On SEMIARTINIAN AND Π-SEMIARTINIAN MODULES

Farid Kourki and Rachid Tribak

Communicated by Najib Mahdou

MSC 2010 Classifications: Primary 16D10, 16D99; Secondary 13C99.

Keywords and phrases: Semiartinian modules (rings), Π -semiartinian modules (rings).

Abstract All rings will be commutative with identity. A module M is called Π -semiartinian if the direct product M^I is a semiartinian module for every nonempty set I. A ring R is said to be Π -semiartinian if every product of semiartinian R-modules is semiartinian. It is shown that the class of Π -semiartinian R-modules is closed under isomorphic images, submodules, factor modules and extensions. We prove that an R-module M is Π -semiartinian if and only if R/Ann(M) is a semiartinian ring. We also provide a characterization of Π -semiartinian rings.

1 Introduction

Throughout this article, all rings considered are assumed to be commutative rings with an identity and R denotes such a ring. All modules are unital. We denote respectively by Spec(R) and Max(R) the set of all prime ideals of R and the set of all maximal ideals of R. Let M be an R-module and let $x \in M$. By Ann(x) and Ann(M) we denote the *annihilator* of x and M, respectively; i.e. $Ann(x) = \{r \in R \mid rx = 0\}$ and $Ann(M) = \{r \in R \mid rM = 0\}$. The notation $N \subseteq M$ means that N is a subset of M and $N \leq M$ means that N is a submodule of M. If M_1 and M_2 are two R-modules, $Hom_R(M_1, M_2)$ will denote the set of R-homomorphisms from M_1 to M_2 . By \mathbb{Z} we denote the ring of integer numbers.

A module M is called *semiartinian* if every nonzero factor module of M has nonzero socle. In Section 2, we investigate some basic properties of semiartinian modules and we provide a new characterization of this kind of modules (Proposition 2.9).

In Section 3, we introduce the notions of Π -semiartinian rings and Π -semiartinian modules. We call a module $M \Pi$ -semiartinian if the direct product M^I is a semiartinian module for every nonempty set I. A ring R is said to be Π -semiartinian if every product of semiartinian R-modules is semiartinian. We prove that a module M is Π -semiartinian if and only if R/Ann(M) is a semiartinian ring (Proposition 3.2). It is also shown that the class of Π semiartinian R-modules is closed under isomorphic images, submodules, factor modules and extensions (Proposition 3.4). We show that the class of Π -semiartinian rings contains the class of semilocal rings R such that $\mathfrak{m}^2 = \mathfrak{m}$ for every $\mathfrak{m} \in Max(R)$ (Proposition 3.5). A characterization of Π -semiartinian rings is provided (Theorem 3.10).

2 Semiartinian Modules

Recall that an *R*-module *M* is called *semiartinian* if every nonzero factor module of *M* has nonzero socle. A ring *R* is called *semiartinian* if it is semiartinian as an *R*-module. Note that a ring *R* is semiartinian if and only if every *R*-module is semiartinian (see [14, p. 183 Proposition 2.5]). Recall that a subset *I* of a ring *R* is called *T*-nilpotent if for every sequence a_1, a_2, \ldots in *I* there exists an integer $n \ge 1$ such that $a_1 \ldots a_n = 0$.

We begin with the following lemma which will be useful to our work in this article.

Lemma 2.1. (i) The class of semiartinian modules is closed under taking isomorphic images, submodules, factor modules, direct sums and module extensions.

(ii) A ring R is semiartinian if and only if Rad(R) is T-nilpotent and R/Rad(R) is a semiartinian ring.

(iii) If R is a semiartinian ring, then R/Rad(R) is a von Neumann regular ring.

Proof. (i) See [6, p. 28-29].

(ii) See [14, p. 184 Proposition 2.8].

(iii) See [9, Corollary 3.33E]. \Box

Example 2.2. From [4, Theorem P], it follows that every perfect ring is semiartinian.

The proof of the following lemma is straightforward and is omitted.

Lemma 2.3. Let I be a be a proper ideal of a ring R. Then R/I is a semiartinian ring if and only if R/I is a semiartinian R-module.

The next lemma will be of interest.

Lemma 2.4. Let *R* be a commutative ring. Then:

(i) If R is a semiartinian ring, then R/a is a semiartinian ring for any proper ideal a of R.
(ii) R/a ∩ b and R/ab are semiartinian rings whenever a and b are proper ideals of R such that R/a and R/b are semiatinian rings.

Proof. (i) This follows from Lemmas 2.1(i) and 2.3.

