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Abstract. Let R be a commutative ring anfibe an ideal ofR. In this paper, we consider
the ideal-based zero-divisor graph(R) of a commutative ring?2. We discuss some graph
theoretical properties df;(R). We find radius and central setslof(R). We find the relation-
ship between median and central set§ ofR). Further the relationship between domination
number ofl ;(R) and radius of ;(R) is also discussed.

1 Introduction

Let R be a commutative ring with identity 1 angl(R) be the set of its zero-divisors. The
zero-divisor graph of? denoted by (R) is an undirected graph whose vertices are the nonzero
zero-divisors ofR with two distinct verticest andy joined by an edge if and only ify = 0.
Beck [7] introduced the concept of a zero-divisor graph of a commutative fat this work
was mostly concerned with colorings of rings. The above definitioR(af) first appeared in
Anderson and Livingstord], where many of the most basic featured ¢fz) are investigated.

S. P. Redmond generalized this by introducing the ideal-based zesordgraph 14]. For a
commutative ringk and an ideall of R, the ideal-based zero-divisor graph an undirected
graphl™;(R) with vertices{z € R — I : xzy € I forsomey € R — I}, where distinct vertices
andy are adjacent if and only ify € I. He investigated the relationship between these graphs
and zero-divisor graph§. H. R. Maimani and David F. Anderson have also studied this concept
[5, 10].

Throughout this paper, the rings are commutative Aigan ideal ofR. For any subsek of
aring R, | X| denote the number of elementsihand X* = X — {0}. For any element € R,
ann(z) denote the annihilator of in R and is defined asnn(z) = {y € R : zy = 0}. Let
a € R. If a™ = 0, for some positive integer, thena is said to benilpotent element of nilpotency
n. Aring R is said to beNoetherianif it satisfies the following three equivalent conditions: (1)
Every non-empty set of ideals iR has a maximal element. (2) Every ascending chain of ideals
in Ris stationary. (3) Every ideal iR is finitely generated. A rind? is said to bedecomposable
if R can be written a®; x Ry, whereR; and R, are rings; otherwis& is said to beeduced

The graphsZ considered in this paper are simple. The vertex se&t ofill be denoted by
V(G). For a graphG, the degreeof a vertexv in G is the number of edges incident with
Denote the degree of the vertexn I ;(R) by dedv) and that off (R) by deg (v). We denote
the complete graplwith n vertices andcomplete bipartite graplvith two parts of sizesn and
n, by K,, andK,, ,,, respectively. The grapR1 ,, is called astar graph Thedistancebetween
any two verticesr andy, denotedi(z, y), is the length of the shortest— y path. Thediameter
of a connected grap@ is the maximum distance between two distinct vertice&'oLet G be
a graph and{ be subset of7. Theinduced subgrapl# in G, (H) is a graph with vertex seif
and two vertices off are adjacent if they are adjacentdn

The main aim of this article is to find the central setslef R). First we prove that for
a commutative Noetherian ring, radius ofl ;(R) is either 1 or 2. In Sec. 2, we give the
definitions and theorems which are needed for subsequent sectidBsc.| 3 we determine the
radius ofl" ;(R). We also find necessary and sufficient conditiondiaim (I ;(R)) = 1 and also
for diam(T';(R)) = 2. In Sec. 4 ,we find median df;(R) and relation between center and
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median ofl ;(R). In Sec.5, we determine domination numbef ofR) .

2 Preliminaries

Definition 2.1.Let G be a connected graph ande V(G). Thene(x) = ng/a(lé) d(z,y). The
ye
radius ofG, rad(G) = rrypc)e(x) and the center off, C(G) = {z € V(G) : e(z) = rad(G)}.
xE
The diameter o7, diam(G) = max e(x).
zeV(G)

Definition 2.2. A graphG is self centeredf V (G) is the center o€5.

