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Abstract. Let R be a commutative ring andI be an ideal ofR. In this paper, we consider
the ideal-based zero-divisor graphΓI(R) of a commutative ringR. We discuss some graph
theoretical properties ofΓI(R). We find radius and central sets ofΓI(R). We find the relation-
ship between median and central sets ofΓI(R). Further the relationship between domination
number ofΓI(R) and radius ofΓI(R) is also discussed.

1 Introduction

Let R be a commutative ring with identity 1 andZ(R) be the set of its zero-divisors. The
zero-divisor graph ofR denoted byΓ(R) is an undirected graph whose vertices are the nonzero
zero-divisors ofR with two distinct verticesx andy joined by an edge if and only ifxy = 0.
Beck [7] introduced the concept of a zero-divisor graph of a commutative ring, but this work
was mostly concerned with colorings of rings. The above definition ofΓ(R) first appeared in
Anderson and Livingston [4], where many of the most basic features ofΓ(R) are investigated.
S. P. Redmond generalized this by introducing the ideal-based zero-divisor graph [14]. For a
commutative ringR and an idealI of R, the ideal-based zero-divisor graphis an undirected
graphΓI(R) with vertices{x ∈ R− I : xy ∈ I for some y ∈ R− I}, where distinct verticesx
andy are adjacent if and only ifxy ∈ I. He investigated the relationship between these graphs
and zero-divisor graphsR

I
. H. R. Maimani and David F. Anderson have also studied this concept

[5, 10].
Throughout this paper, the rings are commutative andI is an ideal ofR. For any subsetX of

a ringR, |X | denote the number of elements inX andX∗ = X − {0}. For any elementx ∈ R,
ann(x) denote the annihilator ofx in R and is defined asann(x) = {y ∈ R : xy = 0}. Let
a ∈ R. If an = 0, for some positive integern, thena is said to benilpotent element of nilpotency
n. A ring R is said to beNoetherianif it satisfies the following three equivalent conditions: (1)
Every non-empty set of ideals inR has a maximal element. (2) Every ascending chain of ideals
in R is stationary. (3) Every ideal inR is finitely generated. A ringR is said to bedecomposable
if R can be written asR1 ×R2, whereR1 andR2 are rings; otherwiseR is said to bereduced.

The graphsG considered in this paper are simple. The vertex set ofG will be denoted by
V (G). For a graphG, the degreeof a vertexv in G is the number of edges incident withv.
Denote the degree of the vertexv in ΓI(R) by deg(v) and that ofΓ(R) by degΓ(v). We denote
thecomplete graphwith n vertices andcomplete bipartite graphwith two parts of sizesm and
n, byKn andKm,n, respectively. The graphK1,m is called astar graph. Thedistancebetween
any two verticesx andy, denotedd(x, y), is the length of the shortestx− y path. Thediameter
of a connected graphG is the maximum distance between two distinct vertices ofG. Let G be
a graph andH be subset ofG. Theinduced subgraphH in G, 〈H〉 is a graph with vertex setH
and two vertices ofH are adjacent if they are adjacent inG.

The main aim of this article is to find the central sets ofΓI(R). First we prove that for
a commutative Noetherian ringR, radius ofΓI(R) is either 1 or 2. In Sec. 2, we give the
definitions and theorems which are needed for subsequent sections. In Sec. 3 we determine the
radius ofΓI(R). We also find necessary and sufficient condition fordiam(ΓI(R)) = 1 and also
for diam(ΓI(R)) = 2. In Sec. 4 ,we find median ofΓI(R) and relation between center and
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median ofΓI(R). In Sec.5, we determine domination number ofΓI(R) .

2 Preliminaries

Definition 2.1.Let G be a connected graph andx ∈ V (G). Thene(x) = max
y∈V (G)

d(x, y). The

radius ofG, rad(G) = min
x∈V (G)

e(x) and the center ofG, C(G) = {x ∈ V (G) : e(x) = rad(G)}.

The diameter ofG, diam(G) = max
x∈V (G)

e(x).

Definition 2.2.A graphG is self centeredif V (G) is the center ofG.

If a connected graphG has radiusr and diameterd, then r ≤ d ≤ 2r. We denote the
center, eccentricity ofΓ(R

I
) by C(Γ(R

I
)), eΓ(x) respectively and that ofΓI(R) by C(ΓI(R)),

e(x) respectively.

Definition 2.3.Thestatuss(x) of a vertexx of a connected graphG is the sum of the distances
from x to the other vertices ofG, i.e, s(x) =

∑

y∈V (G)

d(x, y). The set of vertices with minimum

status is called themedianof the graph.

