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Abstract. In this paper, we introduce and study a new subclass of meromorphically uniformly
convex functions with positive coefficients defined by a differential operator and obtain coeffi-
cient estimates ,growth and distortion theorem, radius of convexity,integral transforms, convex
linear combinations, convolution properties and ¢ - neighborhoods for the class o, (c, §).

1 Introduction

Let A denote the class of functions of the form

f(2) :z+2anz" (1.1
n=2

which are analytic in the open unit disk E ={z € C : |z| < 1} and satisfy the following usual
normalization condition f(0) = f/(0) — 1 = 0. We denote by S the subclass of A consisting of
functions f(z) which are all univalent in E. A function f € A is a starlike function by the order
a, 0 < a < 1if it satisfy

Re { ZJ{?S) } >a(z € EB). (1.2)

We denote this class withS*(«).
A function f € A is a convex function by the order o, 0 < o < 1 if it satisfy

Re {1 + Zf,,;i’j) } > az € B). (1.3)

We denote this class with K («).
Let T denote the class of functions analytic in F that are of the form

f(z) =2~ Ozjzanznaan >0(z € E) (1.4)

and let 7% (o) = T'( S* (), C(a) = T'() K (). The class T*(«) and allied classes possess
some interesting properties and have been extensively studied by Silverman[17] and others.

A function f € A is said to in the class of uniformly convex functions of order v and type S,

denoted by UCV (8, ), if
2f"(2)
Re{l + 0 —’y} > f

2f"(2)
f'(2)

) (1.5)
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where 8 > 0,y € [-1,1) and 8+ v > 0, and is said to be in the class corresponding class
denoted by SP(8,~) if

2f'(2)

2f'(2) }
R — - 1], 1.6
Ao (o
where 3> 0,7y € [-1,1)and 8+~ > 0.
Indeed it follows from (1.5) and (1.6) that
feUCV(1,8) & =f' € SP(y. ). (1.7)

For 8 = 0 we get respectively, the classes K () and S*(~y).The function of the class UCV (1,0) =
UCYV are called uniformly convex functions and were introduced by Goodman with geometric
interpretation in [5]. The class SP(1,0) = SP is defined by Ronning [13].

The classes UCV(1,v) = UCV(y) and SP(1,7) = SP(v) are investgated by Ronning in
[12 ]. For v = 0, the classes UCV(3,0) = 8 — UCV and SP(3,0) = 8 — SP are defined
respectively, by Kanas and Wisniowskain[ 8 Jand [ 9 ].

Further Ahuja et al [1], Bharathi et al [2], Murugusundaramurthy and Magesh [10] and others
have studied and investigated interesting properties for the classes UCV (3,~) and SP(3,7).
Let Y denote the class the class of functions of the form

1 o0
f) = S+ ame” (1.8)
m=1

which are regular in domain E = {z :0 < Izl< 1} with a simple pole at the origin with residue 1
there.

Let> ., > " (a)and Y, (o) (0 < o < 1) denote the subclasses of > that are univalent, meromor-
phically starlike of order o and meromorphically convex of order « respectively. Analytically
f(2) of the form (1.8) is in . («) if and only if

Re{zj:/(g)} >a,z€E (1.9)
Similarly, f € 3", () if and only if, f(z) is of the form (1.8) and satisfies
Re{— <1+ Z;,//(i’?))} >a,7€E (1.10)

It being understood that if o = 1 then f (z) = 1 is the only function which is }~"(1) and Y, (1).
The classes >." () and > « (@) have been extensively studied by Pommerenke [11], Clunie [3],
Royster [15] and others.

Since, to a certain extent the work in the meromorphic univalent case has paralleled that of
regular univalent case, it is natural to search for a subclass of ) that has properties analogous
to those of 7" («). Juneja and Reddy [7] introduced the class Zpof functions of the form

1
- _ m > 1.11
flz) = . +m§:1 am 2™, am >0, ( )

> @=YNY .

p p

For functions f(z) in the class Zp, we define a linear operator D" by the following form

D°f(2) = f(2)
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D'J(z) = % +3a12 40027 + . = @

D*f(z) = D(D'f(z))
and for n=1,2,3,.....

_ 1 = 2D f(2))
D" f(z) = D(D" lf(z)) = -+ Z(m+2)"amzm = w (1.12)
z 1 z
Now, we define a new subclass o, (v, 3) of > .
Definition 1.1. For —1 < a < 1,and $ > 1, we let o,,(«, 3) be the subclass of Zp
consisting of functions of the form (1.11) and satisfying the analytic criterion

DnJrlf( ) Dn+1f
Re{an(z) } > B‘ D (2 1‘ (1.13)

D™ f(z) is given by (1.12).

The main object of the paper is to study some usual properties of the geometric
function theory such as coefficient bounds ,growth and distortion properties ,radius of
convexity ,convex linear combination and convolution properties, integral operators
and §- neighbourhoods for the class o, (v, 3).

