ADDITIVITY OF MULTIPLICATIVE ISOMORPHISMS IN GAMMA RINGS

Kenan Çağlar DÜKEL and Yılmaz ÇEVEN

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16Y99, 16W20; Secondary 06G05.

Keywords and phrases: Gamma rings, idempotent element, Peirce decomposition, multiplicative isomorphism.

Abstract In this paper, some results given by Martindale III and Rickart are generalized to the Γ-rings. Using generalized Peirce decomposition of a Γ-ring given by Mukherjee, it is obtained that any multiplicative isomorphism of Γ-ring M onto an arbitrary Γ-ring N is additive.

1 Introduction and Preliminaries

Let R and S be arbitrary associative rings (not necessarily with identity elements). A one-to-one mapping σ of R onto S such that $\sigma(xy) = \sigma(x)\sigma(y)$ for all $x, y \in R$ is called a multiplicative isomorphism of R onto S. The question of when a multiplicative isomorphism is additive has been considered by Rickart [8] and also by Johnson [3]. Martindale III is generalized the main theorem of Rickart’s paper in [6] and removed a condition from the theorem. Martindale III, using Peirce decomposition of a ring, showed that any multiplicative isomorphism of R onto an arbitrary ring S is additive.

The concept of a Γ-ring was introduced by Nobusawa in [5] as a generalization of the ring theory and generalized by Barnes [1] as follows: Let $(M, +)$ and $(\Gamma, +)$ be additive Abelian groups. If there exists a mapping $M \times \Gamma \times M \rightarrow M$ (the image of (a, α, b) is denoted by $a\alpha b$ where $a, b \in M$ and $\alpha \in \Gamma$) satisfying the conditions

(i) $(x + y)\alpha z = x\alpha z + y\alpha z$,
(ii) $x\alpha(y + z) = x\alpha y + x\alpha z$,
(iii) $x(\alpha + \beta)z = x\alpha z + x\beta z$,
(iv) $x\alpha(y\beta z) = (x\alpha y)\beta z$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ-ring.

Every ring is a Γ-ring and many notions on the ring theory are generalized to the Γ-ring.

Mukherjee [7] is generalized and extended some results on Γ-rings obtained by some researchers.

In this paper, some results given by Martindale III and Rickart are generalized to the Γ-rings. Using generalized Peirce decomposition of a Γ-ring given by Mukherjee, it is obtained that any multiplicative isomorphism of Γ-ring M onto an arbitrary Γ-ring N is additive.

A Γ-ring M is said to be a prime gamma ring if and only if $a\Gamma M\Gamma b = 0$ for $a, b \in M$ implies $a = 0$ or $b = 0$ and M is called completely prime if and only if $\Gamma b = 0$ implies $a = 0$ or $b = 0$.

Theorem 1.1. [9] Let M be a prime gamma ring. U be a nonzero ideal of M. Then, for $a, b \in M$,

(i) if $U\Gamma a = 0$ or $aU\Gamma = 0$ then $a = 0$,
(ii) if $a\Gamma U\Gamma b = 0$ then $a = 0$ or $b = 0$.

An element e in a Γ-ring is said to be an idempotent, if there exists $\gamma \in \Gamma$ such that $e\gamma e = e$.

In this case we also say that e is γ-idempotent.

The following result can be termed as generalized Peirce Decomposition of a gamma ring M.

Theorem 1.2. [7] If e is an idempotent of M then

$$M = e\gamma M\gamma e \oplus e\gamma M\gamma (1 - e) \oplus (1 - e)\gamma M\gamma e \oplus (1 - e)\gamma M(1 - e).$$

In this Theorem, taking e_1, e_2 instead of e and $1 - e$, respectively, we can write the Peirce
Decomposition of a gamma ring M as

$$M = e_1 \gamma M \gamma e_1 \oplus e_1 \gamma M \gamma e_2 \oplus e_2 \gamma M \gamma e_1 \oplus e_2 \gamma M \gamma e_2.$$

Then letting $M_{ij} = e_i \gamma M \gamma e_j$, we may write M as

$$M = M_{11} \oplus M_{12} \oplus M_{21} \oplus M_{22}.$$

It is also known that $e_i \gamma e_j = e_i$ if $i = j$, and $e_i \gamma e_j = 0$, if $i \neq j$.

2 The Main Part

Definition 2.1. Let M and N gamma rings. A one-to-one mapping φ of M onto N such that $\varphi(x \gamma y) = \varphi(x) \varphi(y)$ for all $x, y \in M$ will be called a multiplicative isomorphism of M onto N.

