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Abstract Examples are given of associative rings in which 1 is the only unit. These rings
coincide with the Boolean rings within the universe of one-sided Artinian rings (resp., of von
Neumann regular rings; resp., of nonzero algebraic Z2-algebras; resp., of commutative semi-
quasi-local rings). The class of these rings is stable under direct limits and arbitrary direct prod-
ucts. New examples of such rings include polynomial rings over F2 in an arbitrary (possibly in-
finite) number of algebraically independent commuting indeterminates. The 0- and 1-generated
rings in which 1 is the only unit are classified up to isomorphism. Emphasis is given to the role
of the 2-generated one-dimensional integral domains in which 1 is the only unit. Several open
questions are identified.

1 Introduction

All rings and algebras considered in this paper are assumed to be associative with identity el-
ement; all subrings, ring extensions, algebras and ring/algebra homomorphisms are assumed
unital. For any ring R, we let U(R) be its group of units, that is, its group of (two-sided) in-
vertible elements. As the title indicates, our interest here is in studying the rings R such that
U(R) is as small as possible, that is, the rings R such that U(R) = {1}. In [9], Heinzer and
Roitman considered certain principal ideal domains with this property. It was shown in [9] that,
up to isomorphism, Z2 (the finite field with only two elements) and Z2[X] (the polynomial ring
in one indeterminate over Z2) are the only finitely generated Euclidean domains R such that
U(R) = {1}; and that this assertion does not hold if “Euclidean domains" is replaced by “prin-
cipal ideal domains." One also finds examples in [9] of principal ideal domains R of infinite
transcendence degree over Z2 such that U(R) = {1}. The present work will pursue only a few
analogues of the last-mentioned examples, as it seems more natural to organize at least part of
this work in terms of n-generated rings where n is a non-negative integer, our point being that a
ring R has U(R) = {1} if (and only if) U(A) = {1} for each finitely generated subring A of R.
Indeed, if r ∈ U(R) \ {1}, then r ∈ U(A) where A denotes the subring of R that is generated by
{0, 1, r, r−1}. This A is visibly n-generated for some n ≤ 2, as we will adopt the terminology
that a ring B is n-generated (over its prime ring Γ) if n is the least non-negative integer such that
B can be generated as a Γ-algebra by adjoining a set of cardinality n to Γ.

Proposition 2.4 establishes the following easy but useful facts: ifR is a ring such that U(R) =
{1}, then the Jacobson radical of R is trivial, R has no nonzero nilpotent elements, and if, in
addition, R 6= 0, then the characteristic of R is 2. Proposition 2.3 records the fact that it is
easy to give an example of a ring R that is not a principal ideal domain (indeed, not an integral
domain at all) such that U(R) = {1}: consider any Boolean ring R other than Z2. (Recall that
a ring is said to be a Boolean ring if each of its elements is idempotent; it is well known that
every Boolean ring is commutative and every nonzero Boolean ring has characteristic 2.) In fact,
finite Boolean rings can be characterized in several ways (see Proposition 2.5), such as being
the one-sided Artinian rings R with U(R) = {1}, the semisimple rings R with U(R) = {1},
and the semi-quasi-local commutative rings R with U(R) = {1}. Moreover, arbitrary Boolean
rings can be characterized as the (not necessarily commutative) von Neumann regular rings R
such that U(R) = {1} (see Corollary 2.10). In addition (cf. Corollary 2.11), a (not necessarily
commutative) ring R such that U(R) = {1} is algebraic as an algebra over Z2 if and only if R is
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a Boolean ring.
All our examples of ringsR such that U(R) = {1} that were noted above were either Boolean

or semi-quasi-local. Theorem 2.13 adds considerable diversity to the family of known examples,
by establishing that a commutative ringA satisfies U(A) = {1} if and only if the polynomial ring
R := A[{Xi}] (in arbitrarily many indeterminates) satisfies U(R) = {1}. The most accessible
examples, taking A to be either Z2 or Z2×Z2, are featured in Example 2.17. Additional families
of “large" examples become available, thanks to Proposition 2.18, where it is shown that the
class of rings R such that U(R) = {1} is stable under the formation of direct limits, arbitrary
direct products and ultraproducts.