If G has no edges, then median ofG is V (G) . We denote the status of every vertexx of
ΓI(R) by s(x) and that of every vertexx+ I of Γ(R

I
) by sΓ(x+ I).

Definition 2.4.A dominating setof a graphG is a subsetS of V (G) such that each vertex ofG
is either inS or adjacent to an element ofS. Thedomination numberof a graphG is the size of
the smallest possible dominating set and is denoted byγ(G).

Definition 2.5.A dominating setS of G is calledconnectedif the subgraph induced byS is con-
nected. Theconnected domination numberof G is the size of the smallest connected dominating
set and is denoted byγc(G).

S. P. Redmond had introduced the concept of an Ideal-Based zero-divisor graph as follows.

Definition 2.6. [14] Let R be a commutative ring and letI be an ideal ofR. The ideal-based
zero-divisor graphis an undirected graphΓI(R) with vertices{x ∈ R−I : xy ∈ I for somey ∈
R − I}, where distinct verticesx andy are adjacent if and only ifxy ∈ I.

Example 2.7.ForR ∼= Z24 andI ∼= (8) , ΓI(R) is shown in Figure 1.

Figure 1

Theorem 2.8.[14] Let I be an ideal of a ringR, and letx, y ∈ R− I. Then
(a) if x+ I is adjacent toy + I in Γ(R

I
), thenx is adjacent toy in ΓI(R).

(b) if x is adjacent toy in ΓI(R) andx+ I 6= y+ I, thenx+ I is adjacent toy+ I in Γ(R
I
).

(c) if x is adjacent toy in ΓI(R) andx+ I = y + I, thenx2, y2 ∈ I.

Corollary 2.9. [14] If x and y are (distinct) adjacent vertices inΓI(R), then all (distinct) ele-
ments ofx+ I andy+ I are adjacent inΓI(R). If x2 ∈ I, then all the distinct elements ofx+ I
are adjacent inΓI(R)
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Remark 2.10.[14] Clearly there is a strong relationship betweenΓ(R
I
) andΓI(R). Let I be

an ideal of a ringR. One can verify that the following method can be used to construct the
graphΓI(R). Let {aλ}λ∈Λ ⊆ R be a set of coset representatives of the vertices ofΓ(R

I
). For

eachi ∈ I, define a graphGi with vertices{aλ + i : λ ∈ Λ}, where edges are defined by the
relationshipaλ + i is adjacent toaβ + i in Gi if and only if aλ + I is adjacent toaβ + I in Γ(R

I
)

(i.e.,aλaβ ∈ I).
Define the graphG to have as its vertex setV =

⋃

i∈I

Gi. We define the edge set ofG to be:

(1) all edges contained inGi for eachi ∈ I.
(2) for distinctλ, β ∈ Λ and for anyi, j ∈ I, aλ + i is adjacent toaβ + j if and only if aλ + I

is adjacent toaβ + I in Γ(R
I
) (i.e.,aλaβ ∈ I).

(3) for λ ∈ Λ and distincti, j ∈ I, aλ + i is adjacent toaλ + j if and only if a2
λ ∈ I.

Definition 2.11.[14] Using the notation as in the above construction, we call the subsetaλ + I
a column ofΓI(R). If a2

λ ∈ I, then we callaλ + I a connected column ofΓI(R).

Remark 2.12.[14] Denote the vertices ofΓ(R
I
) by V (Γ(R

I
)) = {ai + I : i ∈ Λ}. By remark

2.5, we can denote the vertex set ofΓI(R) asV (ΓI(R)) = {ai + h : i ∈ Λ, h ∈ I} and so
|V (ΓI(R))| = |I|

∣

∣V (Γ(R
I
))
∣

∣.

Lemma 2.13.[11] Let I be an ideal of a ringR. Then inΓI(R),

deg(a) =

{

|I|degΓ(a+ I) if a2 /∈ I.

|I|degΓ(a+ I) + |I| − 1 if a2 ∈ I.

Theorem 2.14.[14, Theorem 2.4]Let I be an ideal of a ringR. ThenΓI(R) is connected with
diam(ΓI(R)) ≤ 3. Furthermore, if ΓI(R) contains a cycle, thengr(ΓI(R)) ≤ 7.

Theorem 2.15.[14, Theorem 5.7]Let I be a nonzero ideal of a ringR. ThenΓI(R) is bipartite
if and only if either (a)gr(ΓI(R)) = ∞ or (b) gr(ΓI(R)) = 4 andΓ(R

I
) is bipartite.