In this part, e is an idempotent element of M such that $e \neq 0$ and $e \neq 1$ (M need not have an identity) and φ is a multiplicative isomorphism of M onto N. Also $e_1 = e$ and $e_2 = 1 - e$.

Theorem 2.1. Let M and N be two Γ-rings. Then $\varphi(0) = 0$.

Proof. Since $0 \in N$ and φ is onto, $\varphi(x) = 0$ for some $x \in M$. Then we have

$$\varphi(0) = \varphi(0 \gamma x) = \varphi(0) \varphi(x) = 0.$$

Theorem 2.2. Let M be a prime Γ-ring, N be a Γ-ring. Then

(i) $\varphi(x_{11} + x_{12}) = \varphi(x_{11}) + \varphi(x_{12})$,

(ii) $\varphi(x_{11} + x_{21}) = \varphi(x_{11}) + \varphi(x_{21})$,

(iii) $\varphi(x_{22} + x_{12}) = \varphi(x_{22}) + \varphi(x_{12})$,

(iv) $\varphi(x_{22} + x_{21}) = \varphi(x_{22}) + \varphi(x_{21})$

where $x_{ij} \in M_{ij}$.

Proof. (i) For $x_{11}, x_{12} \in M$, since $\varphi(x_{11}) + \varphi(x_{12}) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y) = \varphi(x_{11}) + \varphi(x_{12})$. Taking $x_{11} = e_1 \gamma m \gamma e_1$, $x_{12} = e_1 \gamma m \gamma e_2$ and $a_{11} = e_1 \gamma m \gamma e_1$, for $a_{11} \in M_{11}$, where e_1 is an idempotent element and $e_2 = 1 - e_1$, we have $(x_{11} + x_{12}) \gamma a_{11} = x_{11} \gamma a_{11} + x_{12} \gamma a_{11} = x_{11} \gamma a_{11} + x_{12} \gamma a_{11}$ since $x_{12} \gamma a_{11} = 0$. Then we get,

$$\varphi(y) \varphi(a_{11}) = \varphi(y) \gamma \varphi(a_{11})$$

$$= (\varphi(x_{11}) + \varphi(x_{12})) \gamma \varphi(a_{11})$$

$$= \varphi(x_{11}) \varphi(a_{11}) + \varphi(x_{12}) \gamma \varphi(a_{11})$$

$$= \varphi(x_{11} \gamma a_{11}) + \varphi(x_{12} \gamma a_{11})$$

$$= \varphi((x_{11} + x_{12}) \gamma a_{11}) + \varphi(0)$$

$$= \varphi((x_{11} + x_{12}) \gamma a_{11}).$$

Hence we obtain $y \gamma a_{11} = (x_{11} + x_{12}) \gamma a_{11}$ since φ is one to one. Similarly we can see that $y \gamma a_{12} = (x_{11} + x_{12}) \gamma a_{12}$ for $a_{12} \in M_{12}$, $y \gamma a_{21} = (x_{11} + x_{12}) \gamma a_{21}$ for $a_{21} \in M_{21}$, $y \gamma a_{22} = (x_{11} + x_{12}) \gamma a_{22}$ for $a_{22} \in M_{22}$. Hence since $a_{11} + a_{12} + a_{21} + a_{22} = a \in M$, it is obtained that $(y - (x_{11} + x_{12})) \gamma M = 0$. Since M is a prime Γ-ring, by Theorem 1.1, we have $y - (x_{11} + x_{12}) = 0$ or $y = x_{11} + x_{12}$. That is

$$\varphi(x_{11} + x_{12}) = \varphi(x_{11}) + \varphi(x_{12}).$$

(ii) It is obtained $M \gamma (y - (x_{11} + x_{12})) = 0$ with similar operations. Since M is a prime Γ-ring, by Theorem 1.1, we get $\varphi(x_{11} + x_{21}) = \varphi(x_{11}) + \varphi(x_{21})$, consequently.

(iii) and (iv) is can be seen similarly.

