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Abstract. Let R be a commutative ring such that % € R. We prove that if r is a fixed
invertible element of R and & is a bijective map from a triangular R-algebra 7 onto an arbitrary
R-algebra which satisfies

P(r(XY +YX)) =r(@X)®(Y)+PY)P(X)) (VX,Y € T),

then @ is automatically additive.

1 Introduction

Throughout this paper R will denote a commutative ring with % € R. Let A and B be unital
algebras over the ring R. Let M be a unital (A, B)-bimodule, which is faithful as a left .A-
module as well as a right B-module, that is, for any a € A and b € B, aM = Mb = {0} imply
a = 0 and b = 0. The R-algebra

a

T = Tri(A,M,B) = {( ;" ) :aeA,beB,meM}
under the usual matrix operations is called a triangular algebra (see [3] or [4]).
Let C and C’ be unital R-algebras and letr € R. A map ®: C — (' is called an r-Jordan map

if it is a bijective map which satisfes
P(r(XY +YX)) =r(®X)P(Y)+P(Y)P(X)) VX,Y €.

Recently, several authors have studied the additivity of r-Jordan maps. In [7], Molnar showed
that every %—J ordan map between standard operator algebras is additive. In [6], Lu showed that if
R = Q the field of rational numbers and r is a nonzero rational number, then every r-Jordan map
from a unital prime algebra containing a nontrivial idempotent, or a standard operator algebra,
or a unital algebra which has a system of matrix units, onto an arbitrary algebra is additive.

In the present paper, we study the additivity of r-Jordan maps on triangular algebras. We will
prove that if 7 is an invertible element of R, then every r-Jordan map from 7 onto an arbitrary
R-algebra is additive.

2 Main result

The following theorem is our main result.

Theorem 2.1. Let A and B be unital algebras over the ring R. Let M be a unital (A, B)-bimodule
which is faithful as a left A-module and also as a right B-module. Let T = Tri(A, M, B) be
the triangular algebra, and C be an algebra over R. Let r be an invertible element of R. Assume
that ® : T — C is an r-Jordan map, that is, ® is a bijective map satisfying

D(r(XY + Y X)) = r(®(X)D(Y) + B(Y)D(X)) VX, Y € T.

Then @ is additive.
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We have divided the proof of the last theorem into a sequence of lemmas.

Leta € A, b € Band u € M. Throughout this paper we shall use the following notations:
B, = a O B = 0 0 and X, = 0 u
0 b 0

We begin with the following lemma which will be used frequently in the sequel.

Lemma 2.2. Leta, o’ € A, b, V' € Bandu, u' € M. The following relations hold.:
(1) E.Ey = Equ, EoFpy =0, E. Xy = Xqu.
(ii) FyE, = 0, FyFy = Fyy, FyX, = 0.
(iii) XoEy = 0, Xy Fy = Xup, XuXu = 0.

Proof. The proof is straightforward. O

Throughout the remainder of this section, @ is a map which satisfies the assumptions of
Theorem 2.1.

Lemma 2.3. We have ®(0) = 0.

Proof. Since @ is surjective, there exists A € T such that @(A) = 0. Thus

®(0) = @(r(04+ A0))
= 7(P(0)P(4) + (A)D(0))
= 7(®(0)0 + 00(0)) = 0.0

Lemma 2.4. Leta € A, b € Band u € M. Then there exist « € A, 8 € B and v € M such that
D(A) = P(E,) + P(F,) + P(X,,), where A = E,, + Fg + X,. Moreover, for every T € T, we
have ®(r(AT + TA)) = ®(r(E,T + TE,)) + ®(r(F,T + TE,)) + ®(r(X,T + TX,)).

Proof. The first part follows easily from the surjectivity of ®. The second part follows from the
fact that ®(r(XY + Y X)) = r(D(X)®(Y) + D(YV)P(X)) VX, Y € T. O

Lemma 2.5. Let a € Aand u € M. Then ®(E, + X,,) = ®(E,) + D(X,).

Proof. By Lemma 2.4, there exist « € A, § € Band v € M such that ®(4) = ®(E,) +P(X,),
where A = E, + Fg + X,. Moreover, for any T € T, we have

O(r(AT + TA)) = B(r (B, T + TE,)) + ®(r (X,T + TX..)).

