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Abstract. In this paper we give new results of existence, uniqueness and maximal regular-
ity of the solution to the N-dimensional heat equation J;,u — Au = f, with Cauchy-Dirichlet
boundary conditions in a time-dependent domain.

1 Introduction
Let @ be an open set of RV+1 defined by

Q={(t,z1,22,....,xN) € RYY (2,20, an) € Q0,0 < t < T}

where T is a finite positive number and for a fixed ¢ in the interval |0, T, Q; is a bounded domain
of R defined by

N m% 96% m%\,
Q = cee R :O < e A N 1 .
t {(xl,fﬂz, ,TN) € = RZ(1) ¢ () * 02 (t) toet ©* (1) < }

Here ¢ is a continuous real-valued function defined on [0, T'], Lipschitz continuous on |0, T'] and
such that
©(0)=0and ¢ (t) >0

for every t € |0, T. h is a Lipschitz continuous real-valued function defined on [0, T'], such that
0<d<h(t)<p (1.1

for every ¢ € [0,7], where § and 8 are positive constants. In @, consider the boundary value
problem

(1.2)

{ du—Au=f e L*(Q).
=0,

U|aQ\rT

where Au = Zgil 8fcku, 0Q) is the boundary of () defined by

0Q =Ty U (te]L(iT[ {t} x agt)

with 9Q, ¢ € |0, T, is the boundary of Q, and I'r is the part of the boundary of @ where t = T,
given by

I'r =QruoQr.
Problem (1.2) is of interest in combustion theory, where the non-cylindrical space-time part of
the boundary

0Qen = {(t,(he) (1), o (t) s (1) eRNFTL10 <t < T}

can be considered as an approximation of a flame front, see [13] and [15]. On the other hand,
Problem (1.2) modelizes, for instance in the case N = 2, the diffusion of a polluant in a flow of
a river with variable width and depth, see [11] and [12].
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Observe that the domain @ considered here is nonstandard since it shrinks at ¢t = 0, (¢ (0) =
0). This prevents the non-symmetric cone @ to be transformed into a usual cylindrical domain
by means of a smooth transformation. On the other hand, the semi group generating the solution
cannot be defined since the initial condition is defined on a set measure zero, {(0,0,...0)}. It is
well known that there are two main approaches for the study of boundary value problems in such
non-smooth domains. We can work directly in the non-regular domains and we obtain singular
solutions, or we impose conditions on the non-regular domains to obtain regular solutions (see,
for example [18] and [8]). It is the second approach that we follow in this work. So, we impose
a sufficient condition on the function ¢ near 0, that is,

O ®)e) — 0 ast — 0, (1.3)

and we obtain existence and regularity results for Problem (1.2) by using the domain decom-
position method. More precisely, we will prove that Problem (1.2) has a solution with optimal
regularity, that is a solution u belonging to the anisotropic Sobolev space

Hy?(Q) = {u e B (Q) : ulygr, =0},
with

HY(Q) = {ue L*(Q) : 0u,0202..00Nue L* (Q),1 < iy + i+ ... +iy <2} .

R o3 Ry vio I
The space H'? (Q) is equipped with the natural norm, that is

1/2
2
i1 a0 i 2
ZLZ(Q) + Z H(‘);la;z@xfjquLQ(Q)

11,42,...,iN =0
1<ij+ir+...+in <2

2
ull 2y = | lullzz(qy + l10sul

Examples of sections Q; of @) satisfying condition (1.3) are ¢ (t) = t2te, for each e > 0.
However the condition (1.3) holds false in the case ¢ = 0. Our main result is

Theorem 1.1. Problem (1.2) admits a unique solution u € H'> (Q) in one of these two cases:
1) h and ¢ verify the conditions (1.1) and (1.3).
2) h verifies the condition (1.1) and (hy) and ¢ are increasing functions in a neighborhood

of 0.

In [10] the same problem has been studied in the case of a symmetric conical domain, i.e.,
in the case where h (¢) = 1. The case N = 2 is studied in [19] and [9] both in symmetric and
non-symmetric conical domains. Alkhutov [2] has studied the case of the heat equation in a
ball in some weighted LP-spaces, but his class of domains is much smaller, as he only considers
domains which corresponds here to (¢ (t) , h(t)) = (\/t (2R — t), 1) where R is the radius of the
ball. It is clear that these functions satisfy conditions (1.1) and (1.3). Further references on the
analysis of parabolic problems in non-cylindrical domains are: Paronetto [17], Alkhutov [1], [2],
Degtyarev [4], Sadallah [18]. There are many other works concerning boundary value problems
in non-smooth domains (see, for example, Grisvard [6] and the references therein).