Theorem 2.3. Let M be a prime Γ-ring, N be a Γ-ring. Then

$$\varphi(u_{12} + u_{12}) = \varphi(u_{12}) + \varphi(v_{12})$$

for all $u_{12}, v_{12} \in M_{12}$.
Proof: Since \(\varphi(u_1) + \varphi(v_1) \in N \) and \(\varphi \) is onto, we have an element \(y \in M \) such that
\(\varphi(y) = \varphi(u_1) + \varphi(v_1) \). For \(a_1 \in M_{11} \), taking \(a_1 = e_1 \gamma v_1 e_1 \), \(u_1 = e_1 \gamma v_1 e_1 e_2 \) and \(v_1 = e_1 \gamma v_1 e_2 \), we have \(u_1 \gamma v_1 a_1 = 0 \) and \(v_1 \gamma a_1 = 0 \). Hence
\[
\varphi(y) a_1 = \varphi(y) \varphi(a_1) = (\varphi(u_1) + \varphi(v_1)) \varphi(a_1) = \varphi(u_1) \varphi(a_1) + \varphi(v_1) \varphi(a_1) = \varphi(u_1 \gamma a_1) + \varphi(v_1 \gamma a_1) = \varphi(0) + \varphi(0) = 0.
\]
Since \(\varphi \) is one to one, we get \(y \gamma a_1 = 0 \). Similarly, we see that \(y \gamma a_1 = 0 \) for \(a_1 \in M_{12} \). Also for \(a_1 = e_1 \gamma v_1 e_1 \in M_{21} \), using the fact that \(e_1 \gamma a_1 = 0, e_1 \gamma v_1 \gamma a_1 = v_1 \gamma a_2 \) and \(u_1 \gamma v_1 \gamma a_2 = 0 \), we obtain
\[
\varphi(y) a_2 = \varphi(y) \varphi(a_2) = [\varphi(u_1) + \varphi(v_1)] \varphi(a_2) = \varphi(u_1) \varphi(a_2) + \varphi(v_1) \varphi(a_2) = \varphi(u_1 \gamma a_2) + \varphi(v_1 \gamma a_2) = \varphi(u_1 \gamma a_2 + v_1 \gamma a_2), \text{ by Theorem 2.2 (i) and (ii)}
\]
Hence since \(\varphi \) is one to one, we get \(y \gamma a_2 = (u_1 + v_1) \gamma a_2 \). Similarly we see that \(y \gamma a_2 = (u_2 + v_1) \gamma a_2 \). Therefore, it follows that \((y - (u_2 + v_2)) \gamma M = 0 \), and so by Theorem 1.1, \(y \gamma (u_2 + v_2) = \varphi(u_2) + \varphi(v_2) \).

Theorem 2.4. Let \(M \) be a prime \(\Gamma \)-ring, \(N \) be a \(\Gamma \)-ring. Then \(\varphi(u_1 + v_1) = \varphi(u_1) + \varphi(v_1) \)
for all \(u_1, v_1 \in M_{11} \).

Proof. Since \(\varphi(u_1) + \varphi(v_1) \in N \) and \(\varphi \) is onto, we have an element \(y \in M \) such that
\(\varphi(y) = \varphi(u_1) + \varphi(v_1) \). For \(a_1 \in M_{12} \), we get, since \(u_1 \gamma a_1, v_1 \gamma a_1 \in M_{12} \),
\[
\varphi(y) a_1 = \varphi(y) \varphi(a_1) = (\varphi(u_1) + \varphi(v_1)) \varphi(a_1) = \varphi(u_1) \varphi(a_1) + \varphi(v_1) \varphi(a_1) = \varphi(u_1 \gamma a_1) + \varphi(v_1 \gamma a_1) = \varphi(u_1 \gamma a_1 + v_1 \gamma a_1), \text{ by Theorem 2.3.}
\]
Since \(\varphi \) is one to one, this shows that \(y a_1 = u_1 \gamma a_1 + v_1 \gamma a_1 \). That is, \((y - (u_1 + v_1)) \gamma M = 0 \). Now let \(y = y_1 + y_2 + y_3 + y_4 \). Then since \(e_1 \gamma v_1 = u_1, e_1 \gamma v_1 = v_1, e_1 \gamma v_1 = y_1, e_1 \gamma v_1 = v_2 \), \(e_1 \gamma v_1 = 0 \) and \(e_1 \gamma v_1 = y_2 \), we obtain
\[
\varphi(y) = \varphi(u_1) + \varphi(v_1) = \varphi(e_1 \gamma u_1 e_1) + \varphi(e_1 \gamma v_1 e_1) = \varphi(e_1) \varphi(u_1) + \varphi(e_1) \varphi(v_1) = \varphi(e_1) \varphi(u_1 + v_1) = \varphi(e_1) \varphi(y) = \varphi(e_1) \varphi(y_1 + y_2 + y_3 + y_4) = \varphi(e_1) \varphi(y_1 + y_2 + y_3 + y_4).
\]
Since \(\varphi \) is one to one, we have \(y = y_1 + y_2 \). Furthermore, we get
\[
\varphi(y) = \varphi(u_1) + \varphi(v_1) = \varphi(x_1 \gamma e_1) + \varphi(x_1 \gamma e_1), \text{ since } u_1 \gamma e_1 = u_1, \text{ and } e_1 \gamma e_1 = v_1
\]
\[
= \varphi(u_1) \varphi(e_1) + \varphi(v_1) \varphi(e_1) = (\varphi(u_1) + \varphi(v_1)) \varphi(e_1) = \varphi(y_1 + y_2) \varphi(e_1) = \varphi(y_1 + y_2) \varphi(e_1).
\]
\[\psi(y_{11} \gamma e_1 + y_{12} \gamma e_1) = \psi(y_{11}), \text{ since } y_{12} \gamma e_1 = 0. \]