However, in keeping with the program suggested by the comments at the end of the first
paragraph of this Introduction, our deepest results address the question of classifying, for n ≤ 2,
the n-generated rings having 1 as the only unit. Theorem 2.21 includes the following assertions.
The 0-generated (resp., 1-generated) rings R such that U(R) = {1} are, up to isomorphism, 0
and Z2 (resp., Z2[X] and Z2×Z2). (Moreover, according to Proposition 2.20 (c), Z2×Z2 has the
additional distinction of being, up to isomorphism, the only (not necessarily commutative) ring
R such that U(R) = {1} and R is a minimal ring extension of its prime ring.) Any 2-generated
commutative ring R such that U(R) = {1} must either be isomorphic to Z2 × Z2 × Z2 or else
have (Krull) dimension either 1 or 2. The only 2-generated two-dimensional integral domain R
such that U(R) = {1} is, up to isomorphism, the polynomial ring Z2[X,Y ]. The 2-generated
one-dimensional integral domainsR such that U(R) = {1} include an example of the coordinate
ring of an affine curve of genus 1 over Z2 which was given by Heinzer and Roitman [9, Example
2.3]. The issue of classifying the 2-generated one-dimensional integral domains R such that
U(R) = {1} is highlighted in Question 2.23. (See also Remark 2.22 (b).) In fact, a number
of open questions are interspersed throughout the paper, as are several remarks indicating the
sharpness of our results.

If R is a ring, J(R) denotes the Jacobson radical of R and char(R) denotes the characteristic
of R. If F ⊆ L are fields, then tdF (L) denotes the transcendence degree of L over F . As usual,
Zn := Z/nZ; X,Y or {Xi} will denote commuting, algebraically independent indeterminates
over the ambient base ring(s); Fq denotes the finite field of cardinality q, for any prime-power
q; and |G| denotes the cardinal number of a set G. Any undefined notation or terminology is
standard, as in [7], [14], [15].

2 Results

Although our main focus is on the case of commutative rings, we begin with a family of non-
commutative rings whose only unit is 1.

Theorem 2.1. If X is a set and R := Z2〈X〉, the free Z2-algebra on X, then U(R) = {1}.

Proof. One way to view R is as the tensor algebra, over the ring Z2, of the Z2-vector space
with basis X. We will instead use a somewhat more concrete construction of R. (The following
construction of R is in the spirit of [12, pages 67 and 123], whose treatment of the case of finite
X extends easily to the general case.) As usual, let a word (or monomial) in X be either the
empty word or an expression u1 · · ·un for some positive integer n such that each ui ∈ X. Two
nonempty words in X, say u1 · · ·un and v1 · · · vm, are declared equal if and only if n = m and
ui = vi for each i. Then the free monoid on X can be viewed as the monoidM whose underlying
set is the collection of words in X, with concatenation serving as the monoid operation inM (and
the empty word serving as the identity element of M ). We can take R as the monoid ring Z2[M ].
From this point of view, an element of R is simply the sum of an element of Z2 and a (possibly
empty) sum of finitely many nonempty monomials in X. Hence, if X = ∅, then M = 0 and
R = Z2 (whose only unit is 1). Thus, we can assume, without loss of generality, that X 6= ∅.

Letw be a nonempty word in X. Then w = u1 · · ·un for some (uniquely determined) positive
integer n and elements ui ∈ X (possibly with ui = uj for some i 6= j). It will be convenient to
say that the length of w is n; and, for each positive integer k, to let Rk denote the set of (possibly
empty) sums of finitely many nonempty words (in X) of length k.

Suppose the assertion fails. Pick ξ ∈ U(R) \ {1}, and put η := ξ−1 ∈ R. Evidently, η 6= 1.
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Hence, by the above construction of R, there exist positive integers n and m such that

ξ = 1 +
n∑
i=1

si and η = 1 +
m∑
j=1

tj ,

where each si ∈ Ri, each tj ∈ Rj , sn 6= 0 and tm 6= 0. Since the above expressions for ξ
and η involve only finitely many elements of X, we may assume, without loss of generality,
that X is finite, say of cardinality N for some positive integer N . Denote the elements of X by
x1, . . . , xN .

Next, decree that xi < xj if and only if 1 ≤ i < j ≤ N . Extend this ordering to an ordering
on the set of monomials in X by using the lexicographic ordering. To facilitate some subsequent
reasoning, we next make this ordering explicit. First, decree that the empty word is <-related to
any nonempty word. Next, if u = u1 · · ·un and v = v1 · · · vm are distinct nonempty words in X
(with ui ∈ X for each i and vj ∈ X for each j), decree that u < v if either n < m or n = m and
there exists a positive integer k ≤ n such that uλ = vλ whenever 1 ≤ λ < k and uk < vk. It will
be useful to observe the following fact.