Theorem 2.16.[15, Corollary 2.2]LetR be a commutative Noetherian ring with identity. The
radius ofΓ(R) is 0 if and only if eitherR ∼= Z4 or R ∼=

Z2[X]
〈x2〉

. The radius ofΓ(R) is 1 if and only
if eitherR ∼= Z2×A, whereA is an integral domain, orZ(R) is an ideal ofR. If, in addition,R
is finite, then the radius ofΓ(R) is 1 if and only if eitherR ∼= Z2 × F, whereF is a finite field,
or R is local.

Theorem 2.17.[15, Theorem 2.3]LetR be a commutative Noetherian ring with identity that is
not an integral domain. Then the radius ofΓ(R) is at most 2.

Theorem 2.18.[15, Theorem 4.1]LetR be a finite commutative ring with identity that is not an
integral domain. Then the median and center ofΓ(R) are equal if the radius ofΓ(R) is at most
1 and the median is a subset of the center if the radius is 2.

Theorem 2.19.[15, Corollary 4.2]LetR be a finite commutative ring with identity that is not an
integral domain. If the radius ofΓ(R) is 2, then the center equals the median if and only ifR is
isomorphic to a direct product of a finite number of copies of a single finitefield (i.e.,R ∼= Fd

for some finite fieldF and some integerd ≥ 2).

Theorem 2.20.[15, Theorem 5.1]Let R be a commutative Artinian ring with identity that is
not a domain. If the radius ofΓ(R) is at most 1, then the domination number ofΓ(R) is 1. If
the radius is 2, then the domination number is equal to the number of factors inthe Artinian
decomposition ofR. (In particular, the domination number is finite and at least two).

3 Radius ofΓI(R)

Theorem 3.1.Let I 6= (0) be an ideal ofR. Then radius ofΓI(R) can never be zero.

Proof. Clearly ΓI(R) has at least two vertices and by Theorem2.14, it is connected. So
rad(ΓI(R)) > 0. ✷



274 A. Mallika∗ and R. Kala∗∗

Theorem 3.2.Let I 6= (0) be an ideal of a ringR. Then the following are equivalent.
(i) There is a vertexa+ I of Γ(R

I
) of nilpotency 2 that is adjacent to every other vertex.

(ii) There are at least|I| vertices ofΓI(R) with degree|V (ΓI(R))| − 1.

Proof. Assume(i) is true. Thena2 ∈ I and 〈a+ I〉 is a complete subgraph ofΓI(R). By
Theorem2.8, d(a+h, b) = 1, for all b∈ V (ΓI(R)), h ∈ I. Soa+h is a vertex which is adjacent
to every other vertex, for allh ∈ I. Thus(ii) holds. Conversely assume that(ii) is true. Then
chooseb ∈ V (ΓI(R)) such thatd(b, v) = 1, for all v ∈ V (ΓI(R)). In particulard(b, b+ h) = 1,
for all h ∈ I. Sob2 ∈ I. Also for v 6= b+ h, d(b, v) = 1. This implies thatdΓ(b+ I, v + I) = 1
andb + I 6= v + I. Henceb + I is a vertex ofΓ(R

I
) adjacent to every other vertex and is of

nilpotency 2.✷

Corollary 3.3. Let I 6= (0) be an ideal of a ringR such thatΓ(R
I
) is a graph with at least two

vertices. AssumeR is a commutative ring satisfying any one of the conditions(i) or (ii) of
Theorem3.2. Thenrad(ΓI(R)) = 1 if and only if rad(Γ(R

I
)) = 1.

Corollary 3.4. Let I 6= (0) be an ideal ofR such thatΓ(R
I
) is a graph with at least two ver-

tices. AssumeR
I

is a finite local ring but not a field. Thenrad(ΓI(R)) = 1 if and only if
rad(Γ(R

I
)) = 1.

Proof. SinceR
I

is a finite local ring,Ann(Z(R
I
)) 6= 0 and so(i) holds. Hence by Corollary3.3,

the result follows.✷

Theorem 3.5.Let I 6= (0) be an ideal of a Noetherian ringR. Assume thatΓI(R) has no
connected columns. Thenrad(ΓI(R)) = 2.