If a connected grapldé: has radius- and diameterl, thenr < d < 2r. We denote the

center, eccentricity of (£) by C(F'(£)), er(z) respectively and that df;(R) by C(I';(R)),
e(z) respectively.

Definition 2.3. The statuss(x) of a vertexxz of a connected grap@ is the sum of the distances

from x to the other vertices aff, i.e,s(x) = > d(z,y). The set of vertices with minimum
yeV(G)
status is called thmedianof the graph.

If G has no edges, then median®fis V(G) . We denote the status of every vertexf
I7(R) by s(z) and that of every vertex + I of [ (£) by sr(z + I).

Definition 2.4. A dominating sebf a graphG is a subset of V(&) such that each vertex ¢f
is either inS or adjacent to an element §f Thedomination numbeof a graphG is the size of
the smallest possible dominating set and is denoted( 6.

Definition 2.5. A dominating sefS of G is calledconnectedf the subgraph induced bYy is con-
nected. Theonnected domination numbef G is the size of the smallest connected dominating
set and is denoted by.(G).

S. P. Redmond had introduced the concept of an Ideal-Based x&sordyraph as follows.

Definition 2.6.[14] Let R be a commutative ring and Iétbe an ideal ofk. Theideal-based
zero-divisor graphs an undirected graph; (R) with vertices{x € R—1I : zy € I for somey €
R — I}, where distinct vertices andy are adjacent if and only ify € I.

Example 2.7.For R = Zy4 andI = (8) , I';(R) is shown in Figure 1.

2 4 6

Figure 1

Theorem 2.8.[14] LetI be an ideal of aringr, and letz,y € R — I. Then
(@) ifz + I'is adjacent tay + I in r(%), thenz is adjacent toy in I, (R).
(b) if = is adjacent toy in [ ;(R) andz + I # y + I, thenz + I is adjacent tay + I in I (£).
(c) if z is adjacent tay in T ;(R) andz + I = y + I, thenz? 42 € I.

Corollary 2.9. [14] If z andy are (distinct) adjacent vertices in; (R), then all (distinct) ele-
ments of: + I andy + I are adjacent i ;(R). If 22 € I, then all the distinct elements oft I
are adjacent il ;(R)
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Remark 2.10.[14] Clearly there is a strong relationship betwelef¥) and;(R). Let I be
an ideal of a ringR. One can verify that the following method can be used to construct the
graphl;(R). Let{ax}ren € R be a set of coset representatives of the verticds(é&f). For
eachi € I, define a grapli; with vertices{a, + i : A € A}, where edges are defined by the
relationshipa, + i is adjacent taz + 4 in G; if and only if a + I is adjacent tays + I in I'(£)
(i.e.,awg e ).

Define the grapldz to have as its vertex sét = | G;. We define the edge set 6fto be:

el

(1) all edges contained i@; for eachi € I.

(2) for distinct\, 5 € A and for anyi, j € I, ay + 1 is adjacent taig + j if and only ifa) + I
is adjacent tayg + I in (%) (i.e.aras € I).

(3) for A € A and distincti, j € I, ay + 4 is adjacent tay + j if and only if a3 € 1.

Definition 2.11.[14] Using the notation as in the above construction, we call the sulyset!
a column ofl ;(R). If % € I, then we cally + I a connected column & (R).

Remark 2.12.[14] Denote the vertices df (%) by V(I (%)) = {a; + I : i € A}. By remark
2.5, we can denote the vertex setlof(R) asV (I';(R)) = {a;i+ h : i € A,h € I} and so
V(T2 (R)| = | [V(T ()]

Lemma 2.13.[1]] Let T be an ideal of a ringk. Then inl;(R),

i 2
deg(a) = |I|deg(a + 1) !f ac ¢ 1.
|I|deg(a+1)+|I|-1 if a?€l.
Theorem 2.14[14, Theorem 2.4] et I be an ideal of a ringk. Thenl ;(R) is connected with
diam(T 1 (R)) < 3. Furthermore, if';(R) contains a cycle, thegr(I';(R)) < 7.