(*) Let u, v and w be nonempty words in X such that u < v. Then wu < wv.
The proof of (*) follows easily from the above explication of <.

Now, since sn 6= 0, we can write sn =
∑p
i=1 ui where u1, . . . , up are each nonempty words

(in X) of length n, for some positive integer p. Similarly, tm =
∑q
j=1 vj where v1, . . . , vq are

each nonempty words of length m, for some positive integer q. Using the above lexicographic
ordering, we can relabel so that ui1 < ui2 whenever 1 ≤ i1 < i2 ≤ p and vj1 < vj2 whenever
1 ≤ j1 < j2 ≤ q. Then, as

1 = ξη = (1 +
n∑
i=1

si)(1 +
m∑
j=1

tj) = 1 +
n∑
i=1

si +
m∑
j=1

tj +
∑
i,j

sitj ,

it follows that sntm = 0, since each term other than 1 in the right-hand side of the above
display can be expressed as a sum of monomials of length less than n+m (whereas sntm can be
expressed as a nonempty sum of monomials each of which has length n+m). Since char(R) = 2
and

sntm = (
p∑
i=1

ui)(
q∑
j=1

vj) =
p∑
i=1

q∑
j=1

uivj ,

with u1v1 6= 0, it follows that u1v1 = uivj for some (i, j) 6= (1, 1). There are two cases:
either i = 1 or 1 < i. If i = 1, then 1 < j (since (i, j) 6= (1, 1)), so that v1 < vj (by
the above relabeling), whence (*) ensures that u1v1 < u1vj , which is a contradiction since
u1vj = uivj = u1v1. Hence 1 < i. Then the above explication of the ordering ensures that
u1v1 < uivj , since u1 and ui are nonempty words of the same length such that u1 < ui. This,
too, is a contradiction, since u1v1 = uivj . As each case led to a contradiction, no ξ with the
above properties can exist, thus completing the proof.

Remark 2.2. Let R := Z2〈X〉, as in Theorem 2.1. It can be shown, by reasoning as in the
final paragraph of the proof of Theorem 2.1, that R has no nonzero zero-divisors. (This can
also be shown by viewing R as a tensor algebra.) Moreover, the ring R is noncommutative if
(and only if) |X| ≥ 2. In that case, since R is a somewhat tractable noncommutative Z2-algebra
that is |X|-generated, one may be led to suspect that for commutative rings, polynomial rings
(in commuting indeterminates) over Z2 will satisfy the “1 is the only unit" property and, more
generally, the study of this property for commutative rings with suitably “small" generating sets
will be especially fruitful for (commutative) integral domains. These suspicions will be borne
out below: see Theorems 2.13 and 2.21.

Next, we record what is perhaps the simplest class of rings with the property in question.
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Proposition 2.3. If R is a Boolean ring, then U(R) = {1}.

Proof. We need only prove that if a ∈ U(R), then a = 1. As R is a Boolean ring, a2 = a.
Multiplying both sides of the equation by a−1 leads to a = 1, as desired.

Note that the proof of Proposition 2.3 shows more, namely, that 1 is the only possible idem-
potent unit of any ring.

Extending some terminology that is well established for the commutative case, we will say
that a (not necessarily commutative) ring is reduced if it has no nonzero nilpotent elements. The
next result gives some elementary, but useful, consequences of the “U(R) = {1}" property.

Proposition 2.4. Let R be a ring such that U(R) = {1}. Then J(R) = 0 and R is reduced. If, in
addition, R 6= 0, then char(R) = 2.

Proof. If r ∈ J(R), then 1 − r ∈ U(R), whence 1 − r = 1 and r = 0. Hence J(R) = 0. Next,
since 1 = −1, we get 2a = 0 for all a ∈ R; and so, if R 6= 0, then char(R) = 2. Finally, to show
that R is reduced, it suffices to show that if a ∈ R with a2 = 0, then a = 0. This, in turn, holds
since (1 + a)2 = 1 + 2a+ a2 = 1 + 0 + 0 = 1 (whence 1 + a ∈ U(R) and 1 + a = 1).