Proof. By Theorem2.17, rad(Γ(R
I
)) ≤ 2. Then there exista + I such thatrad(ΓI(R)) =

eΓ(a+ I) and sodΓ(a+ I, b+ I) ≤ 2, for all b+ I ∈ V (Γ(R
I
)). This implies thatd(a, b) ≤ 2, for

all b ∈ V (ΓI(R)). SinceΓI(R) has no connected columns, 2≤ e(x) ≤ 3, for all x ∈ V (ΓI(R))
andd(a, a+ h) = 2. Thuse(a) = 2, in ΓI(R). Hencerad(ΓI(R)) = 2. ✷

Theorem 3.6.Let I 6= (0) be an ideal ofR such thatΓ(R
I
) is a graph on single vertex. Then

ΓI(R)) is self centered andrad(ΓI(R)) = 1.

Theorem 3.7.Let I 6= (0) be an ideal of a Noetherian ringR. Assume thatΓI(R) has no
connected columns. Thendiam(Γ(R

I
)) ≤ 2 if and only ifΓI(R) is self centered.

Proof. SinceΓI(R) has no connected columns, 2≤ e(x) ≤ 3, for all x ∈ V (ΓI(R)). Let
x ∈ V (ΓI(R)). SinceΓI(R) is connected, there exist y such that x is adjacent to y. Also
d(x, x + h) = 2, for all h ∈ I. Supposed(x, z) = 3, for somez. Clearlyx + I 6= z + I. Let
x−y−u−z be a shortest path of length 3. SinceΓI(R) has no connected column,y 6= x+h and
u 6= y+h, for all h. If u = x+h or y = z+h for some h, thenx is adjacent toz, a contradiction.
Sou+ I 6= x+ I andy+ I 6= z + I. Sox+ I, y+ I, u+ I, z+ I are distinct element ofΓ(R

I
).

Hencex+I−y+I−u+I−z+I is a shortest path of length 3 anddΓ(x+I, z+I) = 3, which
is a contradiction, sincediam(Γ(R

I
) ≤ 2. Therefored(x, z) ≤ 2, for all z. Hencee(x) = 2,

for all x ∈ V (ΓI(R)). Thus the result follows. Conversely, assume thatΓI(R) is self centered.
Thenrad(ΓI(R)) = e(x), for all x ∈ V (ΓI(R)). Clearlyrad(ΓI(R)) 6= 1. By Theorem3.5,
rad(ΓI(R)) = 2. Soe(x) = 2, for all x ∈ V . We haved(x, y) ≤ e(x) = 2, for all x ∈ V . This
implies thatd(x, y) ≤ 2, for allx, y ∈ V . ThereforedΓ(x+I, y+I) ≤ 2, for allx+I, y+I ∈ V .
So the result follows.✷

Remark 3.8.Theorem3.7is not true ifΓI(R) has a connected column. For example, ifR = Z24

and I = (8), ΓI(R) has a connected column anddiam(Γ(R
I
)) ≤ 2. But ΓI(R) is not self

centered (see Figure 1).
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Lemma 3.9.Let I 6= (0) be an ideal ofR such thatΓ(R
I
) is a graph with at least two vertices.

Then the following is the relationship betweenΓI(R) andΓ(R
I
).

(i) If x2 ∈ I, theneΓ(x+ I) = e(x).
(ii) If eΓ(x+ I) 6= 1, theneΓ(x+ I) ≥ e(x).
(iii) If x2 /∈ I andeΓ(x+ I) = 1, theneΓ(x+ I) < e(x).

Theorem 3.10.Let R be a commutative Noetherian ring andI be a non zero ideal ofR. Then
rad(ΓI(R)) is at most 2.

Proof. AssumeΓI(R) has a connected column. Ifrad(Γ(R
I
)) = 1, then there exista + I

such thateΓ(a + I) = 1. If a2 ∈ I, then by Theorem3.2, rad(ΓI(R)) = 1. If a2 /∈ I, then
a− b− a+ h is a shortest path of length 2 whereb 6= a+ h and sod(a, a+ h) = 2, h ∈ I. Thus
e(a) = 2, in ΓI(R) and sorad(ΓI(R)) ≤ 2. If rad(Γ(R

I
)) = 2, then there exista+ I such that

eΓ(a + I) = 2. By Lemma3.9, e(a) ≤ 2 and sorad(ΓI(R)) ≤ 2. If ΓI(R) has no connected
columns, then by Theorem3.5, rad(ΓI(R)) ≤ 2. ✷

Corollary 3.11. Let R be a commutative Noetherian ring with identity. IfR
I

is not an integral
domain, then there is a nonzerox ∈ R such that eitherxy ∈ I or ann(x+I)∩ann(y+I) 6= {0},
for all y ∈ V .