The organization of this article is as follows. In Section 2, first we prove an uniqueness result
for Problem (1.2), then we derive some technical lemmas which will allow us to prove a uniform
estimate (in a sense to be defined later). Section 3 is devoted to the proof of Theorem 1.1. We
divide the proof into three main steps. First, we prove that Problem (1.2) admits a (unique)
solution in the case of a domain which can be transformed into a cylinder. Second, for 7" small
enough, we prove that the result holds true in the case of a conical domain under the above
mentioned assumptions on functions ¢ and h. Here, we restart the solution at later time ¢ = %
and show its local existence over [%, T] . Then using a passage to the limit and energy estimates,
we show that we can get solution on ) by letting n — oo. Finally, by using a trace result, we
complete the proof of Theorem 1.1.
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2 Preliminaries

Proposition 2.1. The solution of Problem (1.2) is unique.

Proof. Let us consider u € Hy” (Q) a solution of Problem (1.2) with a null right-hand side term.
So, the calculations show that the inner product (9;u — Au, u) in L*(Q) gives

0= i, 4’ deydas...dey + [, |Vuldt deydes...dey.

This implies that [Vu|*> = 0 and consequently Au = 0. Then, the equation of Problem (1.2)
gives Oyu = 0. Thus, u is constant. The boundary conditions imply that « = 0 in ). This proves
the uniqueness of the solution of Problem (1.2). O

Remark 2.2. In the sequel, we will be interested only by the question of the existence of the
solution of Problem (1.2).

The following result is well known (see, for example, [16])

Lemma 2.3. Let B (0, 1) be the unit ball of R™. Then, the Laplace operator A : H* (B (0,1)) N
H}(B(0,1)) — L?(B(0,1)) is an isomorphism. Moreover, there exists a constant C > 0
such that

o]

H2(B(0,1)) <C HAUHLZ(B(O,I)) , Vo € H? (B (07 1)) .

In the previous lemma, H? and H{} are the usual Sobolev spaces defined, for instance, in
Lions-Magenes [16]. In section 3, we will need the following result.

Lemma 2.4. For afixedt € |0, T|, there exists a constant C > 0 such that for eachu € H? (Q;)N
H} (Qy), we have

.
19 ull 20

where 8gk_u =u, k=172, ..,N.

) < CECT () |AullTag,) 5= 0,15 k= 1,2,..,N

Proof. 1t is a direct consequence of Lemma 2.3. Indeed, let ¢ € ]0, 7' and define the following
change of variables

B(0,1) = Q; (21,22, zn) — (h(t) @ (t) 1,0 () 22, .oy 0 () zN) = (2], 75, .0y Xy ) -

Set v (w1, 22, ..., xn) = u(h(t) o (t)z1,0 () 22, ..., 0 (t) zN), thenif v € H> (B (0,1)), u be-
longs to H? (Q;).
i) For j = 0, 1, we have

g3

C\2

fB(O,l) (6;17)) (21,22, ..., xN) drrdzs...dzy
. 2 . .

Jo, <8iiu) (2, 25 s ) B2 (0% (1) by ...y
. . . 2

— RGN (1) [, ([“)iﬂ) (2], 2, ..., &'y ) da, da)y...dacly

. . 2
R8N (1) |||

Q)
On the other hand, we have
2
||Av||2Lz(B(071)) = fB(O,l) (O v+05v+ ... +02,v) (z1, 22, ..., oN)]” darday...dey
2
N

fg (hz(t) HOLATED DA (t) 822;, u) et dah iy
( 82,u+zk », 0 ) (xh,ah, ..., xy) dol dahy...daly
< 3;<P Nt )HAUHLz )

where 0 is the constant which appears in (1.1). Using the inequality

H6x1v||L2 B(0,1)) < OHAUHH )]_0713
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of Lemma 2.3 and the condition (1.1), we obtain the desired inequality

193, 4]

2 —J 2 .
L2(Q) < Cp*2=3) (t) || Aul 2@ J = 0,1.

ii) Fork=2,..., N and j = 0, 1, we have

||3§;k”|2LZ<B<0,1)) = Jao (33@”)2(Ilaxb--vzk’""m) dridrs...dwy...den
= Ja, (%u)z(x37xg,...,x;€7...7mgv)@2j (t) s dodes...day....dly
— %fﬂt (ai;uy(x’hx’z,...,xfw...,x’N)d;v’ldm’z...dx%...dx},
2y 2
Wh(iv)(t) aﬂ]vku L2(Q¢)

On the other hand, we have

|Av]

2 [ 2
12(B(0,1)) < g<P4 N (t) | A L2(Q)

Using Lemma 2.3 and the condition (1.1), we obtain the desired inequality. O

3 Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into three steps.