(ii) Assume that R/\mathfrak{a} and R/\mathfrak{b} are semiartinian rings. Then $\mathfrak{b}/\mathfrak{a}\mathfrak{b}$ is a semiartinian R/\mathfrak{a} -module and hence it is a semiartinian R-module. Moreover, R/\mathfrak{b} is a semiartinian R-module. We have the following exact sequence of R-modules:

$$0 \to \mathfrak{b}/\mathfrak{ab} \to R/\mathfrak{ab} \to R/\mathfrak{b} \to 0.$$

But the class of semiartinian modules is closed under extensions (Lemma 2.1(i)). So R/ab is a semiartinian R-module. In addition, since $R/a \cap b$ is a factor ring of R/ab, $R/a \cap b$ is also a semiartinian ring by (i). \Box

Corollary 2.5. Let a be a proper ideal of a ring R. The following conditions are equivalent:

(i) R/\mathfrak{a} is a semiartinian ring;

(ii) R/\mathfrak{a}^n is a semiatinian ring for every integer $n \ge 1$;

(iii) R/\mathfrak{a}^m is a semiatinian ring for some integer $m \ge 1$.

Proof. (i) \Rightarrow (ii) By induction and using Lemma 2.4(ii).

(ii) \Rightarrow (iii) This is clear.

(iii) \Rightarrow (i) Let $m \ge 1$ such that R/\mathfrak{a}^m is semiartinian. Then R/\mathfrak{a} is a semiartinian ring being a factor ring of R/\mathfrak{a}^m (see Lemma 2.4(i)). \Box

Corollary 2.6. *The following are equivalent for a ring R*:

(i) *R* is a semiartinian ring;

(ii) There exists a maximal ideal \mathfrak{m} of R such that $R/Ann(\mathfrak{m})$ is a semiartinian ring;

(iii) There exists an ideal \mathfrak{a} of R such that R/\mathfrak{a} and $R/Ann(\mathfrak{a})$ are semiartinian rings.

Proof. (i) \Rightarrow (ii) This follows from the fact that any factor ring of a semiartinian ring is semiartinian (Lemma 2.4(i)).

(ii) \Rightarrow (iii) It suffices to take $\mathfrak{a} = \mathfrak{m}$.

(iii) \Rightarrow (i) By Lemma 2.4(ii), $R/(\mathfrak{a}Ann(\mathfrak{a}))$ is a semiartinian ring. Therefore R is a semiartinian ring as $\mathfrak{a}Ann(\mathfrak{a}) = 0$. \Box

Recall that a ring R is said to be *zero dimensional* (or of *Krull dimension zero*), and we write dim(R) = 0, if every prime ideal of R is maximal.

Example 2.7. Every commutative semiartinian ring is zero dimensional. To see this, if R is such a ring and if J = Rad(R), then J is T-nilpotent and the ring R/J is von Neumann regular (Lemma 2.1). Hence J is a nil ideal. This yields J = N, where N is the nil radical of R. Therefore R/N is a von Neumann regular ring and so dim(R) = 0 (see [12, Theorem 1.16]).

For an *R*-module *M* and an ideal *I* of *R*, *I* is said to be *T*-nilpotent on *M* if for every $x \in M$ and every sequence $a_1, a_2, \ldots \in I$ there exists an integer $n \ge 1$ such that $a_1 \ldots a_n x = 0$.

Let *M* be an *R*-module. We say that a prime ideal \mathfrak{p} of *R* is an *associated prime* of *M* if $\mathfrak{p} = Ann(x)$ for some $x \in M$. The set of associated primes of *M* is denoted by Ass(M). The support of *M* is $Supp(M) = \{\mathfrak{p} \in Spec(R) \mid \mathfrak{p} \supseteq Ann(x) \text{ for some } x \in M\}$. We denote by MaxSupp(M) the set of all maximal members in Supp(M). Let $J(M) = \bigcap_{\mathfrak{m} \in MaxSupp(M)}\mathfrak{m}$. In the case when *M* is finitely generated, it is easy to see that $Supp(M) = \{\mathfrak{p} \in Spec(R) \mid \mathfrak{p} \supseteq Ann(M)\}$ and hence Rad(R/Ann(M)) = J(M)/Ann(M).

Lemma 2.8. Let M be a finitely generated R-module. Then:

(i) Rad(R/Ann(M)) = J(M)/Ann(M).

(ii) Rad(R/Ann(M)) is a T-nilpotent ideal of R/Ann(M) if and only if J(M) is T-nilpotent on M.

Proof. (i) This is clear.

(ii) (\Rightarrow) This follows from (i).