Theorem 2.15[14, Theorem 5.7] et I be a nonzero ideal of a ring. Thenl ;(R) is bipartite
if and only if either (a)gr(F;(R)) = oo or (b) gr(T;(R)) = 4andT (£) is bipartite.

Theorem 2.16.[15, Corollary 2.2]Let R be a commutative Noetherian ring with identity. The
radius of " (R) is 0 if and only if eitherR = Z4 or R = 24Xl The radius of (R) is 1 ifand only

(a?)
if either R = Z, x A, whereA is an integral domain, o (R) is an ideal ofR. If, in addition, R
is finite, then the radius of (R) is 1 if and only if eitherk = Z, x F, whereF is a finite field,

or Ris local.

Theorem 2.17[15, Theorem 2.3].et R be a commutative Noetherian ring with identity that is
not an integral domain. Then the radiusiofR) is at most 2.

Theorem 2.18[15, Theorem 4.1] et R be a finite commutative ring with identity that is not an
integral domain. Then the median and centef 0f) are equal if the radius of (R) is at most
1 and the median is a subset of the center if the radius is 2.

Theorem 2.19[15, Corollary 4.2]Let R be a finite commutative ring with identity that is not an
integral domain. If the radius df (R) is 2, then the center equals the median if and only i§
isomorphic to a direct product of a finite number of copies of a single ffigite (i.e., R = F?
for some finite field® and some integef > 2).

Theorem 2.20[15, Theorem 5.1) et R be a commutative Artinian ring with identity that is
not a domain. If the radius df(R) is at most 1, then the domination number@f?) is 1. If
the radius is 2, then the domination number is equal to the number of factding iArtinian
decomposition of. (In particular, the domination number is finite and at least two).

3 Radius of '/ (R)

Theorem 3.1.Let I # (0) be an ideal of. Then radius of ;(R) can never be zero.

Proof. Clearly I';(R) has at least two vertices and by Theor@m4 it is connected. So
rad(lC7(R)) > 0.0
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Theorem 3.2.Let I # (0) be an ideal of a ring?. Then the following are equivalent.
(i) There is a vertex + I of I'(£) of nilpotency 2 that is adjacent to every other vertex.
(i3) There are at least| vertices ofl ;(R) with degredV (I';(R))| — 1

Proof. Assume(i) is true. Thena?® € I and(a + I) is a complete subgraph &f;(R). By
Theorem2.8 d(a+ h,b) = 1, forallbe V(I';(R)),h € I. Soa+ h is a vertex which is adjacent
to every other vertex, for alh € I. Thus(ii) holds. Conversely assume that) is true. Then
choose) € V(I';(R)) such thati(b,v) = 1, for allv € V(I';(R)). In particulard(b,b+ h) = 1,
forall h € I. Sov? € I. Also forv # b+ h, d(b,v) = 1. This implies thatir (b+ I,v + 1) = 1
andb + I # v+ 1. Henceb + I is a vertex ofl (£) adjacent to every other vertex and is of
nilpotency 2.0

Corollary 3.3. Let I # (0) be an ideal of a ringz such that™ (£) is a graph with at least two
vertices. AssumeR is a commutative ring satisfying any one of the conditigfisor (ii) of
Theorem3.2 Thenrad(I;(R)) = 1if and only ifrad(I"(£)) = 1.

Corollary 3.4. Let I # (0) be an ideal ofr? such that" (£) is a graph with at least two ver-
tices. Assumef is a finite local ring but not a field. Therud(I';(R)) = 1 if and only if
rad(F(£)) = 1.

Proof. SinceZ is a finite local ring,Ann(Z (%)) # 0 and sq(i) holds. Hence by Corollar$.3
the result follows 0

Theorem 3.5.Let I # (0) be an ideal of a Noetherian ring. Assume thaf ;(R) has no
connected columns. Thead(l';(R)) = 2.