3.1 Step 1: Case of a truncated domain Q. which can be transformed into a cylinder

In this subsection, we replace @) by @, « > 0:
2

1 T 22 23
o« =1 (t,z1, 22, ..., eRN*L:. <t <T,0< 1 2 =<1y
R (S 3 “ROSH 20 T AW

Theorem 3.1. The following problem admits a unique solution u € H? (Q,,)

{ du—Au=f € L*(Qa),

ulopg\rr = O-

3.1

Proof. The change of variables

(t,.ﬁUl,sz,...,]}N) = (t’ylayZa"'ayN) = (tma%w"v z(]\t;))

transforms @, into the cylinder P, = |2, T[ x B(0,1), where B (0, 1) is the unit ball of RY.
Putting u (ta L1y L2y eeny IN) =" (t7 Y, Y2, .. yN) and f (ta L1y L2y eeny IN) =4 (ta Y1,Y2, .4 yN),
then Problem (3.1) is transformed, in P, into the following variable-coefficient parabolic prob-

lem

N he) (t)y "t N
dhv — hQ(t)lgﬁ(t) 8@31“ - f(t) PO aik” - (hﬁ));()f)/ Oy, v — ZT(t)) Dra YOy v =g

V9P, -1y = 0.

This change of variables conserves the spaces L? and H'? since h%az S’% “;L“;)/ and % are
bounded functions on each @. In other words
fel?(Q) <= geLl?(P,) and uec HY?(Q,) <= ve HY? (P,).
O

Proposition 3.2. The following operator is compact

(he) () 1 o' (t
OPIORT

N
) > ykdy, | Hy? (Pa) — L (Pa).
k=2

t)
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Proof. P, has the horn property of Besov (see [3]). So, forj =1,2,.... N
8y, t Hy? (Po) — H¥' (Po): v — 9,0,

is continuous. Since P, is bounded, the canonical injection is compact from H?*'' (P,) into
L? (P,) (see for instance [3]), where

1

Nl
«

1
H'(P,) = L2 < T:H" (B (0, 1))> NH? <,T;L2 (B (0, 1))) ‘

«
For the complete definitions of the Hilbertian Sobolev spaces H™° see for instance [16]. Con-
sider the composition

Oy, :

J

Hy? (Po) = HYY(P,) = L2 (P); v 8,0 8,0,

then 0, is a compact operator from Hé’z (/Pa) into L* (P,). Since —%, - géf)i;g are bounded

functions on each P,, the operators — (Z(@t));t()gl Oy, — "9;52?’“ Oy,» k= 2,3,..., N are also compact
from Hé 2 (P,) into L2 (P,,). Consequently, B; is compact from Hé 2 (P,) into L2 (P,). i

So, in order to complete the proof of Theorem 3.1, it is sufficient to show that the operator

1 -
2 2
POE G 7@ 2

82 = 3t —

is an isomorphism from Hé’z (P,) into L* (Py,) .

Lemma 3.3. The operator B, is an isomorphism from Hé 2 (P,) into L2 (P,).

1

Proof. Since the coefficients m and [ are bounded in P,, the optimal regularity is

given by Ladyzhenskaya-Solonnikov-Ural’tseva [ 14, Theorem 9.1, pp. 341-342]. O
We shall need the following result in order to justify the calculus of this section.

Lemma 3.4. The space
{wem* (P): uly,p, =0}
is dense in the space

{u e H'(Py): uly 5 = 0}.

Here, O, P, is the parabolic boundary of P, and H* stands for the usual Sobolev space defined,
for instance, in Lions-Magenes [16].

The proof of the above lemma may be found in [7].
Remark 3.5. In Lemma 3.4, we can replace P, by (), with the help of the change of variables

defined above.

3.2 Step 2: Case of a conical type domain
A uniform estimate

In this case, we define @ by

2 2
Q—{(t,xl,xz,...,xN)e]RN“:0<t<T,O§ i + + .+ fN <1}
h2(t)e @ ©* (t)

with
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We assume that the functions h and ¢ satisfy conditions (1.1) and (1.3). For each n € N* we
define Q),, by

1 z? x3 3
=3 (t RNtL: — <t < T 0< L 24+ <
Q= {( ) RV <t <0 % gy ¢ g+ R <

and we denote f, = f\ and u,, € H'?(Q,) the solution of Problem (1.2) in Q,,. Such a
solution exists by Theorem 3.1

Proposition 3.6. For T small enough, there exists a constant K independent of n such that

ltnllare iy < Ki I fall 2y < K1 Il 2o

In order to prove Proposition 3.6, we need the following result which is a consequence of
Lemma 2.4 and Grisvard-Looss [5, Theorem 2.2].

Lemma 3.7. There exists a constant C' > 0 independent of n such that

2

> fomonan

i1,%2,...,in =0
d1tiat.. Ain=2

) < C A,

Proof of Proposition 3.6: Let us denote the inner product in L2 (Q,,) by (., .), then we have

2
£l

= (Owupn, — Ay, Opuy, — Auy,)
2 2
= 0unlloq,) + 1Aunllzsq, ) — 2(0run, Aug)

Estimation of —2(d;u,,, Au,,) : We have

N N
Ost, Ay, = Za”k (Ortn Oy n) — Z 8£kun
k=1 1
Then

—2{Oun, Auy) = =2 an Oy, Aupdtdzida,...dzy
= -2 an Zgil Oy, (O Op,uy,) dtdxydas...dx N
+ fo, Shly O (O, un)? dtdzyday...dzy

where vy, Vg, ..., Uz, are the components of the unit outward normal vector at 0Q),,. We shall
rewrite the boundary integral making use of the boundary conditions. On the part of the bound-
ary of Q),, where t = %, we have u,, = 0 and consequently 0,,u, = 0, & = 1,..., N. The
corresponding boundary integral vanishes. On the part of the boundary where ¢t = 7', we have