After this research was completed, we came across [1]. In [1, page 6], D. F. Anderson and
Badawi conjecture that if a commutative ring R is such that each non-zero-divisor of R is an
idempotent element, then R is a Boolean ring. (The converse, which is clear, was included
in the formulation of their conjecture, presumably so that it could be stated as a conjectured
characterization of Boolean rings.) It was shown in [1, Theorem 2.8 (1)] that if R satisfies the
hypothesis of the Anderson-Badawi conjecture, then U(R) = {1}. Along those lines, we next
offer Corollary 2.5, parts of which can be viewed as a strengthening of [1, Theorem 2.8 (2)]. As
a whole, Corollary 2.5 shows that the archetypical examples of rings R satisfying U(R) = {1}
from Proposition 2.3 are the typical examples within a number of important classes of (not
necessarily commutative) rings. In fact, (5) is the only one of the seven equivalent conditions in
the statement of Corollary 2.5 which stipulates commutativity.

Corollary 2.5. For any ring R, the following conditions are equivalent:
(1) R is finite and U(R) = {1};
(2) R is a finite Boolean ring;
(3) R is isomorphic to a direct product of finitely many copies of Z2;
(4) R is a semi-quasi-local Boolean ring;
(5) R is a semi-quasi-local commutative ring with U(R) = {1};
(6) U(R) = {1} and R is either a left Artinian ring or a right Artinian ring;
(7) R is a semisimple ring with U(R) = {1}.

Proof. (6) ⇒ (7): A one-sided Artinian ring with trivial Jacobson radical must be a (left and
right) semisimple ring (cf. [15, Proposition 2, page 68]), and so the desired implication follows
from the first assertion in Proposition 2.4.

(7) ⇒ (3): Without loss of generality, R 6= 0. Assume (7). By Artin-Wedderburn Theory
(cf. [15, Proposition 6, page 65]), R ∼=

∏k
i=1 Mni(∆i), a finite direct product of matrix rings

over division rings ∆i, with the ith direct factor pertaining to ni × ni matrices for some positive
integer ni. As U(R) = {1}, we get that U(Mni(∆i)) = {1} for each i. Thus, it suffices to prove
that if U(Mn(∆)) = {1} for some positive integer n and some division ring ∆, then ∆ ∼= Z2 and
n = 1. Now, if 0 6= δ ∈ ∆, then δ ∈ U(∆), so that the diagonal matrix B := diag(δ . . . , δ) is
in U(Mn(∆)), whence B is the identity matrix. Thus δ = 1 and so ∆ = {0, 1} ∼= Z2. Finally,
to see that n = 1, note that if n ≥ 2, then the number of units in Mn(∆) ∼= Mn(Z2) (that is, the
number of invertible F2-linear endomorphisms of an n-dimensional vector space over F2) is at
least 2n − 1 ≥ 3 > 1, contrary to hypothesis.

(3)⇒ (2): Clear.
(2)⇒ (1): Apply Proposition 2.3.
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(1) ⇒ (6): This implication follows from the fact that any finite ring is both left and right
Artinian.

(4) ⇒ (2): For the sake of completeness, we include the rather well known proof of this
implication. Assume (4). As any Boolean ring is commutative, the “semi-quasi-local" hypothesis
has a standard meaning (cf. [7]), namely, that R has finitely many maximal ideals. Let these be
M1, , . . . ,Mn (with Mj 6= Mk if j 6= k). By the first assertion in Proposition 2.4, ∩ni=1 Mi =
J(R) = 0. Hence, by the Chinese Remainder Theorem (cf. [11, Theorem 2.25, page 131]),
R ∼= R/0 ∼=

∏n
i=1 R/Mi. As each R/Mi is a field that inherits the “Boolean ring" property from

R, each R/Mi
∼= F2, by the comment following the proof of Proposition 2.3. Then (3) and (2)

follow at once.
(2)⇒ (4): This implication follows from the fact that any finite ring has only finitely many

maximal ideals.
We have now shown that conditions (1), (2), (3), (4), (6) and (7) are equivalent. It remains

to treat condition (5). By Proposition 2.3, (4) ⇒ (5). It now suffices to prove that (5) ⇒ (3).
Assume (5). Then, as in the above proof that (4)⇒ (2), we get that R ∼=

∏n
i=1 R/Mi, where the

Mi are the n maximal ideals of R. As U(R) = {1}, it follows that for each i, R/Mi is a field
whose only unit is 1; that is, R/Mi

∼= F2 for all i.