(\Leftarrow) Assume that $M = Rx_1 + \cdots + Rx_n$. Note that J(M)/Ann(M) = Rad(R/Ann(M)). Let a_1, a_2, \ldots be a sequence in J(M). For every $i \in \{1, \ldots, n\}$, there exists an integer $k_i \ge 1$ such that $a_1 \ldots a_{k_i} x_i = 0$ since J(M) is T-nilpotent on M. Let $k = max(k_1, \ldots, k_n)$. Then $a_1 \ldots a_k x_i = 0$ for every $i \in \{1, \ldots, n\}$. This implies that $a_1 \ldots a_k \in Ann(M)$. Thus $(a_1 \ldots a_k) + Ann(M) = 0 + Ann(M)$. Therefore Rad(R/Ann(M)) is a T-nilpotent ideal of R/Ann(M). \Box

We will say that an *R*-module *M* is a zero dimensional module, and we write dimM = 0, if every prime ideal in Supp(M) is maximal, that is, Supp(M) = MaxSupp(M). It is clear that dimM = 0 if and only if R/Ann(x) is a zero dimensional ring for any nonzero element $x \in M$.

Let M be an R-module. An R-module N is called M-generated if it is a homomorphic image of a direct sum of copies of M. An R-module N is said to be subgenerated by M if N is isomorphic to a submodule of an M-generated module. Let R-Mod denotes the category of all R-modules. We denote by $\sigma[M]$ the full subcategory of R-Mod whose objects are all R-modules subgenerated by M.

Next, we exhibit a characterization of semiartinian modules.

Proposition 2.9. The following statements are equivalent for a nonzero *R*-module *M*:

- (i) *M* is a semiartinian *R*-module;
- (ii) Every nonzero cyclic submodule of M is semiartinian;
- (iii) Every nonzero finitely generated submodule N of M is semiartinian;
- (iv) R/Ann(x) is a semiartinian ring for every $0 \neq x \in M$;
- (v) R/Ann(N) is a semiartinian ring for every nonzero finitely generated submodule N of M;
- (vi) R/J(Rx) is semiartinian and J(Rx) is T-nilpotent on Rx for every $0 \neq x \in M$;
- (vii) R/J(N) is semiartinian and J(N) is T-nilpotent on N for every nonzero finitely generated submodule N of M;
- (viii) dim(M) = 0 and $Ass(N) \neq \emptyset$ for any $0 \neq N \in \sigma[M]$.

Proof. Since the class of semiartinian modules is closed under submodules, factor modules and direct sums (Lemma 2.1), it follows that for any family $\{N_i\}_{i \in I}$ of submodules of a module M, the sum $\sum_{i \in I} N_i$ is a semiartinian module if and only if each N_i is a semiartinian module (see also [6, p. 29]). From this remark it is easy to deduce the equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iii).

(ii) \Leftrightarrow (iv) If $0 \neq x \in M$, then $Rx \cong R/Ann(x)$. So, Rx is a semiartinian *R*-module if and only if R/Ann(x) is a semiartinian ring.

 $(v) \Rightarrow (iv)$ Clear.

(iv) \Rightarrow (v) Let $N = Rx_1 + \cdots + Rx_n$ be a nonzero finitely generated submodule of M such that $x_i \neq 0$ for every $i \in \{1, \ldots, n\}$. Note that $Ann(N) = \bigcap_{i=1}^n Ann(x_i)$. By hypothesis, $R/Ann(x_i)$ is a semiartinian ring for each $i \in \{1, \ldots, n\}$. By using (ii) of Lemma 2.4 and by induction on n, we see that R/Ann(N) is a semiartinian ring.

(iv) \Leftrightarrow (vi) Let $0 \neq x \in M$. By Lemma 2.1, A = R/Ann(x) is a semiartinian ring if and only if A/Rad(A) is a semiartinian ring and Rad(A) is a T-nilpotent ideal of A. Using Lemma 2.8, we obtain the equivalence.

 $(v) \Leftrightarrow (vii)$ Similar to the proof of the equivalence $(iv) \Leftrightarrow (vi)$.

(ii) \Rightarrow (viii) Let $0 \neq x \in M$. Then R/Ann(x) is semiartinian and so it is a zero dimensional ring (Example 2.7). Hence dim(M) = 0. Let $0 \neq N \in \sigma[M]$. By (i) of Lemma 2.1, N is also semiartinian. Thus $Soc(N) \neq 0$. Let Ry be a simple submodule of N. Then Ann(y) is a maximal ideal of R and so $Ann(y) \in Ass(N)$.

(viii) \Rightarrow (i) Let $0 \neq N \leq M$. Then $M/N \in \sigma[M]$ and so $Ass(M/N) \neq \emptyset$. Let $\mathfrak{p} \in Ass(M/N)$. Then there exists $0 \neq y \in M/N$ such that $\mathfrak{p} = Ann(y)$. Since dim(M) = 0, it is easy to see that dim(M/N) = 0. It follows that \mathfrak{p} is a maximal ideal of R. Therefore, Ry is a simple submodule of M/N. This implies that M is a semiartinian module. \Box

Example 2.10. (i) From Proposition 2.9, it follows immediately that a \mathbb{Z} -module M is semiartinian if and only if M is a torsion module.