Example 3.12.(1) Let R ∼= Z24 and I = (8). Then ΓI(R) has a connected column and
rad(ΓI(R)) = 1 (see Figure 1).

(2) LetR ∼= Z2×Z4 ×Z2 andI = {0}× {0}×Z2. Since (0,2,0) is an element of nilpotency
2, ΓI(R) has a connected column andrad(ΓI(R)) = 2 (see Figure 2).

(3) LetR ∼= Z2 ×Z2 ×Z3 andI = {0}× {0}×Z3. So R
I
= Z2 ×Z2 ×{0} andΓ(R

I
) ∼= K2.

Since|I| ≥ 2, Γ(R
I
) is a complete bipartite graph andgr(ΓI(R)) = 4. By Theorem2.15, ΓI(R)

is complete bipartite graph andrad(ΓI(R)) = 2.

Figure 2

Theorem 3.13.Let R be a commutative Artinian ring with identity 1 andI 6= (0) be an ideal of
R such thatR

I
is a finite ring with identity 1 andΓ(R

I
) is a graph with at least two vertices. Then

(i) diam(ΓI(R)) > 0.
(ii) If rad(ΓI(R)) is 1, thendiam(ΓI(R)) = 1 if and only if ΓI(R) is a complete graph.

Otherwise , the diameter is 2.
(iii) If rad(ΓI(R)) is 2, thendiam(ΓI(R)) = 2 if and only if R

I
∼= F1 × F2, whereF1 and

F2 are both fields. Otherwise the diameter is 3.

Proof. (i) is obvious.
(ii) If rad(ΓI(R)) is 1, then the diameter is at most 2, since for anyx in the center ofΓI(R)

and for any two verticesa andb, a− x− b is a path of length 2. The diameter is 1 if and only if
all the vertices ofΓI(R) are adjacent. Otherwise the diameter is 2.

(iii) Supposerad(ΓI(R)) is 2. Thenrad(Γ(R
I
)) = 1 or 2. Consider the case where

rad(Γ(R
I
)) = 1 . SinceR

I
is not local and by Theorem2.16, R

I
∼= Z2 × F, whereF is a

finite field and diameter is 2. Assumerad(ΓI(R)) = 2. If R
I
∼= F1 × F2 whereF1 andF2 are

both are fields and both not isomorphic toZ2, thenΓ(R
I
) is a complete bipartite graph and so

gr(ΓI(R)) = 4. By Theorem2.15, ΓI(R) is a complete bipartite graph. Thusdiam(ΓI(R)) = 2.
Now assumeR

I
≇ F1×F2, whereF1 andF2 are both fields . Consider the Artinian decomposition
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R
I
= R1×. . . Rn×F1×. . . Fm, where(Ri,Mi) is a local ring,Fj is a field, 1≤ i ≤ n,1≤ j ≤ m

andn+m ≥ 2. By choice ofR
I

, the casen = 0 andm = 2 is impossible. SinceR
I

is not local,
the casesn = 0,m = 1 andn = 1,m = 0 are impossible. Hence it is enough to consider the
following cases. In all cases, an element not in the center ofΓI(R) will be identified.
Case 1:n ≥ 1 andm ≥ 1.
Let 0 6= x ∈ M1. Let y + I = (x,0, . . .1,0 . . . ,0), where the entry in positionn + 1 is the
identity of F1. Theny + I is a zero-divisor but is not in the center ofΓ(R

I
). This implies that

dΓ(y + I, z + I) = 3, for somez + I , z + I 6= y + I and sod(y, z) = 3, for somez. So
y /∈ C(ΓI(R)).
Case 2: n = 0 andm ≥ 3.
Then R

I
∼= F1 × . . . Fm. Theny + I = (0,1, . . .1) is a zero-divisor but is not in the center of

Γ(R
I
). This implies thatdΓ(y+ I, z+ I) = 3, for somez+ I, z + I 6= y+ I and sod(y, z) = 3,

for somez. Soy does not lie in the center ofΓI(R).
Case 3: n ≥ 2 andm = 0.
For eachi = 2, . . . n, choosexi 6= 0 in Mi. Let z + I = (1, x2, . . . , xn). Thenz + I is a
zero-divisor but is not in the center ofΓ(R

I
). Soz does not lie in the center ofΓI(R). Thus, in

all these cases, the center is not the entire vertex set ofΓI(R). Therefore, the diameter is strictly
larger than the radius anddiam(ΓI(R)) = 3. ✷

Theorem 3.14.Let I be an ideal of a commutative Noetherian ringR such thatR
I

is a finite ring
andR

I
≇ Z2×F, whereF is a finite field. ThenC(ΓI(R)) = {x+h : x+I ∈ C(Γ(R

I
)) andh ∈

I} and|C(ΓI(R))| = |I|
∣

∣C(Γ(R
I
))
∣

∣.