Since \(\psi \) is one to one, we have \(y = y_{11} \in M_{11} \). Therefore \(y - (x_{11} + u_{11}) \in M_{11} \). Then, by theorem 1.1, \((y - (x_{11} + u_{11})) \gamma M_{12} = 0 \) implies \(y - (u_{11} + v_{11}) = 0 \), that is, \(y = u_{11} + v_{11} \). So we obtain that \(\psi(u_{11} + v_{11}) = \psi(u_{11}) + \psi(v_{11}) \) for all \(u_{11}, v_{11} \in M_{11} \).

Theorem 2.5. Let \(M \) be a prime \(\Gamma \)-ring, \(N \) be a \(\Gamma \)-ring and \(\psi : M \rightarrow N \) be multiplicative isomorphism. Then \(\psi \) is additive on \(M_{11} + M_{12} \).

Proof. Let \(x, y \in M_{11} + M_{12} \). For any \(a, b \in M_{11} \) and \(c, d \in M_{12} \), we have \(x = a + c \), \(y = b + d \). Then
\[
\psi(x + y) = \psi((a + c) + (b + d)) = \psi((a + b) + (c + d)), a + b \in M_{11} \text{ and } c + d \in M_{12} = \psi(a + b) + \psi(c + d), \text{ by Theorem 2.2. (i), since } a + b \in M_{11}, c + d \in M_{12}
\]
\[= \psi(a) + \psi(b) + \psi(c) + \psi(d), \text{ by Theorem 2.4. and Theorem 2.3.}
\]
\[= \psi(a + c) + \psi(b + d), \text{ by Theorem 2.2. (i)}
\]
\[= \psi(x) + \psi(y).
\]

Theorem 2.6. Let \(M \) be a prime \(\Gamma \)-ring, \(N \) be a \(\Gamma \)-ring. Then any multiplicative gamma isomorphism \(\psi \) of \(M \) onto \(N \) is additive.

Proof: Since \(\psi(x) + \psi(y) \in N \) for \(x, y \in M \) and \(\psi \) is onto, we have an element \(z \in M \) such that \(\psi(z) = \psi(x) + \psi(y) \).

Let \(t \in e \gamma M \). Since
\[
e \gamma M = e \gamma (e_1 \gamma M e_1 + e_2 \gamma M e_2 + e_2 \gamma M e_2)
\]
\[= e_1 \gamma M e_1 + e_2 \gamma M e_2
\]
\[= M_{11} + M_{12},
\]
we obtain
\[
\psi(t \gamma z) = \psi(t) \gamma \psi(z)
\]
\[= \psi(t) \gamma (\psi(x) + \psi(y))
\]
\[= \psi(t) \gamma \psi(x) + \psi(t) \gamma \psi(y)
\]
\[= \psi(t x) + \psi(t y), \text{ by Theorem 2.5.}
\]
So, since \(\psi \) is one-to-one, we have \(t \gamma z = t \gamma x + t \gamma y \). Then \(t \gamma (z - (x + y)) = 0 \) or \(e \gamma M \gamma (z - (x + y)) = 0 \). By Theorem 1.1. (ii), we have \(z = x + y \). Then we obtained that \(\psi(x + y) = \psi(x) + \psi(y) \) for all \(x, y \in M \).

Definition 2.2. A gamma ring \(M \) is called a Boolean gamma ring if \(m \gamma m = m \) for all \(m \in M \), \(\gamma \in \Gamma \).

Theorem 2.7. Let \(M \) be a Boolean gamma ring. Then \(m = -m \) for all \(m \in M \).

Proof. Since \(M \) is a Boolean gamma ring, \((m + m) \gamma (m + m) = m + m \). Then we have
\[
m + m = (m + m) \gamma (m + m)
\]
\[= m \gamma m + m \gamma m + m \gamma m + m \gamma m
\]
\[= m + m + m + m.
\]
Using the cancellation rule in the gamma ring \(M \), we get \(m + m = 0 \) or \(m = -m \).

Theorem 2.8. If \(M \) is a Boolean gamma ring, then \(M \) is commutative.