In Corollary 2.10, we will prove that the “U(R) = {1}" condition can be used to characterize
Boolean rings within the universe of (not necessarily commutative) von Neumann regular rings.
If one assumes commutativity, a more accessible connection is easily exhibited: see Corollary
2.6 where, as usual, dim(R) denotes the Krull dimension of a commutative ring R.

Corollary 2.6. Let R be a commutative ring such that U(R) = {1}. Then R is a von Neumann
regular ring if and only if dim(R) = 0.

Proof. It is well known that (a commutative ring) R is a von Neumann regular ring if and only if
R is reduced and dim(R) = 0 (cf. [14, Exercise 22, page 64]). Therefore, an application of the
“reduced" assertion from Proposition 2.4 completes the proof.

Recall that an element a of a ring R is said to be (a) von Neumann regular (element of R) if
there exists x ∈ R such that axa = a. Of course, a ring R is a von Neumann regular ring if and
only if each of its elements is a von Neumann regular element of R. For any ring R, it will be
convenient to let vnr(R) denote the set of von Neumann regular elements of R, to let Idem(R)
denote the set of idempotent elements of R, and to let C(R) denote the center of R. To prove
one of our main results, Theorem 2.9, we will need the following two lemmas.

Lemma 2.7. Let R be a reduced ring with 1 + 1 = 0 in R. (For instance, let R be a ring such
that U(R) = {1}.) If a, b ∈ R such that ab ∈ Idem(R), then ab = ba.

Proof. The parenthetical assertion follows from Proposition 2.4. Next, without loss of generality,
R 6= 0. As ab ∈ Idem(R), we have (ab)2 = ab. Hence, (ba)3 = bababa = b(ab)2a = b(ab)a =
(ba)2. Thus (ba)4 = (ba)3 = (ba)2. Since char(R) = 2, it follows that [(ba)2 − ba]2 = 0. Then
(ba)2 = ba since R is reduced. Thus ba ∈ Idem(R). Next, let r ∈ R. Then it is straightforward
to check that (bar − barba)2 = 0 and (rba − barba)2 = 0. As R is reduced, it follows that
bar = barba and rba = barba. Thus bar = rba. Hence ba ∈ C(R). Similarly, ab ∈ C(R). Then

(ba− ab)2 = (ba)2 − (ba)ab− ab(ba) + (ab)2 = (ba)2 − a(ba)b− b(ab)a+ (ab)2

= (ba)2 − (ab)2 − (ba)2 + (ab)2 = 0.

As R is reduced, we get ba = ab, as desired.
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The method of proof of the next lemma is widely known. The first-named author learned
of it in the context of von Neumann regular rings during a conversation with Dick Bumby and
Barbara Osofsky in 1971. This method was also used in the proof of a result of Raphael [19,
Lemma 4] shortly afterwards. We include a sketch of the proof of Lemma 2.8 for the sake of
completeness.

Lemma 2.8. Let R be a ring and a ∈ R. Then a ∈ vnr(R) if and only if there exists x ∈ R such
that a = axa and x = xax.

Proof. The “if” assertion is trivial. For the “only if” assertion, assume that a ∈ vnr(R). Then
there exists an element y ∈ R satisfying a = aya. It is straightforward to verify that the element
x := yay satisfies axa = a and xax = x, as desired.

Theorem 2.9. Let R be a (not necessarily commutative) ring such that U(R) = {1}. Then:
(a) vnr(R) ⊆ Idem(R) ⊆ C(R).
(b) If R 6= 0 and a ∈ R, then a is algebraic over Z2 if and only if a ∈ Idem(R).
(c) Let R 6= 0. Then the algebraic closure of Z2 in R (that is, the set of all the elements of R

which are algebraic over Z2) is a Boolean ring.

Proof. (a) Let a ∈ vnr(R). By Lemma 2.8, there exists x ∈ R such that axa = a and xax = x. It
is clear that ax and xa are each idempotent elements. Also, Lemma 2.7 guarantees that ax = xa.
As R 6= 0 without loss of generality, char(R) = 2 by Proposition 2.4. Then one checks easily
that (1−ax+a)(1−ax+x) = 1. As U(R) = {1}, it follows that 1−ax+a = 1 = 1−ax+x.
Thus a = ax ∈ Idem(R). This completes the proof that vnr(R) ⊆ Idem(R).