2 Coefficient Inequality

Theorem 2.1. A function f(z) of the form (1.11) is in o, (v, B) if
S m+2)"[(1+8)(m+1)+1—a]lan| <(1—-a),-1<a<landj>1.

m=1

Proof: It suffices to show that

D" f(z) D™ f(2)
e | e { T 1 s e
We have
2 | D))
Dnf(z) Dnf(z)
n+1 P
_ 0BT 42+ 1) a2
S LT m 2 fan [

Letting z — 1 along the real axis, we obtain
4B (m+2)"(m+ 1) o]
a =3 i(m+2)" Jan|

This last expression is bounded by (1 — «) if
oo

S (m+2)" [(1+B)(m+1) +1—allam| < (1 —a).

m=1

Hence the theorem is completed.
Corollary 2.1. Let the function f(z) defined by (1.11) be in the class o, (v, 3), then

(1-a)
n S S At DT "2 Y 2.1)

Equality holds for the functions of the form

1 (1-a) o
fm(2) = z + (m+2)"[(1+8)(m+1)+1—-a] (2.2)
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3 Distortion Theorems

Theorem 3.1. Let the function f(z) defined by (1.11) be in the class o,(«, 3). Then for 0 <

2| =r <1, . -
1 a) —
T 3n(312B—a r< |f( ) =7 + 3n(3+26— oz)r G.1)
with equality for the function
1 (1—-a) .
— L A— = . .2
f(z) z+3”(3+2ﬂ—a)z’atz T, T (3.2)

Proof: Suppose f(z) is in 0, (e, 5). In view of Theorem 2.1, we have
37 3+2,8—az Zm+2 (14 B8)(m+1)+1-a] < (1-a).
which evidently yields

Za e
m S 33128 —a)

m=1

Consequently, we obtain | f(2)| = | + 307 am2™| < |2+ 30 am [2" < 24030 am
<ly (-9
= 3 (3+25—a)
Also,
1 = m
1f(2)| = St Zlamz
BRI S
> |- _lamz > _lam
1 (1—a)
Z 5y T 36—

Hence the results (3.1) follow.
Theorem 3.2. Let the function f(z) defined by (1.11) be in the class o, (c, 3). Then
forO < |z| =r <1,

1 (]—Ot) 1 (1*05)

The result is sharp, the extremal function being of the form (2.2).
Proof : From Theorem 2.1, we have

3"3+28-0a) > mam < > (m+2)"[(1+B)(m+1)+1-0a] < (1-a)
which evidently yields

Zma 1 -«
mS 3128 —a)

Consequently, we obtain

1 > _
P <5+ > magrn!
m=1
1 o0
) + mz::l mam,

(1-a)
3" 3+23—a)

IN

1
<
,T2+
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Also,

1 & -
)2 = 3 !
m=1

This completes the proof.

4 Class Preserving Integral operators

In this section we consider the class preserving integral operators of the form (1.11).
Theorem 4.1. Let the function f(z) be defined by (1.11) be in the class o,(«, 3). Then the
integral operator
i — c
o —c—1 c o m
F(Z)—CZ /O t f(t)dt—;—l—;mamz ,c>0 “4.1)

isin o, (9, 3), where

(m+1)(1+8)+ac(l1-0)+(1—-a)

5(a, B, c) = 42
(2, B;¢) c+m+1)(1+8)+(1-a) (42)
The result is sharp for
1 (1-a)
&=+ 33 im_a”
Proof. Suppose f(z) = 1 + 3> | a,,z™ isin o, (e, 3).We have
i 1 = c
_ —c—1 c _ - m
F(z)=cz /0 tf(t)dt_z+m27c+m+lamz ,e> 0.
It is sufficient to show that
B L)l (4.3)
me1 (m+2) [iljéﬁ)( +1)+1-4] ean <1
Since f(z) is in o, (cx, 8),we have
4.4)

mei (Mm+2)" [(IT

B)(m+1)+1—allanm| <1

—

Thus (4.3) will be satisfied if

[(A+8)(m+D+1=9] ¢ [A+B)(m+1)+1—q]
1-6 ctm+1 — 11—«

Solving for 4, we obtain

(m+1)(148)+ac(l —8)+ (1 —a)
(c+m+1D)(1+8)+(1-a)

5 < = G(m)

A simple computation will show that G(m) is increasing and G(m) > G(1).Using this, the result
follows.
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5 Convex Linear Combinations and Convolution Properties

Theorem 5.1. If the function f(z) = 1 +3°°° | a,,2™ is in 0,(c, B)then f(z) is meromorphi-
cally convex of order §(0 < § < 1) in \z| <r=r(a,f,0) where
1
(1=8)(m+2)"[(1+B)(1+m) +1—a]) m+]
(I —a)m(m+2-9)

r(a, 8,6) = inf

n>1

The result is sharp.
Proof.Let f(z) is in 0, (c, 3). Then ,by Theorem 2.1, we have

i(m+2)"[(l+6)(m+l)+]—a}|am|§(l—a) (5.1)

m=1

It is sufficient to show that

zf" (2)‘
2+ <1-§
‘ f'(2)
for |z| < r =r(a, B,d),where r(a, 3,8) is specified in the statement of the theorem. Then
oo o) m+1
‘2+ Zf,”(z) _ XET ym(m+ 1)a,z™ < Z m(m + 1)an |2| ++1
(z) — + 3 Mz ! —1- Z _ymam |2
This will be bounded by (1 — §) if
= 2-9§
S A2 < (52)
m=1