Corollary 2.11. Let M be a semiartinian module. Then J(M) is T-nilpotent on M.

Proof. Let $0 \neq x \in M$. By Proposition 2.9, J(Rx) is T-nilpotent on Rx. But $J(M) \subseteq J(Rx)$. So J(M) is T-nilpotent on Rx. The result follows. \Box

Remark 2.12. Let M be an R-module. Since $Rad(R) \subseteq J(M)$, it follows that Rad(R) is Tnilpotent on every semiartinian R-module by Corollary 2.11. This shows that Corollary 2.11 is a generalization of [14, Proposition 2.6] in the commutative case.

Recall that a ring R (not necessarily commutative) is said to be π -regular if for any $a \in R$, there is an integer $n \ge 1$ and $b \in R$ such that $a^n = a^n b a^n$. The ring R is called *strongly* π -regular if for each $a \in R$, there is an integer $n \ge 1$ and $b \in R$ such that $a^n = a^{n+1}b$. It is shown in [15, Lemma 5.6] that a commutative ring R is π -regular if and only if dim(R) = 0.

Corollary 2.13. Let *M* be a finitely generated *R*-module. Then the following statements are equivalent:

(i) M is a semiartinian module;
(ii) R/Ann(M) is a semiartinian ring;
(iii) R/J(M) is semiartinian and J(M) is T-nilpotent on M;
Moreover, if M is a semiartinian module, then End_R(M) is a strongly π-regular ring.

Proof. (i) \Leftrightarrow (ii) and (i) \Rightarrow (iii) These follow from Proposition 2.9.

(iii) \Rightarrow (ii) Since *M* is finitely generated, it follows that J(M) is T-nilpotent on *M* if and only if Rad(R/Ann(M)) = J(M)/Ann(M) is a *T*-nilpotent ideal of A = R/Ann(M) (Lemma 2.8). In addition, it is clear that R/J(M) is semiartinian if and only if A/Rad(A) is semiartinian. Now apply (ii) of Lemma 2.1.

Now assume that M is a semiartinian R-module. Hence R/Ann(M) is a semiartinian ring. Therefore dim(R/Ann(M)) = 0 (Example 2.7). By [2, Theorem 1], $End_R(M)$ is a strongly π -regular ring. \Box

Proposition 2.14. Let M be an R-module. Then M is a semiartinian R-module if and only if $M \otimes N$ is a semiartinian R-module for every R-module N.

Proof. (\Rightarrow) Let N be an R-module and let $0 \neq x = \sum_{i=1}^{n} x_i \otimes y_i \in M \otimes N$ where $x_i \in M$ and $y_i \in N$ for every $i \in \{1, ..., n\}$. Let $M' = Rx_1 + \cdots + Rx_n$. Therefore $Ann(M') \subseteq Ann(Rx)$ and M' is semiartinian as M' is a submodule of the semiartinian module M. Since $R/Ann(Rx) \cong \frac{R/Ann(M')}{Ann(Rx)/Ann(M')}$ (as rings) and R/Ann(M') is a semiartinian ring (Corollary 2.13), R/Ann(Rx) is also a semiartinian ring by Lemma 2.4(i). Applying Proposition 2.9, we conclude that $M \otimes N$ is a semiartinian R-module.

(\Leftarrow) This follows by taking N = R and using the fact that $M \otimes R \cong M$. \Box

3 Π-Semiartinian Modules

In this section, we wish to investigate the class of rings R for which every direct product of semiartinain R-modules is semiartinian. First we introduce the notion of Π -semiartinian modules.

Definition 3.1. An *R*-module *M* is called a Π -semiartinian module if the direct product M^I is a semiartinian module for every nonempty set *I*.

Proposition 3.2. Let M be a nonzero R-module. The following conditions are equivalent:

- (i) M is a Π -semiartinian R-module;
- (ii) R/Ann(M) is a semiartinian ring;
- (iii) $Hom_R(M, M)$ is a semiartinian *R*-module.

Proof. (i) \Rightarrow (ii) Let $\{x_i\}_{i \in I}$ be a family of generators of M. Consider the map $f : R \to M^I$ defined by $f(a) = (ax_i)_{i \in I}$ for every $a \in R$. Then f is R-linear and Kerf = Ann(M). It follows that R/Ann(M) is isomorphic to a submodule of the semiartinian R-module M^I . Hence R/Ann(M) is semiartinian as R-module. Therefore R/Ann(M) is a semiartinian ring.

