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Abstract. The objective of this paper is to study the effect of rotation on the radial vibrations
in an unbounded micro-isotropic, micro-elastic solid with a spherical cavity. Three dispersive
relations are derived, in which one is effected by the rotation of the solid. All these relations are
not encountered in any classical theory of elasticity. We noticed that the result of classical case
is obtained as a particular case. The dispersion curves and phase speeds are shown graphically
for against non-dimensional radius of the solid.

1 Introduction

Radial vibration studies are an important in consideration of both in theoretical and practical
applications in several fields like geophysics, seismology. The problems of radial vibrations of
isotropic elastic sphere and hollow sphere are discussed by Ghosh [1], Love [2] treatise contains
an account of the forced vibrations of a sphere due to body forces derivable from a potential.
Grey and Eringen [3] obtained the complete solution of sphere subject to dynamic surface trac-
tions and computed the natural frequencies of the free oscillations. The sphere problem in con-
nection with the problems of geodynamics considered by Love [4]. Propagation waves from a
spherical cavity in an elastic solid with transverse isotropy about radius vector are discussed by
Chakraborthy and Roy [5]. Wengler [6] studied the propagation of waves from a spherical cavity
in an unbounded linear visco-elastic solid. Radial displacements of an infinite liquid saturated
porous medium are derived by Kumar and Miglani [7]. In recent year, S.K.Tomar and Harinder
Singh [8] studied the radial vibrations due to the spherical cavity in a micropolar elastic solid.

In this paper, we have investigated radial vibrations in a rotating unbounded micro-isotropic,
micro-elastic solid with a spherical cavity. It is observed that the frequency equations are ob-
tained which are not encountered in classical theory of elasticity. The effect of the rotation on
radial frequency and phase speed are depicted graphically. Further, the result of classical case is
obtained as a particular case of it.

2 Basic Equations

The basic governing equations of homogeneous isotropic, elastic medium are given [9] by the
following: The balance of momentum equation is

(λ+ µ)ul,lk + (µ+K)uk,ll +Kεklmφm,l + ρ(fk − ük) = 0. (2.1)

The balance of stress momentum equation is

(α+ β)φl,lk + γφk,ll +Kεklmum,l − 2Kφk + ρ(lk − Jφ̈k) = 0. (2.2)

The balance of strain momentum equation is

B1φpp,kkδij + 2B2φ(ij),kk −A4φppδij − 2A5φ(ij) −
ρJ

2
¨φ(ij) = 0 (2.3)
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where ~u is the displacement vector, ~φ is the micro-rotation vector, ~f is the body force, ~l is the
body couple vector, φpp, φ(ij) are micro-strains, ρ is the density, J is the micro-inertia, an index
k following a comma indicates differentiation with respect to the coordinate (xk), dot superposed
on a symbol denotes differentiation with respect to the time t and λ, µ, K, B1, B2, A4, A5, α, β, γ
are material coefficients which satisfy the following inequalities,
3λ+ 2µ+K ≥ 0, 2µ+K ≥ 0, K ≥ 0; 3α+ β + γ ≥ 0, −γ < β < γ, γ ≥ 0;
3A4 + 2A5 > 0, A5 > 0; 5B1 + 4B2, B2 > 0. The stress tensor tkl, couple stress tensor mkl and
strain tensor tk(mn) are given by

tkl = λur,rδkl + µ(uk,l + ul,k) +K(ul,k − εklrφr) (2.4)

mkl = λφr,rδkl + βφk,l + γφl,k (2.5)

tk(mn) = B1φpp,kδmn + 2B2φ(mn),k (2.6)

where δkl, δmn are Kronecker’s delta, εklr is the permutation symbol and () denotes the symmet-
ric part.

3 Formulation and Solution of the Problem

We consider a spherical cavity of radius r = a in a uniform micro-isotropic, micro-elastic
medium of infinite extent. The medium is assumed to be rotating at a constant rate with constant
angular velocity ~Ω = (0, 0,Ω) abut z-axis. When the medium undergoes dynamical deforma-
tion, the additional terms namely; the time dependent part of centripetal acceleration ~Ω×(~Ω×~u)
and the Coriolis acceleration 2(~Ω× ~̇u).
We are interested only in radial vibrations (i.e., radial displacements, radial micro- rotation and
radial micro-strain). So we take macro displacement vector, micro-rotation vector and micro
strain as, ~u = (u, 0, 0), ~φ = (φ, 0, 0), φrr with

~u = u(r, t)êr (3.1)