By (5.1), it follow that (5.2) is true if

m(m+2—94)
=5 |2

‘m+1 < (m+2)" [(1+B)(m+1 )+1—a] m> 1

1—a

or

1
—0)(m " m —a]) 'm
|z|§{(1 8)(m +2)" [(1+p)(1 +m) +1 ]} +1 53)

(1 —a)m(m+2-194)
Setting |z| = r(«, 8, ) in (5.3) , the result follows. The result is sharp for the function

_! (1-a) 2™, (m
fm(z)_z+(m+2)"[(1+5)(m—|—1)+1—a] »(m 2 1),

Theorem 5.2. Let fy(z) = L and
fm(2) = p +

—

(1—a) .
it (AT 1 —a]” =

Then f(z) = 1 + 3> | a,,2™ is in the class o, (c, ) if and only if it can be expressed in the
form

f( _/\OfO +Z)\mfm

where \g >0, A, >0(m>Dand Ao+ > - A = 1.
Proof. Let f(z) = A fo(2) + 327, A fm(2) with Ao > 0, A, > 0 (m > 1) and
Mo+ D An =
m=1

Then
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f(2) = Xofolz +ZAmfm

R (1-a) ;
- z+ZAm(m+2)"[(l+5)(m+l)+l—04}

m=1

m

Since

0o (mA2)"[(1+8)(m+1)+1-q] 1—
Zm:l I—a Am (m+2)"(1+ﬂ)(am+l)+l—a

:ZAHLZI_AOS17
m=1

By Theorem 2.1 f(z) is in the class o,(«, 3). Conversely suppose that the function f(z) is in
the class o, (v, ), Since

(1-0) (m>1)

Um < (m+2)"[(1+B)(m+1)+1—-a]

A, = (m+2)"[(1+1,3_)£¥m+1)+1—a] s

and \g = 1 — Y7 | Ay, it follows that f(z) = A\gfo(2) + > r-_| A fm(2). This completes the
proof of the theorem.

For the functions f(z) = 2+ _; amz™ and g(z) = L1+ > 0, by z"belong to Y- we denote
by (f * g)(2) the convolution of f(z) and g(z) or

(f*g 7+Zam mZ

Theorem 5.3. If the functions f(z) = L 4+ 3> | a,z™and g(z) = L + 377 b,,2™ are in the

class o, (a, B)then (f x g)(2) = L + 307 | @by, 2™ is in the class o, (, 8).
(m+2)"[(1+B)(m+1)+1-a]

Proof. Suppose f(z) and g(z) arein oy (c, 3). By Theorem 2.1, we haveand Y~ |

l1—-a

5o (mt2)" [(1+B)(mtD) 1 o]y o

m=1 11—«

Since f(z) and g(z) are regular are in E, so is (f * g)(z). Furthermore,

Zoo (m+2)”[(1+ﬁ)(m+1)+17(1]a

m=1 11— mbm

m=1 -«

. 2
<y {<m+2> [<1+ﬂ><m+”“‘“]} A brm

11—« 1l -«

. (i (m+2)" [(1+6)(m+1)+1—a]am> (i (m+2)n[(1+6)(m+1)+1—a}bm>

m=1

Hence by Theorem 2.1, (f x g)(z) is in the class o, (e, ).
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6 Neighborhoods for the class o, (a, 3, v) which we define as follows:

Definition 6.1. A function f € > is said to in the class 0, (, 3,7) if there exists a function
g € op(e, ) such that

‘f(z)—l <l-mz€eB,(0<y<1) 6.1)

9(2)
Following the earlier works on neighborhoods of analytic functions by Goodman [4] and Ruschweyh
[ 16 ], we define the §-neighborhood of a function f € Zpby

1 o0 o0
Ns(f) := {gGZ:g(z)zz—I—mezm:membm|§5} (6.2)
p m=1 m=1

Theorem 6.1. If g € 0,,(c, 5) and

03426 —a)
T 2+25 3
Then
N(S(Q) C O'p(O[,/B,"Y).
Proof: Let f € Ns(g). Then we find from (6.2) that
> mlam —bp| <6 (6.4)
m=1
which implies the coefficient inequality
> am = bm| < 6,(m € N) (6.5)
m=1
Since g € o,(a, 3), we have
= l -«
< —F— .
S it o
So that -
f(z)—l SZT?LZI‘agibWA§6(3+2/8_a): — .
9(z2) 1= 1bm 2425

provided ~ is given by (6.3). Hence ,by definition , f € o,(«, 8,7) for v given by (6.3), which
completes the proof.
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