(ii) \Rightarrow (iii) Let $0 \neq f \in Hom_R(M, M)$. Note that $Ann(M) \subseteq Ann(Rf)$. Therefore $R/Ann(Rf) \cong \frac{R/Ann(M)}{Ann(Rf)/Ann(M)}$. But R/Ann(M) is a semiartinian ring. So R/Ann(Rf) is a semiartinian ring (Lemma 2.4(i)). By Proposition 2.9, $Hom_R(M, M)$ is a semiartinian R-module.

(iii) \Rightarrow (ii) Consider the *R*-homorphism $\Psi : R \to Hom_R(M, M)$ such that for every $r \in R$, $\Psi(r)$ is the endomorphism of the *R*-module *M* defined by $\Psi(r)(x) = rx$ for every $x \in M$. We have $Ker\Psi = Ann(M)$. Hence R/Ann(M) is isomorphic to a submodule of $Hom_R(M, M)$. By Lemma 2.1, R/Ann(M) is a semiartinian *R*-module and so R/Ann(M) is a semiartinian ring.

(ii) \Rightarrow (i) Let *I* be a nonempty set. Since $Ann(M^{I}) = Ann(M)$ and R/Ann(M) is a semiartinian ring, the direct product M^{I} is semiartinian as an R/Ann(M)-module and hence also as an *R*-module. This completes the proof. \Box

Combining Corollary 2.13 and Proposition 3.2, we get the following corollary.

Corollary 3.3. The following conditions are equivalent for a finitely generated *R*-module *M*:

- (i) M is a Π -semiartinian R-module;
- (ii) M is a semiartinian R-module;
- (iii) $Hom_R(M, M)$ is a semiartinian *R*-module.

Proposition 3.4. Let R be a ring. Then the class of Π -semiartinian R-modules is closed under isomorphic images, submodules, factor modules and extensions.

Proof. It is easy to see that the class of Π -semiartinian *R*-modules is closed under isomorphic images. Let *M* be an *R*-module and let *N* be a submodule of *M*.

Assume that M is a Π -semiartinian R-module. It is clear that $Ann(M) \subseteq Ann(N)$ and $Ann(M) \subseteq Ann(M/N)$. Moreover, we have the following two ring isomorphisms:

$$R/Ann(N) \cong \frac{R/Ann(M)}{Ann(N)/Ann(M)}$$
 and $R/Ann(M/N) \cong \frac{R/Ann(M)}{Ann(M/N)/Ann(M)}$.

But the ring R/Ann(M) is semiartinian by Proposition 3.2. So R/Ann(N) and R/Ann(M/N) are semiartinian rings by Lemma 2.4(i). From Proposition 3.2, it follows that N and M/N are Π -semiartinian R-modules.

Now suppose that N and M/N are Π -semiartinian R-modules and let us show that M is a Π -semiartinian module. By Proposition 3.2, R/Ann(N) and R/Ann(M/N) are semiartinian rings. Applying Lemma 2.4(ii), we deduce that the ring $R/(Ann(N) \cap Ann(M/N))$ is semiartinian. Therefore $R/(Ann(N) \cap Ann(M/N))^2$ is also a semiartinian ring by Corollary 2.5. But $(Ann(N) \cap Ann(M/N)^2 \subseteq Ann(M)$. Hence R/Ann(M) is also a semiartinian ring. By Proposition 3.2, M is a Π -semiartinian R-module. \Box

We call a ring $R \Pi$ -semiartinian if every product of semiartinian R-modules is semiartinian.

Proposition 3.5. Let R be a semilocal ring such that $\mathfrak{m}^2 = \mathfrak{m}$ for every maximal ideal \mathfrak{m} of R. Then R is a Π -semiartinian ring.

Proof. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of semiartinian *R*-modules and let $M = \prod_{\lambda \in \Lambda} M_{\lambda}$. Using [7, Corollary 2.7] and [5, Theorem 5], we conclude that each M_{λ} ($\lambda \in \Lambda$) is semisimple. But over a semilocal ring any product of semisimple modules is semisimple (see [1, Proposition 15.17]). Therefore *M* is a semiartinian module. This proves the proposition. \Box

Example 3.6. Let F be a field and let R be the ring of polynomials in countably many commuting variables x_1, x_2, \ldots , over F subject to the relations $x_1^2 = 0$ and $x_n^2 = x_{n-1}$ for $n \ge 2$. This ring appears in [16] in another context. The ring R is local and its maximal ideal m is generated by all the x_i , $(i \ge 1)$. Moreover, we have $\mathfrak{m}^2 = \mathfrak{m}$. From Proposition 3.5, it follows that R is a Π -semiartinian ring.

A ring R is called a *valuation ring* (or a *chain ring*) if any two ideals of R are comparable. It is clear that if R is a valuation ring, then R is local and any finitely generated ideal of R is cyclic.

