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Abstract. Object of this paper is to find some properties of generalized semi pseudo Ricci
symmetric manifold (denoted by G(SPRS),, ). At last we have given an example of this mani-
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1. Introduction

The notion of locally symmetric and Ricci symmetric Riemannian manifold began with work
of Cartan[10] and Eisenhert[8] respectively. A Riemannian manifold is said to be locally sym-
metric if its curvature tensor R satisfies the relation

VR =0 ©.1)

where V is the operator of covariant differentiation w.r.t. the metric tensor g. Again a Ricci
symmetric manifold is a Riemannian manifold with the Ricci tensor S of type (0,2) satisfying

VS =0. 0.2)

After them these notions have flowed in several branches such as recurrent manifold, Ricci-
recurrent manifold, semi-symmetric manifold, pseudo-symmetric manifold[4], pseudo Ricci-
symmetric manifold[6] and so on.

A non flat Riemannian manifold (M", g), (n > 2) is said to be pseudo Ricci symmetric manifold
((PRS),)[5] if Ricci tensor S is not identically zero and satisfies

(VxS)(Y,Z) =2A(X)S(Y, Z) + A(Y)S(X, Z) + A(Z)S(X,Y) (0.3)
where A is nonzero 1-form satisfying

9(X,U) = A(X) 0.4)
for a particular vector field U.

A non flat Riemannian manifold (M™, g), (n > 2) is said to be semi pseudo Ricci symmetric
manifold ((SPRS),)[2] if Ricci tensor S is not identically zero and satisfies

(VxS)(Y,Z2) = A(Y)S(X,Z) + A(Z2)S(X,Y) (0.5)
where A is nonzero 1-form satisfying
9(X,U) = A(X) 0.6)

for a particular vector field U.
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A non flat Riemannian manifold (M", g), (n > 2) is said to be generalised semi pseudo Ricci
symmetric manifold (G(SPRS),)[1] if Ricci tensor S is not identically zero and satisfies

(VxS)(Y,Z2)=AY)S(X,Z)+ B(Z)S(X,Y) 0.7)
where A, B are nonzero 1-forms satisfying

9(X,V) = A(X) (0.8)

9(X, W) = B(X) (0.9)

for particular vector fields V, W respectively.

From the above definition we observe that when 6 = A — B is identically zero, G(SPRS),
reduces (SPRS),,.

A vector field is said to be a torse forming vector field[8] if there is a nonzero scalar ¢ and a
nonzero 1-form w such that
VxP=aX+w(X)P (0.10)

where X € x(M).

The Ricci tensor of a Riemannian manifold is said to be of Codazzi type if it satisfies the follow-

" (VxS)(Y,2) - (VyS)(X,Z) =0 (0.11)

where XY, Z € x(M).
The above relations will be used in the followings.

2. G(SPRS), and its scalar curvature

Let Q be the symmetric endomorphism of the tangent space at each point of a G(SPRS),,
corresponding to the Ricci tensor S. Then

9(QX,Y) = S(X,Y). (0.12)
Now from (7) we can get
(Vx8) (Y, Z) = (VyS)(X,Z) = A(Y)S(X, Z) — A(X)S(Y, Z). (0.13)
Contracting above with respect to Y and Z, we have
dr(X) = 2A(X) — 2A(X)r (0.14)
where A(X) = A(QX).

Similarly we can obtain
dr(X) =2B(X) - 2B(X)r (0.15)

where B(X) = B(QX).
Again contracting (7) with respect to Y and 7, we get
dr(X) = A(X) + B(X). (0.16)

Hence from (14) and (16), we get
§(X) =2A(X)r (0.17)
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where §(X) = §(QX).

Similarly we have
0(X) =2B(X)r. (0.18)

Since A(X), B(X) # 0,
5=0&r=0. (0.19)

So we can conclude that,
Theorem 1: In a G(SPRS), ¢ is identically zero iff its scalar curvature is zero.

Now if r is constant then dr(X) = 0. So from (14) we have

A(X) = AX)r (0.20)
that is,
S(X,V)=rg(X,V). 0.21)
Similarly,
S(X, W) =rg(X,W) 0.22)

Thus we can state,

Theorem 2: [f the scalar curvature v of G(SPRS),, is constant, r is an eigen value of the
Ricci tensor corresponding to the eigen vector V and W.

Again r is zero implies from (14),
AX)=0 (0.23)

VX € x(M).

But since A(X) is non-zero 1-form, then () must not be surjective.

So our conclusion is,

Theorem 3: If the scalar curvature v of G(SPRS),, is zero, the symmetric endomorphism of
the tangent space of the manifold at each point corresponding to the Ricci tensor S never be

surjective.

Now ddr(X,Y) = 0 implies from (14) and (16),
dA(X,Y) = rdA(X,Y) (0.24)

dA(X,Y)+dB(X,Y)=0 (0.25)

which give us the following theorems,

Theorem 4: (i) A is closed < B is closed.. )
(ii) If r = 0 or A is closed then A and B are both closed.
(iii) If r is non-zero constant, any of A and B is closed implies A is closed.