Vg, =0,k =1,...,N and v, = 1. Accordingly the corresponding boundary integral

/ |Vun|2 (T,x1,x2, ..., xN) dr1dT).. dT N
I'r

is nonnegative. On the part of the boundary where Wiz(t) + ;—m + ...+ ;—I(Vt) =1, we have
cos 01

\/(go’ () h(t) sin® 6; + (he)’ (t) cos? 01)2 + (h(t) sin6;)* + cos? 6,

VI] —

h in6y...si _
vy = (t) sin 6;... sin O _; cos by k=23,

\/(g@’ (t) h(t) sin® 01 + (he) () cos? 91)2 + (h(t) sin ;) + cos? 6,
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h(t)sin6y...sin Oy _, sin O

>

h \/(@’ (t) h(t) sin® 0y + (he) () cos? 91>2 + (h(t) sin ;) + cos? 6;
- (w (t) h(t) sin 01 + (hg)' (t) cos® 91)

V(& QR + gy ()c0s20,)

Vy =
2

+ (h(t)sin ;) + cos? 6,

and
un(t, h (t) ¢ (t) cosby, ¢ (t)sinb; cos by, ..., (t) sin by sinbs... sinfy_o cos Oy _1,
@ (t)sinfy sinb,...sinfy_osinfy_1) = 0.
Differentiating with respect to ¢, 61, ...., 0 _» and 1 we obtain

Oun, = —¢' (1) [Zg:_zl sin ... sin0;_1 cos 0.0, Uy, + sinb;... sinQN,l.azNun]

— (he)' (t) cos 0).0,, U,

N-1
hsin 610, u, = cos ) l E sinfs...sin 01 cos 0,0y, up, + sin92...sin6N_1.8$Nun] ,
k=2

—1
$in 60, u, = cos b, [ Nz: $in6;41...8in 0y _1 €08 0.0, Uy, + 8in 6 41...8in HNl.awNun]
k=j+1
forj =2,3,..., N —2and
SinOn_1.055_ Up = COSON_1.05 5 Un,.
Consequently the corresponding boundary integral is

In
=2 foh o Jo f%T Oy, X {€08 0.0, up + hzjk\:zl sinf...sin 0y _1 cos 0.0y, u,

+hsiné;...sinOy_» sinOy_1.0, yun} X @ (t) dtdf1db,...d0N 1

o Iy Sy S Il () () sin® 0+ (hp)' (t) cos? 01) ) x i (¢) dEd0rdBs...dOx
= 2]02” o fo Jy f§{¢/ (t) |:Z]k\]:_21 sin@y... sin 0 _1 €08 0.0, Uy, + sinGl...sineN,l.&cNun}

X (cos 01.05,un, + R ij:_zl sinf);...sin O;_; cos 0y.0, u,, + hsiné... sinfy_, sin HN_I.axNun)
+ (hep) (t) cos 0105, un} X @ (t) dtdfydbs...dON

A S e G ((go' (t) h(t) sin® 01 + (he)' (t) cos? 91)) % o (t) dtdf1d6s...d0x
= J e Sy S T IVl (<¢' (t) h(t) sin 01 + (hy)' (t) cos? 91)) % o (t) dtd1d0s...d0x 1.

Here, we have used the equality
(he)" (t) cos 01.0,, uy,
+¢' (1) {Z,iv;zl sind...sin0;_; cos 05,05, uy, + sinf...sinfy_osinOn_ .04 un}
X (cos 01.0z,un + h Zﬁ:}l sinf;...sinOy_1 cos Oy.0z, Upn, + hsinb;...sinOn_1.0x, un>
= [Vun | (go' (t) h(t) sin> 01 + (he)' (t) cos? 91)
which can be obtained from the above mentioned boundary conditions. Finally
—2{D¢t,, Ay,
= o S S S (go’ (t) h(t) sin 01 + (hy)' (1) cos? 91) x o (t) dtd1d0s...d0x

+fFT |Vun|2 (T,l’l,.’bz, ...,lL'N) d.’Eld(L'Q...dl'N.
(3.2)
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Remark 3.8. Observe that the integral fFT |Vun|2 (T,z1,x2, ..., 2N ) dx1dxs...dr Ny Which ap-
pears in the last formula is nonnegative. This is a good sign for our estimate because we can
deduce immediately

2
1fnllz2q.,)

y 2
2 [[0vunllzoq,) T 1Aunllze g

T T T [V (gp’ (t) h(t) sin® 0y + (he)' (¢) cos? 01) % ¢ (t) dtdf1dbs...d0x 1.