~φ = φ(r, t)êr (3.2)

and

φrr = φrr(r, t) (3.3)

where êr is the unit vector at the position vector in the direction of tangent to the r-curve. Under
the absence of body forces and body couples the equations (2.1) to (2.6) reduce to

∂2u

∂r2 +
2∂u
r∂r
− 2
r2u =

ρ

(λ+ 2µ+K)
[
∂2u

∂t2
−Ω

2u] (3.4)

∂2φ

∂r2 +
2∂φ
r∂r
− 2
r2φ−

2K
(α+ β + γ)

φ =
ρJ

(α+ β + γ)

∂2φ

∂t2
(3.5)

B1∇2φrr + 2B2∇2φrr −A4φrr − 2A5φrr =
ρJ

2
∂2φrr
∂t2

(3.6)

B1∇2φrr −A4φrr = 0 (3.7)

trr = (λ+ 2µ+K)
∂u

∂r
+

2λ
r
u (3.8)

mrr = (α+ β + γ)
∂φ

∂r
+

2α
r
φ (3.9)

tr(rr) = (B1 + 2B2)
∂φrr
∂r

+B1
∂

∂r
(
φrr
r

) (3.10)
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In view of eq.3.7, eq.3.6 reduces to

2B2∇2φrr − 2A5φrr =
ρJ

2
∂2φrr
∂t2

(3.11)

where ∇2 ≡ ∂2

∂r2 +
2
r
∂
∂r

3.1 Derivation of frequency equation for radial displacements

We seek the solution of eq. (3.4) of the form,

u(r, t) = R(r)eiωt (3.12)

where ω is angular frequency. Substituting eq. (3.12) in eq. (3.4) we get,

∂2R

∂r2 +
2
r

∂R

∂r
− 2
r2R+

ρ(ω2 + Ω2)

(λ+ 2µ+K)
R = 0 (3.13)

Suppose,

x = hr (3.14)

where h2 =
ρ(ω2 + Ω2)

(λ+ 2µ+K)
. (3.15)

Under equation (3.14), the equation (3.13) reduces to

d2R

dx2 +
2
x

dR

dx
− 2
x2R+R = 0 (3.16)

The general solution of eq. (3.16) is R(x) = A d
dx(

eix

x ) , where x is given by eq. (3.14) and A is
an arbitrary constant. Hence, by eq. (3.12) we obtain,

u(r, t) = A[
i

hr
− 1

(hr)2 ]e
i(hr+ωt) (3.17)

Substituting eq. (3.17) in the boundary condition trr = 0 at r = a, t > 0, we obtain

ρ(ω2 + Ω
2)(λ+ 2µ+K)a2 − (1− ai)(2µ+K)2 = 0, (3.18)

which is the frequency equation corresponding to macro-displacement and it is depends on ro-
tation of the solid. The frequency of classical result can be obtained as a particular case of it by
allowing K tending to zero.

3.2 Derivation of frequency equation for radial micro-rotations

Now we seek the solution of eq. (3.5) in the form

φ(r, t) = S(r)eiωt. (3.19)

Now eq. (3.5) reduces to

∂2S

∂r2 +
2
r

∂S

∂r
+ [ω2ρJ − 2

r2 −
2K

(α+ β + γ)
]S = 0

this can be written as

∂2S

∂r2 +
2
r

∂S

∂r
− 2
r2S + h2

1S = 0 (3.20)
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where

h2
1 =

ω2ρJ − 4K
2(α+ β + γ)

(3.21)

Let y = h1r (3.22)

Under eq. (3.22), the eq. (3.20) reduces to

d2S

dy2 +
2
y

dS

dy
− 2
y2S + S = 0 (3.23)

The general solution of eq. (3.23) is, S(y) = B d
dy (

eiy

y )
Hence by eq. (3.19), we obtain,

φ(r, t) = B[
ih1r − 1
(h1r)2 ]ei(h1r+ωt) (3.24)

where B is an arbitrary constant. Substituting eq. (3.24) in the boundary condition mrr = 0 at
r = a, t > 0, we obtain

a(ρJω2 − 2K)[(α+ β + γ)
1
2 + 2i(β + γ)(ρJω2 − 2K)

1
2 ] = −2(2α+ β + γ)(α+ β + γ)

3
2

(3.25)

which is the frequency equation to radial micro-rotation. It is also involving elastic constants
other than classical constants λ, µ, so it is an additional wave which is not encountered in the
classical elasticity.