If we take T = Fj, we get D(r(Frs + X)) = ®(0) + ®(rX,) by Lemma 2.2. Hence
O(r(Fop + X,)) = ®(rX,) by Lemma 2.3. The injectivity of ® gives v = v and § = 0.
Now replacing 7' by X,,, with m € M, we obtain ®(rXym,) = P(0) + P(rXem) = P(rXam)
by Lemmas 2.2 and 2.3. Again by the injectivity of ®, we get arm = am for every m € M. Since
M is a faithful left A-module, we have o = a. It follows that ®(E, + X,,) = ®(E,)+P(X,). O

Lemma 2.6. Let b € B and u € M. Then ®(F, + X,,) = ®(Fp) + P(X,).

Proof. By Lemma 2.4, there exist o € A, 5 € Band v € M such that ®(A4) = (Fy) +P(X,),
where A = E, + F3 + X,,. Moreover, for any T' € T, we have

O(r(AT + TA)) = S(r (BT + TF)) + ®(r (X T + TX.)).

If T = Ey, then ®(r(E + Xy)) = ®(0) + P(rX,) = ®(rX,) by Lemmas 2.2 and 2.3.
Now, the injectivity of @ implies © = v and a = 0.

If T = X, withm € M, then ®(rX,,5)) = ®(0)+P(rX,,s), and the injectivity of ® yields
mB = mb for all m € M. Hence = b since M is a faithful right B-module. This completes
the proof. O
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Lemma2.7. Leta € A, b€ Band u € M. Then ®(E, + F,+ X,,) = ®(E,) +P(Fp) +P(X,).

Proof. By Lemma 2.4, we can find « € A, 8 € B and v € M such that ®(4) = ®(F,) +
®(Fy) + D(X,), where A = E, + Fg + X,. By Lemma 2.2, we have AE| + E1A = E, + X,
Hence ®(r(AE; + E1A)) = ®(r(Ex, + X,)). On the other hand, replacing 7" by E; in Lemma
2.4, we get

CD(T(AEl + ElA)) = CI)(T (EaEl -+ ElEa)) -+ CD(’/‘ FyE + ElFb)) + CD(T (XuEl + ElXu))

~—

So by Lemmas 2.2 and 2.3, we have ®(r(Ey, + X,)) = ®(rEs,) + P(rX,). From Lemma 2.5,
it follows that ®(r(Es, + X,)) = ®(r(Ex + X,)). By the injectivity of @, we have o = a
and v = v. Similarly, by using Lemmas 2.3 and 2.6, we can show that ®(r(AF; + F1A)) =
O(r(Frp + X,)) = ®(r(Fa + X)) and hence § = b. Consequently, ®(E, + F, + X,,,) =
P(E,) +P(Fy) + P(X,,). O

Lemma 2.8. Let u, v € M. Then ®(X, + X,,) = ®(X,) + D(X,).

Proof. It is easy to check that Lemma 2.2 gives

X, +X, = EX,+X,F
(El + Xv) (Xu + Fl) + (Xu + Fl) (El + Xv) .

Thus we have

sxx) - o ((tes ) o my e nem (Las L))

r <q> (lEl + IXU> O (Xy+ 1) + P (X + F1) P <1E1 + 1Xv>) :
r r r T

It follows from Lemma 2.7 that

DX, +X,) = r (cb E1>—|—<I><

Therefore,

O(X,+X,) = PEX,+ X E)+P(EF + FLE)
+ & (X’UX’LL + XuXv) + @ (XvFl + FIXU) .

This implies that ®(X, + X,,) = ® (X,) + ® (X,) by Lemma 2.2. O

Lemma 2.9. Let a, o’ € A. Then ®(E, + Ey) = ©(E,) + P(Ey ).
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Proof. By Lemma 2.4, there exist « € A, § € Band v € M such that ®(A) = ®(E,) +P(E, ),
where A = E, + F3 + X,. Moreover, for any T' € T, we have