So, if (hy) and ¢ are increasing functions in the interval (%, T), then
27 7w pm T
/ / / / IV, | (g@' (t) h(t) sin 01 + (hg)' (1) cos® 91) % () dtd0dbs...d0x_, > .
0 o Jo Ji

Consequently,
”anZLZ(Qn) > ”atu"”?ﬂ(Qn) + ||Aun||iZ(Q") . (3.3)

But, thanks to Lemma 2.4 and since ¢ is bounded in (0, 7"), there exists a constant C’ > 0 such
that

2 2 2
max (”U’HL2(Qn) ) | (Qn)) < C/ HAUHLZ(Qn) , k= 1, 2, ,N

Taking into account Lemma 3.7 and estimate (3.3), this proves the desired estimate of Proposi-
tion 3.6. So, it remains to prove the estimate of Proposition 3.6 under the hypothesis (1.3). For
this purpose, we need the following lemma

Ty,

Lemma 3.9. One has
—2(Ostup, Auy)
an ( @) 210, Up + = Zk zxkaxkun) A, dtdzidzs...dx
—Jo, ( - (hw (8x]un)2 + (M + (N -1) ;) SN, (3zkun)2) ity dzy...dom

he

+ fl-T |Vun\2 (T, T1y,X2y uny :L'N) dxldl'z...de.
Proof. The proof of this lemma can be found in the Appendix. O
Now, we continue the proof of Proposition 3.6. We have

‘fQ ( xlazlun—f— Zk zxkazkun)Aundtdxldarz dry

S HAU"HLZ(QH) ‘(};up

xlarlun
L3(Qn)

N
+ 2k ”AunHLZ(Qn) H%iﬂkaxkun

L(Qn)’
but Lemma 2.4 yields for k =2,..., N

2

’%xkawkun o = ffgplz (t) th J’; )2 (O, Un) dtdmldmg...dacN
< f fQ (8mkun) dtdxldxz dry
< AT (ot) ¢ (1) Jo, (Auy,)? dtdayde...day
< O2€2n||Aun||L2(Q )

since (¢ (t) ¢’ (¢)) < e. Similarly, we have also

2
wlamlun

|
L2(Qn)

he

< O || Aunliag,

Then

(he)' ¢
/ 210z, Un, + g Z Tk Oz, Un, | Aundtdeide,...dey

hSD k=2

2
< NCe||Aup |72,
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By using a similar argument, we show that

o, (V=282 @) + (G2 + (V= 1) £) SN, (Brun)?) dtdadar...day
< Ke

Therefore, Lemma 3.9 shows that

12O, Aun)|
> -2 fQ ( a:lamun + £ Zk 2xk8$kun) Auy,dtdzidxs.. dwN‘
~|J. (N -2) & (agglun)2 + (G 4+ (N = 1) 2) D, (0nyua)?) dederdes..day

+f1-T |Vun| (T,xl,xg, ey TN ) dz1dTy.. dT N
2
— (K +2NQ)e ||AUnHL2(Q )

Hence

”fn‘ iZ(Qn> = H(%UH‘%Z(QH + ||Aun||iz<Qn) - 2(6{[1,”, Aun>

2 2
10cunllz2(q,) + (1 = (K +2NC) €) [Aunllzzqg,) -

Then, it is sufficient to choose € such that(1 — (K +2NC)e¢) > 0 to get a constant Ky > 0
independent of n such that

Y

1follz2(g,) = Ko llunll gz, »

and since

1fnllz

there exists a constant K; > 0, independent of n satisfying

o) S Killfllre g

2Qu) < Ifll2q.)

lunll 2, < Ko lall

This completes the proof of Proposition 3.6.

Passage to the limit

We are now in position to prove the first main result of this work.

Theorem 3.10. Assume that the functions h and ¢ are as in Theorem 1.1. Then, for T small
enough, Problem (1.2) admits a unique solution v € H? (Q).

Proof. Choose a sequence (), n = 1,2, ... of truncated conical type domains (see subsection 3.2)
such that Q,, C Q. Then we have Q,, — @, as n — oc. Consider the solution u,, € H"? (Q,,) of
the Cauchy-Dirichlet problem

atun - Aun = f in Qn
“n|aQ”\rT =0,

with I'p is the part of the boundary of ),, where ¢ = T'. Such a solution u,, exists by Theorem
3.1. Let u,, the O-extension of w,, to Q. In virtue of Proposition 3.6, we know that there exists a
constant C' such that

Tl 2y + || et O 05O

< C|fllr2g)
L2(Q)

2
D Y

11,82,0 ., TN =
1<ii+ir+...+in <2

—_~—

This means that u,,, 8?1:,“ 8;}‘] 8}5 N, for 1 <4y 4y + ... +in < 2 are bounded functions
in L2 (Q). So for a suitable increasing sequence of integers ny, k = 1,2, ..., there exist functions

u, v and Vi in,eenin 1<ii+ir+..+in <2
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in L? (Q) such that

—~—
—~—

Un,, — U, Opn, — v and 8;113222...8;%11% — Uiy igin
1 <iy+ip+...+ix <2, weakly in L? (Q), as k — oo. Clearly,

V= Oy, Viyig,iy = 00 020N, 1 < iy Fin 4. +in <2

.....

in the sense of distributions in @ and so in L? (Q). So, u € H? (Q) and
Ou — Au = fin Q.
On the other hand, the solution u satisfies the boundary conditions u| PO\Tr = 0 since
Vn € N*, ulg = up.