Proof. Let x+ I ∈ C(Γ(R
I
)) andh ∈ I. TheneΓ(x+ I) = rad(Γ(R

I
)).

Case 1: x2 ∈ I
By Lemma 3.9, e(x + h) = rad(Γ(R

I
)). If rad(Γ(R

I
)) = 1, then e(x + h) = 1 and

rad(ΓI(R)) = 1. Assumerad(Γ(R
I
)) = 2. So R

I
cannot be local and sorad(ΓI(R)) = 2.

In both casesrad(Γ(R
I
)) = rad(ΓI(R)). Clearlye(x) = rad(ΓI(R)). Sox ∈ C(ΓI(R)).

Case 2:x2 /∈ I.
If eΓ(x+I) = 1. Then by Lemma3.9, e(x) > 1. That is 2≤ e(x) ≤ 3. Supposee(x) = 3. Then
there existy such thatd(x, y) = 3 andy 6= x+h, h ∈ I. Sox+I 6= y+I anddΓ(x+I, y+I) = 3,
which is a contradiction toeΓ(x + I) = 1. Thereforee(x) = 2. Sincerad(ΓI(R)) ≤ 2,
rad(ΓI(R)) = 2 = e(x). Hencex ∈ C(ΓI(R)). If eΓ(x + I) 6= 1, then by Lemma3.9
e(x) ≤ eΓ(x+ I) andeΓ(x+ I) = 2. Soe(x) ≤ 2. Sincex2 /∈ I, e(x) = 2 = rad(ΓI(R)). Thus
x ∈ C(ΓI(R)). Conversely letx ∈ C(ΓI(R)). If rad(ΓI(R)) = 1, thene(x) = 1 andx2 ∈ I.
By Lemma3.9, eΓ(x+ I) = 1 = rad(Γ(R

I
)). Thereforex+ I ∈ C(Γ(R

I
)). If rad(ΓI(R)) = 2

and we haveR
I
≇ Z2 × F, then by Corollary3.4 R

I
is not local. Sorad(Γ(R

I
)) = 2. We have

e(x) = 2. This implies thateΓ(x+ I) = 2. Sox+ I ∈ C(Γ(R
I
)). So the result follows.✷

4 Median ofΓI(R)

Theorem 4.1.LetR be a finite commutative ring with identity that is not an integral domain and
I be an ideal ofR. Then the median and center ofΓI(R) are equal if the radius ofΓI(R) is 1,
and the median is a subset of the center if the radius is 2.

Proof. Assumerad(ΓI(R)) is 1. Letx ∈ C(ΓI(R)). Clearlys(x) = |V (ΓI(R))| − 1 for all
x ∈ C(ΓI(R)). Let y ∈ V (ΓI(R)). If y ∈ C(ΓI(R)), thens(y) = s(x). If not, e(y) = 2 or 3.
This implies thats(y) ≥ |V (ΓI(R))| ands(x) ≤ s(y), for all y ∈ V (ΓI(R)). Sox ∈ M(ΓI(R)).
Conversely letz ∈ M(ΓI(R)). Thens(z) ≤ s(x), for all x. In particulars(z) ≤ s(x), for all
x ∈ C(ΓI(R)). Sos(z) = |V (ΓI(R))| − 1. Hencee(z) = 1 andz ∈ M(ΓI(R)). So center and
median coincide.

Assume that radius ofΓI(R) is 2. SoR
I

is not local. LetR
I
∼= R1×. . .×Rn×F1×. . . Fm be the

Artinian decomposition ofR
I

, where(Ri,Mi) is a local ring,Fj is a field, 1≤ i ≤ n and 1≤ j ≤
m. Letz be a vertex ofΓI(R) that is not in the center. Then takez+I = (a1, . . . , an, b1, . . . , bm).
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In all possible cases, a vertexx in the center is found such thats(x) < s(z). If x is in the center
of ΓI(R), then the eccentricity ofx is 2. Hence,

s(x) = deg(x) + 2(|V | − 1− deg(x)) = 2 |V | − deg(x)− 2 (4.1)