Proof. By Theorem2.17, rad(I'(%)) < 2. Then there exist + I such thatrad(I';(R)) =
er(a+1I)andsair(a+1,b+1) < 2,forallb+1 € V(I'(£)). This implies thati(a, b) < 2, for
all b e V(I';(R)). Sincel ;(R) has no connected cqumns<Ze( ) <3, forall z € V(I (R))

andd(a,a + h) = 2. Thuse(a) = 2,in [ ;(R). Hencerad(l' ;(R)) = 2.0

Theorem 3.6.Let I # (0) be an ideal ofR such thaﬂ'(?) is a graph on single vertex. Then
;(R)) is self centered anchd(T ;(R)) = 1.

Theorem 3.7.Let I # (0) be an ideal of a Noetherian ring. Assume thaf ;(R) has no
connected columns. Theliam (I (£)) < 2 if and only if F;(R) is self centered.

Proof. Sincel ;(R) has no connected columns, R e(z) < 3, forallz € V(I';(R)). Let
xz € V(I'1(R)). Sincel;(R) is connected, there exist y such that x is adjacent to y. Also
d(z,z + h) = 2, forall h € I. Supposel(z,z) = 3,for somez. Clearlyz + 1 # z + I. Let
x—y—u— 2 be ashortest path of length 3. Siricg R) has no connected colump# =+ h and
u # y+h,forall h. If u = z+h ory = z+ h for some h, them is adjacent ta;, a contradiction.
Sou+I#z+Tandy+1#z+1. Sox+I,y+I,u+lI, z+1Iaredistinct element df(%).
Hencer+1—y+1—u+1—z-+1isashortest path of length 3 adg(z + I, 2+ I) = 3, which
is a contradiction, sincgiam(I'(£) < 2. Therefored(z,z) < 2, for all z. Hencee(z) = 2,
forall z € V(I';(R)). Thus the result follows. Conversely, assume fhdtR) is self centered.
Thenrad(T';(R)) = e(z), forall = € V(I[';(R)). Clearlyrad(I';(R)) # 1. By TheorenB3.5,
rad(l';(R)) = 2. Soe(x) = 2, forall x € V. We haved(z,y) < e(z) = 2, forallz € V. This
implies thatd(z,y) < 2,forallz,y € V. Thereforedr (z+1,y+1) < 2,forallz+1,y+I e V.
So the result follows

Remark 3.8. Theoren3.7is not true ifl ;(R) has a connected column. For example? i Z4
and! = (8), [;(R) has a connected column adéwm (I (£)) < 2. Butl;(R) is not self
centered (see Figure 1).
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Lemma 3.9.Let I # (0) be an ideal of? such that™ (%) is a graph with at least two vertices.
Then the following is the relationship betweEp(R) andl™ (£).

(i) If 2% € I, thener(z + I) = e(x).

(i7) If er(z+ 1) # 1, thener(z + 1) > e(x).

(iii) If 22 ¢ T ander(x + I) = 1, thener (z + I) < e(x).

Theorem 3.10.Let R be a commutative Noetherian ring ahdbe a non zero ideal a®. Then
rad(I' ;(R)) is at most 2.

Proof. Assumel ;(R) has a connected column. #d(I' (%)) = 1, then there exist + I
such thater(a + I) = 1. If a® € I, then by Theoren8.2, rad(I';(R)) = 1. If a® ¢ I, then
a —b— a+ his a shortest path of length 2 whére: a + h and sad(a,a+ h) = 2,h € I. Thus
e(a) =2, inT;(R) and sorad(I;(R)) < 2. If rad(T' (%)) = 2, then there exist + I such that
er(a+I) = 2. By Lemma3.9, e(a) < 2 and sorad(l"';(R)) < 2. If [';(R) has no connected
columns, then by Theore®\5, rad(l';(R)) < 2.0

Corollary 3.11. Let R be a commutative Noetherian ring with identity. 4fis not an integral
domain, then there is a nonzere R such that eithety € I orann(z+1)Nann(y+1) # {0},
forall y e V.