This proves the existence of a solution to Problem (1.2). O

3.3 Step 3: Case of an arbitrary T'

Let T be any positive real number and 77 < 7" small enough. Set Q = D; U D, U Ty, where

Dy =

= U {t}xQ, D= U {t}xQ,andI'r, = Qp UIQr,.
te]O,Tl[{}X t, L2 te}Tl,T[{}x ¢ and 1 T T

In the sequel, f stands for an arbitrary fixed element of L? (Q)). We have to solve Problem (1.2)
in Q. We know (see Theorem 3.10) that the Cauchy-Dirichlet problem

{ o1 — Avy = flp € L* (Dy) 34

Ul|3D1\rTl =0

has a unique solution v; € H%? (D). Hereafter, we denote the trace vy /vy, bY ¢ which is in
the Sobolev space H' (I';) because v; € HY? (D) (see [16]). Now, consider the following
problem in D,
8t1]2 — A’Uz = f‘D2 S L2 (Dz)
U2|FT1 = (3.5)
U2|8D2\(FT1 UFT> = O’
We use the following result, which is a consequence of [16, Theorem 4.3, Vol. 2], to solve
Problem (3.5).

Proposition 3.11. Let Q) be the cylinder |0, T x B (0,1), where B (0, 1) is the unit ball of RN,
f € L*(Q) and ¢ € H' (7). Then, the problem

Ou— Au = finQ,

ul,, =,
u"YOU'Y] =0,

where 79 = {0} x B(0,1), 71 =10, T[ x 0B (0, 1) , admits a (unique) solution uw € H"* (Q).

Remark 3.12. We have 1+ lies in H' (Z7,), then d,,¢ is (only) in L? () and its pointwise
values should not make sense. So, in the application of [16, Theorem 4.3, Vol.2], there are no
compatibility conditions to satisfy.

Thanks to the transformation
(t,x1,22, s n) —> (& Y1, 925 s yn) = (60 (E) @ (8) 21,0 (8) 22, oy 0 (B) 2N)

we deduce the following result
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Proposition 3.13. Problem (3.5) admits a (unique) solution vo € HY? (D).

Now, define the function u in ) by

(5] in Dl,
U= i
vy in Dy,
where v; and v, are the solutions of Problem (3.4) and Problem (3.5) respectively. Then, « is the
(unique) solution of Problem (1.2) for an arbitrary 7T'. This completes the proof of Theorem 1.1.
Appendix: Proof of Lemma 3.9
For % < t < T, consider the following parametrization of the domain Q;
(0, 7T) X (0, 7T) X... X (0, 7T) X (0, 27T) — Qt; (017 92, ceny GN—Z, 01\/_1) — (1’1, T2, ..., TN-1, JZN) s
where
(z1, 2K, zn) = @ (t) (h (t) cosby,sinby... sin O cos O, sin by sinby... sinf_p sin Oy _1),

k=12,3,4,..,N — 1. Let us denote the inner product in L? (€;) by (., .), and set

I, =( Au (}w)/xa U —l—gim@ U
n n h(P 10Uz, Un (pkzzka:kn ’

then we have

1, f (Zk ) :Ck n) (U;:p ;z;laxlun 4+ £ Zk zxkaxku,,> dridxs...dx
= th ( xlazlun Zk . 82 Uy + % ZQLQ xkamkunaikun) dxidxs...dryn
+ fo, (% Zszz 21,0, Un 02 U, + % Ejvzz 70z, Un ZkN:Z,kyéj 8%kun) dry...dzy.

Using Green formula, we obtain

I,

3 fg ( e wlﬁml ((%lun) + %Zszzxkﬁxk (&;kun)z) dridxy...dry

"N ! N N
+ th (i > ies Tk O, un 02 Uy + % > j=2 0z Uy, (Zkzzvk# a,%kun)) dzy...dxy
+f9t Zk leﬁzluna kundxldlfz...dl‘]v

2 fdQ, ( hw) L1V, (6961”“) + % chv:Z LrVoy, (8Ikun)2> do
-1 0, ((W (O, un)” + £ = Efj:z (8Ikun)2> dzidzy...dz N