Lemma 3.7. Let R be a valuation ring and let \mathfrak{m} be its maximal ideal. If \mathfrak{m} is not finitely generated, then $\mathfrak{m}^2 = \mathfrak{m}$. The converse holds when R is not a field.

Proof. Suppose that \mathfrak{m} is not finitely generated and let $A = R / \bigcap_{n \ge 1} \mathfrak{m}^n$. Then A is a valuation ring with $Rad(A) = \mathfrak{m} / \bigcap_{n \ge 1} \mathfrak{m}^n$ and $\bigcap_{n \ge 1} (\mathfrak{m} / \bigcap_{n \ge 1} \mathfrak{m}^n)^n = 0$. By [8, Proposition 5.3], A is a noetherian ring and so $\mathfrak{m} / \bigcap_{n \ge 1} \mathfrak{m}^n$ is a cyclic ideal generated by an element $a + \bigcap_{n \ge 1} \mathfrak{m}^n$, where $a \in \mathfrak{m}$. Therefore $\mathfrak{m} = Ra + \bigcap_{n \ge 1} \mathfrak{m}^n$. If $\bigcap_{n \ge 1} \mathfrak{m}^n \subseteq Ra$, then $\mathfrak{m} = Ra$ which is impossible since \mathfrak{m} is not finitely generated. So $Ra \subseteq \bigcap_{n \ge 1} \mathfrak{m}^n$ and hence $\mathfrak{m} = \bigcap_{n \ge 1} \mathfrak{m}^n$. Consequently, $\mathfrak{m}^2 = \mathfrak{m}$.

Now suppose that R is not a field and $\mathfrak{m}^2 = \mathfrak{m}$. Then \mathfrak{m} is not finitely generated, since otherwise \mathfrak{m} will be a direct summand of R and so R will be a field (see, for example, [1, p. 103 Exercise 12(3)]). \Box

Corollary 3.8. Let R be a valuation ring and let \mathfrak{m} be its maximal ideal. If \mathfrak{m} is not finitely generated, then R is a Π -semiartinian ring.

Proof. By Proposition 3.5 and Lemma 3.7. \Box

Remark 3.9. Since the class of semiartinian R-modules is closed under submodules, factor modules and direct sums (Lemma 2.1), every module M has a semiartinian submodule Sa(M) which is maximal for this property (see also [6, p. 29]) and we have

 $Sa(M) = \{x \in M \mid Rx \text{ is a semiartinian } R \text{-module}\}.$

Moreover, we have $Sa(M) = \{x \in M \mid x = 0 \text{ or } R/Ann(x) \text{ is a semiartinian ring}\}.$

Let R be a ring. If I is an ideal of R such that R/I is a semiartinian ring then we call I a *cosemiartinian ideal*. Let $\mathfrak{S}(R)$ denote the intersection of all cosemiartinian ideals of R. Clearly, $\mathfrak{S}(R) \subseteq Rad(R)$. Also, for every maximal ideal \mathfrak{m} of R, we have $\mathfrak{S}(R) \subseteq \bigcap_{k=1}^{\infty} \mathfrak{m}^k$ (Corollary 2.5).

Let *M* be an *R*-module and let \mathfrak{a} be an ideal of *R*. We will denote by $Ann_M(\mathfrak{a})$ the set $\{m \in M \mid rm = 0 \text{ for every } r \in \mathfrak{a}\}.$

Next, we characterize rings R for which the class of semiartinian R-modules is closed under direct products.

Theorem 3.10. *The following statements are equivalent for a ring R:*

- (i) The class of semiartinian R-modules is closed under direct products (that is, R is a Πsemiartinian ring);
- (ii) The class of Π -semiartinian *R*-modules is closed under direct sums;
- (iii) The class of Π -semiartinian *R*-modules is closed under direct products;
- (iv) Every semiartinian R-module is Π -semiartinian;

- (v) For every nonzero R-module M, M is semiartinian if and only if R/Ann(M) is a semiartinian ring;
- (vi) For every family $\{I_{\lambda}\}_{\lambda \in \Lambda}$ of ideals of R such that each R/I_{λ} ($\lambda \in \Lambda$) is a semiartinian ring, $R/\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a semiartinian ring;
- (vii) $R/\mathfrak{S}(R)$ is a semiartinian ring;
- (viii) For every R-module M, $Sa(M) = Ann_M(\mathfrak{S}(R))$.

Proof. (i) \Rightarrow (iv) This is evident.

(iv) \Rightarrow (ii) This follows from the fact that any direct sum of semiartinian modules is semiartinian (Lemma 2.1).