D(r(AT+TA)) = r(P(A)P(T)+ P(T)P(A))
r((®(Ea) + P(Ew)) (T) + (T) (P(Ea) + P(Ewr)))
= 1(P(E)P(T) + D(T)P(Ea)) + r(P(Ear)D(T) + P(T)P(Ear))
= ®(r(E,T+TE,))+®(r(EyT+TE,)).
By setting T' = F, we get ®(r(Frs + X)) = P(0) + P(0) = 0 by Lemmas 2.2 and 2.3. So
the injectivity of ® gives v =0and § = 0.
By taking T = X,, with m € M, we can get D(rXo.,) = P(rE X)) + P(rEyX,n) =
D(rXam) + P(rXam) since = 0. Thus (rX o) = P(rX(g1ar)m) by Lemma 2.8. The in-

jectivity of @ and the fact that M is a faithful left .A-module show that « = a+a’. Consequently,
D(E,+ Ey) =P(E,) + P(Ey). O

Lemma 2.10. For every b, b’ € B, we have ®(Fy, + Fy) = ®(Fy) + O(Fy ).
Proof. The proof is similar to that of Lemma 2.9. O

Proof of Theorem 2.1. Let S = E, + F, + X, and S’ = E, + Fyy + X/, where a, ' € A, b,
b € Band u, u’ € M. Combining the above lemmas, we get the following equalities:

D(S+Y) = P(E,+Ex)+ (Fp+ Fy)+ (Xu+ Xu))
O (B, + Ew) + @ (Fy + Fy) + @ (Xy + Xu)
D(E,)+P(Ey)+P(Fp)+P(Fy)+P(Xy) +P(Xu)
D(E, + F+ Xu) +®(Ey + Fy + Xu)
= ®(9)+2(5).

This proves the theorem. O

3 Applications

We begin with the following application of Theorem 2.1.

Proposition 3.1. Let A and B be unital algebras over the ring R. Let M be a unital (A, B)-
bimodule that is faithful as a left A-module and also as a right B-module. Let T = Tri(A, M, B)
be the triangular algebra. Assume that both A and B have only trivial idempotents. If ® : T —
T is a 3-Jordan map satisfying ®(aX) = a®(X) for all « € R and X € T, then ® is either an
automorphism or an anti-automorphism.

Proof. By Theorem 2.1, ® is additive. So @ is a Jordan endomorphism of 7. By [1, Theorem
2.1], @ is either an automorphism or an anti-automorphism. O

‘We conclude this paper by applying Theorem 2.1 to the two classical examples of triangular
algebras: upper triangular matrix algebras and nest algebras.

Upper triangular matrix algebras. Let M, (R) denote the set of all [ x m matrices with
entries in R. We denote by 7,, (R) the algebra of all n x n upper triangular matrices over R. For
n > 2andeach 1 <[ <n — 1, the algebra 7, (R) can be represented as a triangular algebra of

the form
. 7? (R) Mlx(nfl) (R)
Tu(R) = ( Tn—1 (R) ) .

Corollary 3.2. Let r be an invertible element of R and let C be an algebra over R. Then every
r-Jordan map ® : T, (R) — C is additive.



ON 7r-JORDAN MAPS OF TRIANGULAR ALGEBRAS 5

Proposition 3.3. The following conditions are equivalent:

(1) R contains no idempotents except 0 and 1;

(ii) If @ is a 1-Jordan map from the R-algebra T, (R) (n > 2) onto an arbitrary R-algebra
satisfying ®(aX) = a®(X) for all « € R and X € T,(R), then @ is an isomorphism or an
anti-isomorphism.

Proof. This follows from Theorem 2.1 and [2, Theorem p.198]. O

Nest algebras. (see [5]) A nest A is a chain of closed subspaces of a complex Hilbert space H
containing {0} and H which is closed under arbitrary intersections and closed linear spans. The
nest algebra associated to A is the algebra

TWN)={Te€B(H): T(N)C Nforall N e N'}.

A nest algebra 7 (N) is called trivial if N' = {0,%}. If T (N) is a nontrivial nest algebra
and N € N\ {0, H}, then T (N') can be represented as a triangular algebra of the form

TWN) ETWN)(1-E)
T N - )
V) ( T (N2)
where E is the orthonormal projection onto N, N; = E(N) and A, = (1 — E) (V). Note

that NV; and A, are nests of N and N1, respectively. Moreover, 7 (N;) = ET (N) E and
T (N2) = (1 — E)T (N) (1 — E) are nest algebras.

Corollary 3.4. Let S be an algebra over the field C and let r be a nonzero complex number. Then
every r-Jordan map ® : T (N') — S is additive.
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