Again since S is symmetric then, from (7) we can obtain,
d(Y)S(X,Z)=6(Z2)S(X,Y). (0.26)
Now contracting above with respect to X, Z we have,

5(Y)r =68(QY). (0.27)
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Then we have,
S(X,2)=rT(X)T(Z) (0.28)

where T(X) = 5(;(2), §(X)=g(X,U), U=V —W.

So we can state,

Theorem 5: In a G(SPRS), (which is not a (SPRS),)) the Ricci tensor is of the form
S(X,Y) = rT(X)T(Y) where r is the scalar curvature and T is a 1-form such that T(X) =
9(X, &) for some unit vector €.

Again from (27),
rg(X,U) = g(QX,U) = S(X,U). (0.29)

This leads the following,

Theorem 6: In a G(SPRS),, (which is not a (SPRS),,)) the scalar curvature v is an eigen
value of the Ricci tensor corresponding to the eigen vector U =V — W.

3.Ricci tensor and torse forming vector field

Now let the scalar curvature of G(SPRS),, is zero. Then the vector field U satisfies the fol-
lowing,
S(X,U)=0 VX € x(M). (0.30)

Now we know that,
(VxS)(Y,2)=VxS(Y,Z)-S(VxY,Z)-S(Y,VxZ). (0.31)

In virtue of (7) and (30), the above equation reduces to

B(U)S(X,Y) + S(Y,VxU) = 0. (0.32)

Let us now suppose that U is a torse forming vector field given by (10).
Using (10) and (32) we have,

a+ B(U)=0. (0.33)
Similarly we can show,
a+A{U) =0, (0.34)
which implies using (33) that,
5(U)=0. (0.35)

Hence we can state that,

Theorem 7: If the scalar curvature of a G(SPRS),, is zero and U is a torse forming vector
field given by (10), then 6(U) is equal to zero and the scalar a associated to U is equal to -A(U).

Let
1
f=39(0.0) (0.36)
be the energy of the torse forming vector field U, given by (10) and let
9(&,Y) = w(Y), (0.37)

VY € x(M).
From (36) and (37), we get
df(Y) = g(aU +2f¢,Y) (0.38)
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and hence,
gradf =aU +2f& =—-AU)U 4+ A(U)E.

Now if f is constant, then from (37) we get,
AU)¢-U]=0.
Now since A(U) # 0, then U =&,

hence

VX € x(M).
Then A is closed implies w is closed. Then U is concircular.
Thus we can state the following,

(0.39)

(0.40)

(0.41)

Theorem 8: If in a G(SPRS), the 1-form A is closed and scalar curvature is zero, then the

torse forming vector field U of which energy is constant, is concircular.

4.G(SPRS), with Ricci tensor of Codazzi type

Let e; : 1 < i < n be the orthonormal basis of the tangent space at each point of the mani-

fold. Then by the definition of .S we have,

n

S(eiei) = Y g(Rler,ei)eser) = > ]

k=1 k=1 ik

and

S(ei,ej) = O Zf Z 7éj
where [, ; 1s the sectional curvature of a plane spanned by the vectors ¢; and e;.
Now let the Ricci tensor of G(SPRS),, is of Codazzi type. Then we have from (11),

(VxS)(Y,Z) — (VyS)(X,Z)=0.
Putting X, Z = e;,Y = e; in above we can obtain,
A(ej)S(ei, ei) =0.

Since A(e;) # 0,
S(Bi, 61‘) =0.

Then
S(X,Y)=0

Vv vector field X, Y, which is not admissible for G(SPRS),,.
Thus we can state,

Theorem 9: The Ricci tensor of G(SPRS),, is never of Codazzi type.

5.Conformally flat G(SPRS),

(0.42)

(0.43)

(0.44)

(0.45)

(0.46)

0.47)

From the paper[2] we have already known that (SPRS), can not be Einstein manifold. In
this section we assume the manifold G(SPRS),, (which is not (SPRS),) is conformally flat.

Hence we have,

1
2(n—1

(VxS)(Y, 2) = (Vy9)(X, Z) = l9(Y, Z)dr(X) — g(X, Z)dr(Y)].

(0.48)
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Using X,Y = e;, Z = ¢; in (35) and then taking summation over ¢ = 1 to n on both side of (35)
we have,

S(ei e;) = % (0.49)

Thus we can state the following:

Theorem 10: A conformally flat G(SPRS),, (which is not (SPRS),,) is Einstein manifold.

6. Example of G(SPRS),
Let us consider M? be an open subsets of R*> endowed with the metric g defined by
ds* = gijdr'da? = (2°)*2! (dz')? + 2dz'dz* + (dx®)? (0.50)
i,7=1,2,3

Then
Sip=a' 811 =1 (0.51)

and all others vanish. where (, ) denotes the covariant differentiation with respect to z!.
Now we define

Ai(z) = e 1=1 (0.52)
= 0 otherwise
Bi(z) = o 1=1 (0.53)
= 0 otherwise
for any point z € M, Then
S11 = Ai1Su1 + B1S1, (0.54)

and all other forms vanish identically.
The relation(54) implies that the above Riemannian manifold(M?, g) is a G(SPRS)3
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