Example 3.12(1) Let R = ZpsandI = (8). Then[l;(R) has a connected column and
rad(F';(R)) = 1 (see Figure 1).

(2) LetR = Zy x Za x Zy andI = {0} x {0} x Z,. Since (0,2,0) is an element of nilpotency
2, ;(R) has a connected column angi(I";(R)) = 2 (see Figure 2).

() LetR =2 Zy x Zy x Zz andI = {0} x {0} x Zs. SO? =7y x Ly x {0} andr(i,—%) =~ Ko.
Since|I| > 2,T(£) is a complete bipartite graph apd(I'; (R)) = 4. By Theoren®.15 ' /(R)
is complete bipartite graph andd(T"';(R)) = 2.

(0,3,0)

(0,1,0) X 0,2,00  (1,2,0)

(0,1,1) (1,0,1 0.2,1) (1,2,1)

(0,3,1)
Figure 2

Theorem 3.13.Let R be a commutative Artinian ring with identity 1 arid# (0) be an ideal of
R such that? is a finite ring with identity 1 andl (£) is a graph with at least two vertices. Then

(i) diam(I'(R)) > 0.

(i3) If rad(T;(R)) is 1, thendiam(T ;(R)) = 1 if and only if " ;(R) is a complete graph.
Otherwise , the diameter is 2.

(i4i) If rad(T ;(R)) is 2, thendiam(I ;(R)) = 2 if and only if £ =~ F} x F,, whereF; and
F> are both fields. Otherwise the diameter is 3.

Proof. (i) is obvious.

(i3) If rad(T';(R)) is 1, then the diameter is at most 2, since for any the center of ;(R)
and for any two vertices andb, a — = — b is a path of length 2. The diameter is 1 if and only if
all the vertices of ;(R) are adjacent. Otherwise the diameter is 2.

(i4i) Supposerad(l';(R)) is 2. Thenrad(T' (%)) = 1 or 2. Consider the case where
rad(F(%)) = 1. SinceZ is not local and by Theorer.16 £ = Z, x F, whereF is a
finite field and diameter is 2. Assumed(';(R)) = 2. If % =~ [y x Fr, whereFy and F, are
both are fields and both not isomorphicZe, thenl (%) is a complete bipartite graph and so
gr(FC7(R)) = 4. By Theoren®.15 I';(R) is a complete bipartite graph. Thad&gm(l ;(R)) = 2.
Now assum# % F1x F,, whereF; andF; are both fields . Consider the Artinian decomposition
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=Rix...R,xFi1x...F,,where(R;, M;) isalocalring,F; isafield, 1<i <n,1<j<m
andn + m > 2. By choice ofZ, the case: = 0 andm = 2 is impossible. Sincé is not local,
the casess = 0,m =1 andn = 1,m = 0 are impossible. Hence it is enough to consider the
following cases. In all cases, an element not in the centEr @R) will be identified.
Case 1:n > 1 andm > 1.
LetO0# x € My. Lety+ 1 = (2,0,...1,0...,0), where the entry in position + 1 is the
identity of F1. Theny + I is a zero-divisor but is not in the center 6% ). This implies that
dr(y + I,z+ 1) = 3,forsomez+ 1,2+ 1 # y+ I and sod(y,z) = 3, for somez. So
y & C(Mi(R)).
Case 2: n =0andm > 3.
ThenZ =~ Fy x ... F,. Theny + I = (0,1,...1) is a zero-divisor but is not in the center of
r(£). This implies thatir (y+ 1,2+ I) = 3, forsomez + I, z + I # y + I and sad(y, z) = 3,
for somez. Soy does not lie in the center &f; (R).
Case 3: n > 2 andm = 0.
For eachi = 2,...n, chooser; # 0in M;. Letz+ 1 = (1,22,...,2,). Thenz+ Tis a
zero-divisor but is not in the center 6f£). Soz does not lie in the center 6f;(R). Thus, in
all these cases, the center is not the entire vertex det(éf). Therefore, the diameter is strictly
larger than the radius antlam/(I' ;(R)) = 3. O

Theorem 3.14.Let I be an ideal of a commutative Noetherian riRguch thatZ is a finite ring
and£ 2 7, x F, whereF is a finite field. TherC(T;(R)) = {z+h: z+1 € C(I'(£))andh €
I} and|C(T1(R))| = 1] |C(T())].

