π-semiartinian ring by Corollary 3.13.
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[13] T. Penk and J. Žemlička, Commutative tall rings, J. Algebra Appl. 13(4), 1350129 (11 pages) (2014).

[14] B. Stenström, Rings of Quotients: An Introduction to Methods of Ring Theory, 217, Springer-Verlag, New
York (1975).



SEMIARTINIAN AND Π-SEMIARTINIAN MODULES 107

[15] H. H. Storrer, Epimorphismen von kommutativen ringen, Comment. Math. Helv. 43, 387-401 (1968).

[16] H. H. Storrer, On Goldman’s primary decomposition, Lecture Notes in Math. 246, 617-661 (1972).

Author information
Farid Kourki, Centre Régional des Métiers de l’Education et de la Formation (CRMEF)-Tanger, Annexe de
Larache, B.P. 4063, Larache, Morocco.
E-mail: kourkifarid@hotmail.com

Rachid Tribak, Centre Régional des Métiers de l’Education et de la Formation (CRMEF)-Tanger, Avenue My
Abdelaziz, Souani, B.P. 3117, Tangier, Morocco.
E-mail: tribak12@yahoo.com