+ faQt ( Z Zk i1 (Ve + jmy) 8mjun3zkun) do

’
¢ N—1 <N ‘
~Jo, (£ 505" S0 1 2500, unO o i ) drdas..doy

+ fagt ((7:2) chv=2 (#1Ve,, + TV, ) 8z1unawkun> do

_fﬂt ( ho)' Zk 0 (2102, UnOp, 2, Un +xkamlun8mlxkun)) dxidzsy...dzy
! N

+ f{)Qt (% Zk:Z (xlywk + ThVay ) awlunawkun) do

_ th (% ZIICVZZ (2105, Un O,y Un + xkaxlunaxlxkunn dxidzsy...dzy



298 Arezki Kheloufi

where vy, Vy,, ..., Vg, are the components of the unit outward normal vector at 0Q,. Then

I, = 1} 90, ((};:;) T Vs, (aw]un) + “'4/ Efj 5 ThVa), (&Ckun)z) do
h
% Q, (hi;) (a‘Ll n) + £ Zk 2(3Lkun) )dmldxz...dl‘]v

+ fagt % Z Zk G+l (TjVy + TjV2y,) 3m7un5xkun> do

e 25:2 (‘lewk + TV ) aazlunaa;kun> do

£ Z;V:EI Zg:jﬂ 250y, (8xkun)2) dxydzy...dz N

(
(
(
+ Joa, (% Yo (210, + Thva,) 3x1uwlaxkun> do
(
((hw)' chvzz (361(%1 (aa:kun)z + 20, (8m]un)2)) dridxs...dzy
(

Thus,
(he)’ 21Uz, (Opyun )’ + % S Tk, (8Ikun)2) do
B (0 un)” + £ T4, (aikun)z) dzydas...dz

’
© N—-1 N ) ,
% ijz Zk=j+1 (jVay, + TjVs,, ) O ;Un Oz U | do

(
(

+ fagt ((hw Zijcvzz (1), + ThVe,) azlunazkun) do
(

Efc\fzz (.ﬁll/wk + TV, ) awl unawk un) do

N71 N 2
*% fagt > TjVa; Dk Kj (O un) ) do

4 oo, 5 s (2100, @)’ + 2ty (Day0n)’) dor
_% fasz,, © Zk 2 (1:11/11 (awkun) + Tkl (awlun)z) do
+1 Jo, 205 " (Zk 2 kot (O Un) )dxldxz...d;z:N

+3 th T (Zk ) ((@Ekun)2 + (8zlun)2)) dxidzs...dxy

+1 Jo, & (S0 ((Gestn)’ + (02,0n)?) ) dardas...don

24
©
LP

and then
I, = %fam(
+ foa, (
+ Joa, (
( ’

+ f(’)Qt % chv=2 (xlyﬂﬁk + ThVa, ) a»tlunawkun) do

he)' T1Vy, (811%) + % Zszz ThVs, (axkun)2) do
ijz Zk:jH (le/mk + scjz/zk) 8% unazkun) do
) (

’

he
24
@
h

© N
(h<p Zk 2 L1V, +xky$1)aw1unamkun) do

N— N 2
_% fagt (% Zy LjVe; Zkiz,k;éj (Ouyun) ) do
2
_% fan Geb W Z (xlyﬂvl (8Ikuﬂ) + ks, (O )da

Un)
fBQt 7 Zk =2 \ T1Vz; (alku”) t Tkl 811'“71 ) o

/

+§f9t(N 2) G2 (@nun)® + (G2 4+ (N = 1) £) 2N, (B n)?) dar...day.
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Consequently,

=

= “’h“’ o fo iw 00391 8xlun)2

+% ((sm 91... sin (9N71.81Nun) + Zkzzl (sin 91... sin ek,1 CcoS Gk.&vkun)z) }d91d92...d6N,1

+2<ph<pf027r"'foﬂ fow% J ; {Zk i1 sinf...sinf;_; cos §;.sin b;... sin 01 cos 0,0, un

+sin91...sinﬁj,lcosej.sm91...stN,zs1n9N,1.8zNun}8zjund91d92...d9N,1

+2<ph<pf fo fo ( W /)fovzzcosﬁl.sin91...sin@k_lcosGkaxkun&lundﬁl...dﬁjv_l
ngw I Iy NS (sin by sin g1 €05 05)7 (00 sy (Brtin)?) dB1 0.y

‘ph“" o ( ’;‘fo ;) {(cos Hlawun)z + (sinfy...sinfy_, sin eN,lamun)z

+ Ek=2 ((cos 918%%)2 + (sin ... sin O _1 cos 6,0, un)2> }d61d6;...d0N 1

3 Jo, (N =2) G2 0 00) + (G2 + (V= 2) £) S5 (00, 1n)?) drdes...do.

By using the boundary condition

un(t, h (t) ¢ (t) cos by, ¢ (t)sin b cos by, ..., (t) sin by sinbs... sinf_o cos Oy _1,
@ (t)sin By sinBs...sinfy_osinfy_1) =0

and particulary the relations
. 2 . 2
Sinfy—1 €08 On_1.05y  UnOpytin = (€OSON_1.0pyty)” = (SiNON_1.05y_ un),
N-1
h (sinﬁl&mun)2 = sin 6 cos 6, [Z 8in6s... sin 01 cos 0,0y, un, + sinbs... sin QN_I.axNun] ,
k=2