Proof. Letz + I € C([ (%)) andh € I. Thener(z + I) = rad(I (%)).

Casel: 22¢1

By Lemma3.9, e(z + h) = rad(l'(£)). If rad(l' (%)) = 1, thene(z + h) =

rad(T;(R)) = 1. Assumerad(l (%)) = 2. SoZ cannot be local and se:d(I";(R)

In both casesad(I' (£)) = rad(I';(R)). Clearlye(z) = rad(F;(R)). Soz € C(T ;(R)).

Case 2:x2 ¢ I.

If er(x+1) = 1. Then by Lemm&.9, e(x) > 1. Thatis 2< e(z) < 3. Suppose(z) = 3. Then

there exisy such thatl(z,y) = 3andy # z+h,h € 1. Soz+1 # y+1I anddr (z+1,y+1) = 3,

which is a contradiction ter(z + I) = 1. Thereforee(z) = 2. Sincerad(l';(R)) < 2,

rad(l';(R)) = 2 = e(z). Hencex € C(I';(R)). If er(z + I) # 1, then by LemmeB.9

e(z) <er(x+1I)ander(z+1) = 2. Soe(z) < 2. Sincex? ¢ I,e(r) =2 = md(r[(R)). Thus

xz € C(I'[(R)). Conversely let: € C(T';(R)). If rad(T';(R)) = 1, thene( ) = 1landz? € I.

By Lemma3.9, er(z + I) = 1 = rad(T' (£)). Thereforer + I € C(F(&)). If rad(T;(R)) = 2

and we havell 2 Z, x F, then by Corollary3.4 £ is not local. Sarad(I'(£)) = 2. We have
e(z) = 2. ThIS implies thatr (z + I) = 2. Soz + I € C(F(#)). Sothe result follows

1 and
) =2

4 Median of 'y (R)

Theorem 4.1.Let R be a finite commutative ring with identity that is not an integral domain and
I be an ideal ofk. Then the median and centerlof(R) are equal if the radius df;(R) is 1,
and the median is a subset of the center if the radius is 2.

Proof. Assumerad(l';(R))is 1. Letz € C(';(R)). Clearlys(z) = |V(I';(R))| — 1 for all
x € C(T';(R)). Lety € V(I'[(R)). If y € C(T1(R)), thens(y) = s(x). If not, e(y) = 2 or 3.
This implies thats(y) > |V (I ;(R))| ands(z) < s(y), forally € V(I ;(R)). Soz € M (T ;(R)).
Conversely let € M(I';(R)). Thens(z) < s(z), for all z. In particulars(z) < s(z), for all
xz € C(IT(R)). Sos(z) = |[V(I'1(R))| — 1. Hencee(z) = 1 andz € M(T';(R)). So center and
median coincide.