(ii) \Rightarrow (vi) Let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be a family of ideals of R such that R/I_{λ} is a semiartinian ring for all $\lambda \in \Lambda$. Then R/I_{λ} is a Π -semiartinian R-module by Corollary 3.3. By hypothesis, $M = \bigoplus_{\lambda \in \Lambda} R/I_{\lambda}$ is a Π -semiartinian R-module. Hence $R/Ann(M) = R/\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a semiartinian ring by Proposition 3.2.

 $(vi) \Rightarrow (vii)$ This is immediate.

(vii) \Rightarrow (viii) Let M be a nonzero R-module and let $0 \neq x \in M$. Thus,

 $x \in Sa(M) \quad \Leftrightarrow \quad R/Ann(x) \text{ is a semiartinian ring.}$

$$\Leftrightarrow \mathfrak{S}(R) \subseteq Ann(x)$$
 since $R/\mathfrak{S}(R)$ is a semiartinian ring.

 $\Leftrightarrow \quad x \in Ann_M(\mathfrak{S}(R)).$

It follows that $Sa(M) = Ann_M(\mathfrak{S}(R))$.

(viii) \Rightarrow (i) Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of semiartinian *R*-modules and let $M = \prod_{\lambda \in \Lambda} M_{\lambda}$. By hypothesis, we have $\mathfrak{S}(R)M_{\lambda} = 0$ for all $\lambda \in \Lambda$. This clearly forces $\mathfrak{S}(R)M = 0$. It follows that $Ann_{M}(\mathfrak{S}(R)) = M$. But $Sa(M) = Ann_{M}(\mathfrak{S}(R))$. Then M = Sa(M) is a semiartinian module. Consequently, *R* is a Π -semiartinian ring.

(ii) \Leftrightarrow (iii) Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of Π -semiartinian *R*-modules. Then

$$Ann(\oplus_{\lambda\in\Lambda}M_{\lambda}) = Ann(\prod_{\lambda\in\Lambda}M_{\lambda}) = \cap_{\lambda\in\Lambda}Ann(M_{\lambda}).$$

Now use Proposition 3.2.

(iv) \Leftrightarrow (v) This follows from Proposition 3.2. \Box

Recall that an *R*-module *M* is called a *max module* if every nonzero submodule of *M* contains a maximal submodule. A ring *R* is called a *max ring* if every nonzero *R*-module is a max module. Combining [9, Corollary 3.33E] and [10, Theorem A], we see that any semiartinian ring is a max ring. A module *M* is called *tall* if it contains some submodule *N* such that both M/N and *N* are non-noetherian. A ring *R* is called *tall* if every non-noetherian *R*-module is tall. By [13, Corollary 1.2], every max ring is tall. Therefore every semiartinian ring is tall.

Corollary 3.11. Let R be a Π -semiartinian ring. Then the following hold:

- (i) R/Rad(R) is a semiartinian von Neumann regular ring.
- (ii) $R / \cap_{n \ge 1} \mathfrak{m}^n$ is a semiartinian ring for every maximal ideal \mathfrak{m} of R.
- (iii) R is a tall ring.

Proof. (i) By Theorem 3.10, $R/\mathfrak{S}(R)$ is a semiartinian ring. But R/Rad(R) is a factor ring of $R/\mathfrak{S}(R)$ since $\mathfrak{S}(R) \subseteq Rad(R)$. Thus R/Rad(R) is a semiartinian ring and hence it is also a von Neumann regular ring (see Lemma 2.1(iii)).

(ii) Let $\mathfrak{m} \in Max(R)$ and let $n \ge 1$. Then R/\mathfrak{m}^n is a semiartinian ring by Corollary 2.5. From Theorem 3.10, it follows that $R/\bigcap_{n\ge 1}\mathfrak{m}^n$ is a semiartinian ring.

(iii) Let $\mathfrak{m} \in Max(R)$. By (ii), $R/ \cap_{n \ge 1} \mathfrak{m}^n$ is a semiartinian ring and hence it is a max ring. By [13, Corollary 1.2], $R/ \cap_{n \ge 1} \mathfrak{m}^n$ is a tall ring. Therefore R is a tall ring by [13, Corollary 2.7]. \Box

Proposition 3.12. *Let R be a ring.*

(i) Assume that R is noetherian. Then R is Π -semiartinian if and only if R is artinian.

(ii) Assume that R is a Prüfer domain. If R is Π -semiartinian, then $\mathfrak{m}^2 = \mathfrak{m}$ for every maximal ideal \mathfrak{m} of R.

(iii) Assume that R is a valuation ring with maximal ideal \mathfrak{m} . Then R is Π -semiartinian if and only if R is artinian or \mathfrak{m} is not finitely generated.

Proof. (i) (\Rightarrow) By Corollary 3.11, R is a tall ring. Now use [13, Proposition 2.10].