. 2 N—1 . . . .
(sin;0,,uy)” = {Zk:jﬂ 51n6j+1...smek,lcosek.@xkun+s1n9j+1...sm9N,1.8wNun}

x sin; cos 6;
for j =2,3,..., N — 2, we obtain
L= 7 T T Vu ((w (t) h(t) sin® 0, + (hy)' (1) cos? 91)) X o () dby...d0x_i
’ 2 ’ ’ 2
o, (V=2 %2 @+ (B2 + (V= 1) 2) S0 (Gua)?) dirden
and
B Sy e S (( ' (t) h(t) sin® 0 + (hy) (1) cos? 01)) x ¢ (t) dtdf1d6s...d0x
o, ((V=2) B2 (9, 00) + (G2 + (N = 1) 2) D, (0 1n)?) dederdas..day

_ZfQ ( T xlazlunJr Zk zxkazkun) Auy, dtdzidxy...dzy.

Finally, in virtue of relationship (3.2), it follows

_2<8tuna Aun>
- zfQ < xlazlun + £ Zk Zxkazkun) Auy,dtdzidxs...doy

~ fo, (7 —2) (8$]un)2 + (B + (V= 1) £) S0 (uyun)’ ) dtdardas..doy

+ fl—T |Vun\2 (T,Il,irz, ...,xN) dl‘ldxz...dIN.



300

Arezki Kheloufi

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Yu. A. Alkhutov, L,-solubility of the Dirichlet problem for the heat equation in non-cylindrical domains,
Sbornik Mathematics 193(9), 1243-1279 (2002).

Yu. A. Alkhutov, L,-estimates of solutions of the Dirichlet problem for the heat equation in a ball, Journ.
Math. Sc. 142(3), 2021-2032 (2007).

V. Besov, The continuation of function in L}) and W;, Proc. Steklov Inst. Math. 89, 5-17 (1967).

S. P. Degtyarev, The solvability of the first initial-boundary problem for parabolic and degenerate parabolic
equations in domains with a conical point, Sbornik Mathematics 201(7), 999-1028 (2010).

P. Grisvard and G. Looss, Problemes aux limites unilatéraux dans des domaines non réguliers, Journées
Equations aux Dérivées Partielles, 1-26 (1976).

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pit-
man, Boston (1985).

A. Kheloufi, R. Labbas and B. K. Sadallah, On the resolution of a parabolic equation in a nonregular
domain of R?, Differ. Equat. Appl. 2(2), 251-263 (2010).

A. Kheloufi and B. K. Sadallah, On the regularity of the heat equation solution in non-cylindrical domains:
two approaches. Appl. Math. Comput. 218, 1623-1633 (2011).

A. Kheloufi, Resolutions of parabolic equations in non-symmetric conical domains, E. J. D. E. 2012(116),
1-14 (2012).

A. Kheloufi and B. K. Sadallah, Study of the heat equation in a symmetric conical type domain of RV !,
Math. Methods Appl. Sci. 37, 1807-1818 (2014).

A. Kheloufi, Existence and uniqueness results for parabolic equations with Robin type boundary condi-
tions in a non-regular domain of R*, Appl. Math. Comput. 220, 756-769 (2013).

R. Labbas, A. Medeghri and B. K. Sadallah, On a parabolic equation in a triangular domain, Appl. Math.
Comput. 130, 511-523 (2002).

R. Labbas, A. Medeghri and B. K. Sadallah, An L? approach for the study of degenerate parabolic equa-
tion, E. J. D. E. 2005(366), 1-20 (2005).

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear and Quasi-Linear Equations of
Parabolic Type, A.M.S., Providence, Rhode Island (1968).

C. Lederman, J. L. Vazquez and N. Wolanski, A mixed semilinear parabolic problem from combustion
theory, E. J. D. E., Conf. 06, 203-214 (2001).

J. L. Lions and E. Magenes, Problemes aux Limites Non Homogenes et Applications, 1, 2, Dunod, Paris
(1968).

E. Paronetto, An existence result for evolution equations in non-cylindrical domains, Nonlinear Differ.
Equ. Appl. 20, 1723-1740 (2013).

B. K. Sadallah, Etude d’un probléme 2m-parabolique dans des domaines plan non rectangulaires, Boll.
Un. Mat. Ital. 2-B(5), 51-112 (1983).

B. K. Sadallah, Study of a parabolic problem in a conical domain, Math. J. of Okayama Univ. 56, 157-169
(2014).

Author information

Arezki Kheloufi, Laboratoire des Mathématiques Appliquées, Université de Bejaia, 6000 Bejaia; Lab.
E.D.P.N.L. and Hist. of Maths, Ecole Normale Supéricure, 16050-Kouba, Algiers, Algeria.
E-mail: arezkinet2000@yahoo.fr

Received: November 23, 2015.

Accepted: May 7, 2016.