Assume that radius df;(R) is 2. SoZ is notlocal. Let} = Ry x...x R, xFix...F, bethe
Artinian decomposition of}, where(R;, M;) is alocal ring,F; is afield, 1< i <nand 1< j <
m. Letz be avertex of ;(R) thatis not in the center. Thentake-7 = (a1, ..., an,b1,...,bm).
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In all possible cases, a vertexn the center is found such thatz) < s(z). If = is in the center
of I';(R), then the eccentricity of is 2. Hence,

s(z) = degz) + 2(|V| — 1 — ded)) = 2|V| — dedz) — 2 (4.1)

From (4.1), all the vertices of the median must have the same dedgnee.z$s not in the center,
there is some vertex such thati(z,w) = 3. Thus

s(z) > 2|V| —dedqz) — 2 (4.2)

Case 1: b; # 0 andb; # 0 for some 1< i < j < m. Letz+1 = (0,...,0,1,0,...,0),
where the nonzero coordinate is the identity/of Thenz + I is in the center of (£) and
ann(z+1I) C ann(z+1I). Since neither+ I norz+1 is nilpotent, this implies deg) < deqx).
By (1) and (2),5(z) > s(z).

Case 2: b; # 0 for some 1< j < m and eachs; € M; with somea;, # O for some
1 < k < n,whereM; is a maximal ideal of?;. Letx + I = (0,...,0,ax,0,...,0). Then
z + I is in the center of (£) andann(z + I) C ann(z + I). Therefore deg(z + I) =
lann(z+1I)| — 1 < |ann(z+1I)| — 1 = degx + I). Hence deg(z + I) < deg(z + I). Since
b; #0,22 ¢ I. So deg(z) < deg(x). By (1) and (2)5(z) > s(z).

Case 3: q; isa unit inR; for some 1< ¢ < n. Letc be a nonzero element of the maximal
ideal of R;, and letz + I = (0,...,0,¢,0,...0). Thenz + I is in the center of (£) and
ann(z + I) C ann(xz + I). Therefore, de@ + I) = |ann(z+ I)| — 1 < |ann(xz + I)| — 1. So
deg(z + I) < deg-(z + I). Sincea; is a unit,z? ¢ I. Hence defr) < degz). By (1) and (2),
s(z) > s(x). Hence in each of the three cases, there is a vertéthe center withs(z) < s(z).
Hencez cannot be in the median. Thus the median is a subset of the center.

Corollary 4.2. Let R be a finite commutative ring with identity that is not an integral domain
andI be an ideal of aringz. If the radius ofr ;(R) is 2, then the center equals the median if and
only if £ is isomorphic to a direct product of a finite number of copies of a singifiield or

Zy xF (| e., & =~ F for some finite field and some integed > 2).

Proof. Assumerad(I';(R)) = 2 and center and median coincide. Then we have two cases.
Case Llirad(l' (£)) = 1.

Then by Theoren2.16, £ is either local o = Z, x FF. SinceZ cannot be local = Z, x F
andl ;(R) is self centered.

Case 2irad(l' (£)) = 2.

By Theorem2.18, M (I'(£)) C C(T'(%)). Now letz + I € C(T'(£)). Then by Theoren3.14
xz € C(T'7(R)). By hypothesis: € M (I';(R)). Clearly

s(z) =2|V| —dedqz) —

and s(z) < s(y), for all y. From Lemma2.13 s(z + I) < s(y + I), forally + I. So

o+ 1 e M(T(F)) andC(T(F)) = M(T(F)). Alsorad(F({)) = 2. By Theoren2.19 { is

isomorphic to a direct product of a flnlte number of copies of a single fiigtd. Converse is
obvious.O

—|~|:u

Example 4.3.(1) Let R = ZpsandI = (24). ThenC(I';(R)) = {4,12,20} = M(T';(R)) and
rad(I';(R)) = 1 (see Figure 1).

(2) Let R = Zy x Z4 x Zp andI = {0} x {0} x Zp. Thenrad(l';(R)) = 2,C([;(R)) =
{(1,0,0),(1,0,1),(0,2,0),(0,2,1)} and M(I';(R)) = {(1,0,0),(1,0,1)}. In this case
C(l;(R)) € M(T;(R)) (see Figure 2).

(3) Let R = Z3 x Z3 x Zp andI = {0} x {0} x Z,. Then£ = Zz x Zs. In this casd (£)
is complete bipartite graph ana(I';(R)) = 4. By Theoren?.15 I';(R) is complete bipartite
graph. Sarad(l';(R)) =2 andC(l;(R)) = M(I';(R)).