 (\Leftarrow) This follows from the fact that every artinian ring is semiartinian.

(ii) Let $\mathfrak{m} \in Max(R)$. By Corollary 3.11, $A = R / \bigcap_{n \ge 1} \mathfrak{m}^n$ is a semiartinian ring and so it is zero dimensional (Example 2.7). By [3, Theorem 2.7], we have $\sqrt{\bigcap_{n \ge 1} \mathfrak{m}^n} = \bigcap_{n \ge 1} \mathfrak{m}^n$. This implies that A is a reduced ring. Therefore A is a von Neumann regular ring by [12, Theorem 1.16]. Consequently, $(\mathfrak{m} / \bigcap_{n \ge 1} \mathfrak{m}^n)^2 = \mathfrak{m} / \bigcap_{n \ge 1} \mathfrak{m}^n$. Thus, $\mathfrak{m}^2 = \mathfrak{m}$.

(iii) (\Rightarrow) By Corollary 3.11, R is a tall ring. Now apply [13, Corollary 2.11].

(\Leftarrow) If R is artinian, then R is semiartinian and so it is Π -semiartinian. Now if \mathfrak{m} is not finitely generated, then R is Π -semiartinian by Corollary 3.8. \Box

Corollary 3.13. Let R be a valuation domain which is not a field with maximal ideal \mathfrak{m} . Then the following conditions are equivalent:

(i) *R* is a Π-semiartinian ring;
(ii) m is not finitely generated;
(iii) m² = m.

Proof. This follows easily from Lemma 3.7 and Proposition 3.12(iii). □

Next, we present an example showing that the class of semiartinian rings is larger than that of Π -semiartinian rings.

Remark 3.14. (i) Let \mathbb{Z} be the ring of integers. Since $Rad(\mathbb{Z}) = 0$ and \mathbb{Z} is not a von Neumann regular ring, \mathbb{Z} is not a Π -semiartinian ring by Corollary 3.11.

(ii) It is shown in [11, Example 8.4.8] that there exists a valuation domain R which not a field such that the maximal ideal of R is idempotent. Clearly, the ring R is not semiartinian as Soc(R) = 0. On the other hand, R is a Π -semiartinian ring by Corollary 3.13.

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Graduate Texts in Mathematics 13, Springer-Verlag, New York (1974).
- [2] E. P. Armendariz, Modules with artinian prime factors, *Proc. Amer. Math. Soc.* 78(3), 311-314 (1980).
- [3] J. T. Arnold and R. Gilmer, Idempotent ideals and unions of nets of Prüfer domains, J. Sci. Hiroshima Univ. Ser. A-I 31, 131-145 (1967).
- [4] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, *Trans. Amer. Math. Soc.* 95, 466-488 (1960).
- [5] T. J. Cheatham and J. R. Smith, Regular and semisimple modules, Pacific J. Math. 65(2), 315-323 (1976).
- [6] N. V. Dung and P. F. Smith, On Semi-artinian V-modules, J. Pure Appl. Algebra 82, 27-37 (1992).
- [7] S. E. Dickson, Decomposition of modules: II. Rings whithout chain conditions, *Math. Z.* 104, 349-357 (1968).
- [8] A. Facchini, Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules, Birkhäuser, Basel (1998).
- [9] C. Faith, *Rings and Things and a fine array of twentieth century associative algebra*, Amer. Math. Soc., Providence (1999).
- [10] C. Faith, Locally perfect commutative rings are those whose modules have maximal submodules, *Comm. Algebra* 23(13), 4885-4886 (1995).
- [11] M. Fontana, J. A. Huckaba and I. J. Papick, Prüfer Domains, Marcel Dekker Inc., New York (1997).
- [12] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).
- [13] T. Penk and J. Žemlička, Commutative tall rings, J. Algebra Appl. 13(4), 1350129 (11 pages) (2014).
- [14] B. Stenström, *Rings of Quotients: An Introduction to Methods of Ring Theory*, 217, Springer-Verlag, New York (1975).

- [15] H. H. Storrer, Epimorphismen von kommutativen ringen, Comment. Math. Helv. 43, 387-401 (1968).
- [16] H. H. Storrer, On Goldman's primary decomposition, Lecture Notes in Math. 246, 617-661 (1972).

Author information

Farid Kourki, Centre Régional des Métiers de l'Education et de la Formation (CRMEF)-Tanger, Annexe de Larache, B.P. 4063, Larache, Morocco. E-mail: kourkifarid@hotmail.com

Rachid Tribak, Centre Régional des Métiers de l'Education et de la Formation (CRMEF)-Tanger, Avenue My Abdelaziz, Souani, B.P. 3117, Tangier, Morocco. E-mail: tribak12@yahoo.com