From (4.1), all the vertices of the median must have the same degree. Sincez is not in the center,
there is some vertexw such thatd(z, w) = 3. Thus

s(z) > 2 |V | − deg(z)− 2 (4.2)

Case 1: bi 6= 0 andbj 6= 0 for some 1≤ i < j ≤ m. Let x + I = (0, . . . ,0,1,0, . . . ,0),
where the nonzero coordinate is the identity ofFi. Thenx + I is in the center ofΓ(R

I
) and

ann(z+I) ⊆ ann(x+I). Since neitherx+I norz+I is nilpotent, this implies deg(z) < deg(x).
By (1) and (2),s(z) > s(x).
Case 2: bj 6= 0 for some 1≤ j ≤ m and eachai ∈ Mi with someak 6= 0 for some
1 ≤ k ≤ n,whereMi is a maximal ideal ofRi. Let x + I = (0, . . . ,0, ak,0, . . . ,0). Then
x + I is in the center ofΓ(R

I
) and ann(z + I) ⊆ ann(x + I). Therefore degΓ(z + I) =

|ann(z + I)| − 1 < |ann(x+ I)| − 1 = deg(x+ I). Hence degΓ(z + I) ≤ degΓ(x+ I). Since
bj 6= 0, z2 /∈ I. So degΓ(z) ≤ degΓ(x). By (1) and (2),s(z) > s(x).
Case 3: ai is a unit inRi for some 1≤ i ≤ n. Let c be a nonzero element of the maximal
ideal of Ri, and letx + I = (0, . . . ,0, c,0, . . .0). Thenx + I is in the center ofΓ(R

I
) and

ann(z + I) ⊆ ann(x+ I). Therefore, deg(z + I) = |ann(z + I)| − 1 < |ann(x+ I)| − 1. So
degΓ(z + I) ≤ degΓ(x+ I). Sinceai is a unit,z2 /∈ I. Hence deg(z) ≤ deg(x). By (1) and (2),
s(z) > s(x). Hence in each of the three cases, there is a vertexx of the center withs(x) < s(z).
Hencez cannot be in the median. Thus the median is a subset of the center.✷

Corollary 4.2. Let R be a finite commutative ring with identity that is not an integral domain
andI be an ideal of a ringR. If the radius ofΓI(R) is 2, then the center equals the median if and
only if R

I
is isomorphic to a direct product of a finite number of copies of a single finite field or

Z2 × F (i.e., R
I
∼= Fd for some finite fieldF and some integerd ≥ 2).

Proof. Assumerad(ΓI(R)) = 2 and center and median coincide. Then we have two cases.
Case 1:rad(Γ(R

I
)) = 1.

Then by Theorem2.16, R
I

is either local orR
I
∼= Z2 × F. SinceR

I
cannot be local,R

I
∼= Z2 × F

andΓI(R) is self centered.
Case 2:rad(Γ(R

I
)) = 2.

By Theorem2.18, M(Γ(R
I
)) ⊆ C(Γ(R

I
)). Now letx+ I ∈ C(Γ(R

I
)). Then by Theorem3.14,

x ∈ C(ΓI(R)). By hypothesisx ∈ M(ΓI(R)). Clearly

s(x) = 2 |V | − deg(x)− 2

and s(x) < s(y), for all y. From Lemma2.13, s(x + I) < s(y + I), for all y + I. So
x + I ∈ M(Γ(R

I
)) andC(Γ(R

I
)) = M(Γ(R

I
)). Also rad(Γ(R

I
)) = 2. By Theorem2.19, R

I
is

isomorphic to a direct product of a finite number of copies of a single finitefield. Converse is
obvious.✷

Example 4.3.(1) LetR ∼= Z24 andI = (24). ThenC(ΓI(R)) = {4,12,20} = M(ΓI(R)) and
rad(ΓI(R)) = 1 (see Figure 1).

(2) LetR ∼= Z2 × Z4 × Z2 andI = {0} × {0} × Z2. Thenrad(ΓI(R)) = 2, C(ΓI(R)) =
{(1,0,0), (1,0,1), (0,2,0), (0,2,1)} and M(ΓI(R)) = {(1,0,0), (1,0,1)}. In this case
C(ΓI(R)) ⊆ M(ΓI(R)) (see Figure 2).

(3) LetR ∼= Z3 × Z3 × Z2 andI = {0} × {0} × Z2. ThenR
I
= Z3 × Z3. In this caseΓ(R

I
)

is complete bipartite graph andgr(ΓI(R)) = 4. By Theorem2.15, ΓI(R) is complete bipartite
graph. Sorad(ΓI(R)) = 2 andC(ΓI(R)) = M(ΓI(R)).