5 Domination Number of I'; (R)

Theorem 5.1.Let R be a commutative ring anfl # (0) be an ideal of? such thatZ is an
Artinian ring with identity.
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(0) If rad(I' ;(R)) is 1, themy(T';(R)) is 1.

(i) If rad(T;(R)) is 2 andZ 2 Z, x F, thenv(I";(R)) is number of factors in the Artinian
decomposition off, whereF is a finite field.

(iii) If & = Zy x F, thenvy (T ((R)) is 2, whereF is a finite field.

Proof. (i) Assume thatad(';(R)) = 1. Then any element in the center forms a dominating set
and soy(l';(R))is 1.

(i) Assume thatad(I';(R)) = 2 andZ 2 Z, x F. ThenZ is not local. Sarad(I' (%)) = 2
and by Theoren2.20, domination number of (£) is number of factors in the Artinian decom-
position of £, saym. In [15, Corollary 5.3] it was observed that the connected domination
number ofl" (£) equals the domination number Bf%). LetS = {z; + I : 1 <i < m} bea
dominating set of (£). Then the subgraph induced by the set S is connected. Consider the set
{z1,...,2m}. Lety € V(I';(R)). Suppose) = z; + h, whereh € I and 1< i < m. Since
S is a connected dominating setjs dominated by:;, j # . If not, the vertexy + I is domi-
nated byz; + I, for somei. Theny is dominated byr;. So~(I';(R)) < m. Now suppose that
D ={z,...,2m_1} is a dominating set df ;(R). Then every vertex of V \ D is dominated
by z;, for somei. Thenzz; € I, for somei. If v + I = z; + I, thenz + I lies in the dominating
set. If not, by Theorer2.8, every vertex: + I of I';(R) is dominated by; + I, for somei. This
implies that{z; + I,...,z,_1+ I} is a dominating set of (£), which is a contradiction. So
the result follows.

(i4i) Assume that? =~ Z, x F. SinceZ is reduced[;(R) has no connected columns
and not complete. Let; = (0,...,0,1,0,...,0), where the non-zero coordinate is the identity
of ?— = 7,. Letz; = (0,...,0,1,0,...,0), where the non-zero coordinate is the identity of

7 = F. Then{x,, z;} is a minimal dominating set and s¢"; (R)) is 2.0

Corollary 5.2. Let R be a finite commutative ring with identity that is not a domain énéd (0)
be an ideal ofR. Then the domination number bf (R) equals the number of distinct maximal
ideals of£.

Corollary 5.3. Let R be a finite commutative ring with identity that is not a domain drak
a non zero ideal ok. Then the connected domination numbefgf R) equals the number of
distinct maximal ideals off.

Proof. In [15, Corollary 5.3] it was observed that the connected domination nunfofZ)
equals the domination number Bf%). By Theorem2.8(a), connected domination number of
I'7(R) equals the domination numberof(R). Hence the result follows from Corollafy2 O

Example 5.4.(1) Let R = Zg andl = (24). Theny(I';(R)) = 1 =~.(I;(R)) (see Figure 1).
(2) Let R = Z3 x Zz x Zp andI = {0} x {0} x Z,. So& = Z3 x Z3 x {0}. Since[I| > 2,
(£) is a complete bipartite graph and(I";(R)) = 4. By Theoren2.15 I';(R) is complete
bipartite graph and(I';(R)) = 2 = (I ;(R)).
(B)LetR =2 ZyxFyx Zyandl = {0} x {0} x Z,. LetF, = {0,1,a,b}. Then% > 7o x Fy.
The setD = {(1,0,0),(0,1,0)} is a dominating set. So(I';(R)) = 2. Also D is a minimal
connected dominating set and";(R)) = 2 (see Figure 3).

(0,2,0)

(0,a,1)

Figure 3
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