Proof. Since \(M \) is Boolean gamma ring, \((m + n) \gamma (m + n) = m + n \). Then we have
\[
m + n = (m + n) \gamma (m + n)
\]
\[= m \gamma m + m \gamma n + n \gamma m + n \gamma m
\]
\[= m + m \gamma n + n \gamma m + n.
\]
Using the cancellation rule in the gamma ring \(M \), we get \(m \gamma n + n \gamma m = 0 \). Hence, by Theorem 2.7, we obtain \(m \gamma n = n \gamma m \).

Theorem 2.9. Let \(M \) be a Boolean \(\Gamma \)-ring and \(N \) arbitrary gamma ring. Then any multiplicative isomorphism \(\psi \) of \(M \) onto \(N \) is additive.

Proof. Let \(\psi \) multiplicative mapping from \(M \) onto \(N \). Then \(N \) is also a Boolean gamma ring.
Let x and y arbitrary elements in M. Since $\varphi(x) + \varphi(y) \in N$ and φ is onto, there exist $m \in M$ so that $\varphi(m) = \varphi(x) + \varphi(y)$. The following equations can be obtained using mapping φ is multiplicative,

\[
\varphi(x + y) = \varphi(x) + \varphi(y)
\]

(1)

\[
\varphi(x + y) = \varphi(x + y)\gamma\varphi(m)
\]

\[
= \varphi(x + y)\gamma(\varphi(x) + \varphi(y))
\]

\[
= \varphi(x + y)\gamma\varphi(x) + \varphi(x + y)\gamma\varphi(y)
\]

\[
= \varphi(x + y) + \varphi(x + y)\gamma y
\]

\[
= \varphi(x + y) + \varphi(x + y) + \varphi(y)
\]

\[
= \varphi(x + y) + \varphi(y)
\]

(2)

and similarly

\[
\varphi(y) = \varphi(y) + \varphi(x + y)
\]

(3)

Our aim is to show $\varphi(x + y) = \varphi(x) + \varphi(y)$ for all $x, y \in M$. In the above equalities, if $x + y = 0$ (so $y = 0$ by commutativity), we have for (1), (2) and (3)

\[
\varphi(x + y) = \varphi(x) + \varphi(y) = \varphi(m),
\]

(4)

\[
\varphi(x y) = \varphi(x)
\]

(5)

\[
\varphi(y) = \varphi(y)
\]

(6)

respectively. Since the mapping φ is one-to-one, equations (4), (5) and (6) imply $x + y = m, y + y = m, x + y = x$ and $y + y = y$. It follows that $m = x + y$ and thus we obtain

\[
\varphi(x + y) = \varphi(x) + \varphi(y)
\]

(7)

If $x + y = y$, then we get the following for (1), (2) and (3), respectively,

\[
\varphi(x + y) = \varphi(x + y) + \varphi(y + y)
\]

(8)

\[
= \varphi(x + y) + \varphi(0)
\]

by Theorem 2.7.

\[
= \varphi(x + y)
\]

\[
\varphi(x + y) = \varphi(x) + \varphi(y) = \varphi(m),
\]

(9)

\[
\varphi(y + y) = \varphi(y + y) = 0.
\]

(10)

Since the mapping is one-to-one, equations (8), (9) and (10) imply

\[
x + y = x + y
\]

and $y + y = y$. Thus, since $m = x + y$, it follows that $\varphi(x + y) = \varphi(x) + \varphi(y)$.

Now, $x + y$ can be written as $x + y = (x + x + y) + (y + y)$ and also we have

\[
(x + x + y)\gamma(y + y) = 0
\]

by Theorem 2.7. So, using the result of the first case in the above, we obtain

\[
\varphi(x + y) = \varphi((x + x + y) + (y + y)) = \varphi(x + x + y) + \varphi(y + x + y)
\]

(11)

Furthermore, since $x + x + y = x + y$ and $y + x + y = x + y$ (by commutativity), using the result of the second case in the above, we have

\[
\varphi(x + x + y) = \varphi(x) + \varphi(x + y), \varphi(y + x + y) = \varphi(y) + \varphi(x + y)
\]

(12)

Substituting the obtained equations in (12) to (11), we obtain

\[
\varphi(x + y) = \varphi(x) + \varphi(y)
\]

for all $x, y \in M$.

References

Author information

Kenan Çağlar DÜKH and Yılmaz ÇEVEN, Department of Mathematics, Faculty of Arts and Sciences, Suleyman Demirel University, 32260 Isparta, Turkey, U. S. A.
E-mail: kenancaglar.dulk@yandex.com-yilmazceven@bdu.edu.tr

Received: January 6, 2016.
Accepted: September 11, 2016.