5 Domination Number ofΓI(R)

Theorem 5.1.Let R be a commutative ring andI 6= (0) be an ideal ofR such thatR
I

is an
Artinian ring with identity.
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(i) If rad(ΓI(R)) is 1, thenγ(ΓI(R)) is 1.
(ii) If rad(ΓI(R)) is 2 andR

I
≇ Z2 × F, thenγ(ΓI(R)) is number of factors in the Artinian

decomposition ofR
I

, whereF is a finite field.
(iii) If R

I
∼= Z2 × F, thenγ(ΓI(R)) is 2, whereF is a finite field.

Proof. (i) Assume thatrad(ΓI(R)) = 1. Then any element in the center forms a dominating set
and soγ(ΓI(R)) is 1.

(ii) Assume thatrad(ΓI(R)) = 2 andR
I
≇ Z2 ×F. ThenR

I
is not local. Sorad(Γ(R

I
)) = 2

and by Theorem2.20, domination number ofΓ(R
I
) is number of factors in the Artinian decom-

position of R
I

, saym. In [15, Corollary 5.3] it was observed that the connected domination
number ofΓ(R

I
) equals the domination number ofΓ(R

I
). Let S = {xi + I : 1 ≤ i ≤ m} be a

dominating set ofΓ(R
I
). Then the subgraph induced by the set S is connected. Consider the set

{x1, . . . , xm}. Let y ∈ V (ΓI(R)). Supposey = xi + h, whereh ∈ I and 1≤ i ≤ m. Since
S is a connected dominating set,y is dominated byxj , j 6= i. If not, the vertexy + I is domi-
nated byxi + I, for somei. Theny is dominated byxi. Soγ(ΓI(R)) ≤ m. Now suppose that
D = {z1, . . . , zm−1} is a dominating set ofΓI(R). Then every vertexx of V \D is dominated
by zi, for somei. Thenxzi ∈ I, for somei. If x+ I = zi + I, thenx+ I lies in the dominating
set. If not, by Theorem2.8, every vertexx+ I of ΓI(R) is dominated byzi+ I, for somei. This
implies that{z1 + I, . . . , zm−1 + I} is a dominating set ofΓ(R

I
), which is a contradiction. So

the result follows.
(iii) Assume thatR

I
∼= Z2 × F. Since R

I
is reduced,ΓI(R) has no connected columns

and not complete. Letxi = (0, . . . ,0,1,0, . . . ,0), where the non-zero coordinate is the identity
of Ri

Ii
∼= Z2. Let xj = (0, . . . ,0,1,0, . . . ,0), where the non-zero coordinate is the identity of

Rj

Ij
∼= F. Then{xi, xj} is a minimal dominating set and soγ(ΓI(R)) is 2.✷

Corollary 5.2. LetR be a finite commutative ring with identity that is not a domain andI 6= (0)
be an ideal ofR. Then the domination number ofΓI(R) equals the number of distinct maximal
ideals ofR

I
.

Corollary 5.3. Let R be a finite commutative ring with identity that is not a domain andI be
a non zero ideal ofR. Then the connected domination number ofΓI(R) equals the number of
distinct maximal ideals ofR

I
.

Proof. In [15, Corollary 5.3] it was observed that the connected domination number of Γ(R
I
)

equals the domination number ofΓ(R
I
). By Theorem2.8(a), connected domination number of

ΓI(R) equals the domination number ofΓI(R). Hence the result follows from Corollary5.2✷

Example 5.4.(1) LetR ∼= Z8 andI = (24). Thenγ(ΓI(R)) = 1 = γc(ΓI(R)) (see Figure 1).
(2) LetR ∼= Z3 × Z3 × Z2 andI = {0} × {0} × Z2. So R

I
= Z3 × Z3 × {0}. Since|I| ≥ 2,

Γ(R
I
) is a complete bipartite graph andgr(ΓI(R)) = 4. By Theorem2.15, ΓI(R) is complete

bipartite graph andγ(ΓI(R)) = 2 = γc(ΓI(R)).
(3) LetR ∼= Z2×F4×Z2 andI = {0}×{0}×Z2. LetF4 = {0,1, a, b}. ThenR

I
∼= Z2×F4.

The setD = {(1,0,0), (0,1,0)} is a dominating set. Soγ(ΓI(R)) = 2. AlsoD is a minimal
connected dominating set andγc(ΓI(R)) = 2 (see Figure 3).

Figure 3
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