3.3 Derivation of frequency equation for radial micro-strains

We seek the solution of eq. (3.11) in the form

φrr(r, t) = T (r)eiωt. (3.26)

On substituting eq. (3.26) in eq. (3.11) we obtain,

∂2T

∂r2 +
2
r

∂T

∂r
− h2

2T = 0 (3.27)

where

h2
2 =

4A5 − ρJω2

4B2
(3.28)

Let

T (r) = r
−1

2 U(r) (3.29)

Substituting eq.(3.29) in eq. (3.27) we obtain,

r2U ′′ + rU ′ − [h2
2r

2 +
1
4
]U = 0 (3.30)

which can be expressed as

r2U ′′ + rU ′ + [(ih2)
2 − (

1
2
)2]U = 0 (3.31)

It is Bessel equation, whose solution is

U(r) = L1J 1
2
(ih2r) + L2Y 1

2
(ih2r) (3.32)
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where J 1
2
(), Y 1

2
() are Bessel functions with imaginary arguments and is written as,

U(r) = L1I 1
2
(h2r) + L2K 1

2
(h2r) (3.33)

where L1, L2 are arbitrary constants. Substituting eq. (3.33) in eq. (3.29) we get

T (r) = r
−1

2 [L1I 1
2
(h2r) + L2K 1

2
(h2r)] (3.34)

Substituting eq. (3.34) in eq. (3.26) we obtain,

φrr(r, t) = r
1
2 [L1I 1

2
(h2r) + L2K 1

2
(h2r)]e

iωt (3.35)

As r →∞, φrr →∞, which is possible only, if L1 = 0.
For large values of z we have K 1

2
(z) = ( π2z )

1
2 e−z .

So,

K 1
2
(h2r) = (

π

2h2r
)

1
2 e−h2r (3.36)

Inserting eq. (3.36) in eq. (3.35) we obtain,

φrr(r, t) = L2(
π

2h2
)

1
2

1
r
eiωt−h2r (3.37)

Inserting eq. (3.37) in the boundary condition
tr(rr) = 0 at r = a, we obtain,

B1[(1 + h2a)(1 + a) + 1] + 2B2(1 + h2a)a = 0 (3.38)

which is a frequency equation corresponding to micro-strains and it is an additional wave not
encountered in classical theory of elasticity.

4 Numerical Results and Discussion

In order to study numerically the dispersion relations and square phase speed v2 = ω2a2

π2 , of
micro-rotation, micro-strain and effect of angular rotation on dispersion relation and v2 of ra-
dial displacements, we have consider the frequency equations (3.18), (3.25) and (3.38) with
neglecting imaginary parts. To understand the problem in great detail numerically, we take the
relevant values [10], are λ = 7.59 × 1010 dyne�cm2; µ = 1.89 × 1010 dyne�cm2 K =
0.014 × 1010 dyne�cm2; β = 0.0226 × 1010 dyne�cm2; γ = 0.0263 × 1010 dyne�cm2;
J = 0.00196; ρ = 2.192; α = 0.0214× 1010 dyne�cm2 (not mentioned in [10]); B1 = 0.0123;
B2 = 0.0156 ; A5 = 0.0173 (also not mentioned in [10]). We study the variation of frequency,
square phase speed (for the effect of rotation Ω=0, 0.5,1) versus non- dimensional radius a with
10 × 102 ≤ a ≤ 30 × 102 . The variation of frequency, phase speed for angular rotation Ω are
shown in fig.1, fig.2 respectively. We observe that natural frequency decrease and phase speed
increase with increasing of rotation. The macro-displacement, micro-rotational frequency curves
are shown in fig. 3, the micro-rotational, micro- isotropical frequencies are shown in fig.4. The
macro-displacement, micro-rotational phase speeds are shown in fig. 5 and the micro-rotational,
micro-isotropical phase speeds ares shown in fig.6 and we noticed that isotropical waves are
propagate with constant speed and micro-rotational waves are slower than macro-displacement
and isotropical waves.
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Figure 1. Variation of frequency versus radius

Figure 2. Variation of phase speed versus radius
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Figure 3. Variation of frequency versus radius

Figure 4. Variation of frequency versus radius
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Figure 5. Variation of phase speed versus radius

Figure 6. Variation of phase speed versus radius
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5 Conclusions

This paper considers unbounded micro-isotropic, micro-elastic solid having a spherical cavity
with measurable radius. In the study of radial vibrations, it is observed that: (i) Three frequency
equations are derived, in which one is effected by angular rotation of the solid.
(ii) Comparative results are shown in graphically.
(iii) The natural frequency is decrease, while the phase speed is increase with the increasing
rotation.
(iv) Isotropical waves are propagate with a constant speed.
(v) Micro-rotational waves are slower than macro-displacement and isotropical waves.
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