Now, let x ∈ Idem(R). We need to show that x ∈ C(R). To this end, let r ∈ R. One checks
easily that (xr − xrx)2 = 0 and (rx − xrx)2 = 0. Since R is reduced, we get xr = xrx and
rx = xrx. Hence xr = rx. Thus x ∈ C(R). This completes the proof that Idem(R) ⊆ C(R).

(b) As R 6= 0, the final assertion of Proposition 2.4 allows us to view Z2 ⊆ R. As the “if"
assertion is clear, we turn to the “only if" assertion. Let a ∈ R be algebraic over Z2. If a ∈ Z2,
then a ∈ Idem(R). So, without loss of generality, a 6∈ Z2. Let

m(X) = Xn + cn−1X
n−1 + · · · + c1X + c0 ∈ Z2[X]

be the minimal polynomial of a over Z2. Notice that deg(m(X)) = n ≥ 2 since a 6∈ Z2. There
are now two cases to consider.

Case 1: c0 = 1. Then 0 = m(a) = an + cn−1a
n−1 + · · · + c1a + 1. It follows that

α := −an−1 − cn−1a
n−2 − · · · − c1 ∈ Z2[a] ⊆ R satisfies aα = 1 = αa, and so a ∈ U(R).

Hence a = 1 ∈ Idem(R).
Case 2: c0 = 0. Thenm(X) = Xkf(X), for some positive integer k and some f(X) ∈ Z2[X]

such that f(0) = 1. We claim that k = 1. Assume, for the sake of argument, that this claim fails.
Then (af(a))k = (akf(a))f(a)k−1 = m(a)f(a)k−1 = 0. Since Proposition 2.4 ensures thatR is
reduced, we get af(a) = 0. Thus a is a root of the monic polynomial Xf(X) ∈ Z2[X]. But this
contradicts the minimality of deg(m(X)), since deg(Xf(X)) < deg(Xkf(X)) = deg(m(X)).
This proves the above claim that k = 1, and so m(X) = Xf(X). Now, since f(0) = 1 and n ≥
2, the fact that char(R) = 2 yields a polynomial g(X) ∈ Z2[X] such that f(X) + 1 = Xg(X).
Thus X2g(X) = Xf(X) +X = m(X) +X , and so

ag(a)a = a2g(a) = m(a) + a = 0 + a = a.

Thus a ∈ vnr(R), since g(a) ∈ Z2[a] ⊆ R. Therefore, the first part of assertion (a) yields that
a ∈ Idem(R), as desired.

(c) Of course, both 0 and 1 are idempotent and, hence, algebraic over Z2. Hence, by (b), it
suffices to prove that if a, b ∈ Idem(R), then ab, a ± b ∈ Idem(R). By (a), both a and b are
elements of C(R). It follows that ab ∈ Idem(R), since (ab)2 = a(ba)b = a(ab)b = a2b2 = ab.
Moreover, since char(R) = 2 by Proposition 2.4, a+ b = a− b satisfies (a+ b)2 = a2 + (ab+
ba) + b2 = a+ 2ab+ b = a+ b, thus completing the proof.
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We can now give the promised strengthening of Corollary 2.6. The case of Corollary 2.10 in
which R is a commutative ring was observed by D. F. Anderson and Badawi [1, page 5].

Corollary 2.10. Let R be a (not necessarily commutative) ring. Then the following two condi-
tions are equivalent:

(1) R is Boolean;
(2) R is a von Neumann regular ring with U(R) = {1}.

If R is a commutative ring, then the above equivalent conditions (1) and (2) are also
equivalent to the following condition:

(3) U(R) = {1} and dim(R) = 0.

Proof. (1) ⇒ (2): Apply Proposition 2.3 and the fact that each Boolean ring is von Neumann
regular.

(2)⇒ (1): This implication follows from the first inclusion stated in Theorem 2.9 (a).
Finally, assume also that R is commutative. Then (3) ⇒ (2) by Corollary 2.6; and (1) ⇒

(3) (resp., (2)⇒ (3)) by Proposition 2.3 and the fact that any Boolean ring is zero-dimensional
(resp., since any commutative von Neumann regular ring is zero-dimensional).

Parts (b) and (c) of Theorem 2.9 (b) each readily yield the following far-reaching generaliza-
tion of the implication (1)⇒ (2) in Corollary 2.5.

Corollary 2.11. Let R be a nonzero (not necessarily commutative) ring such that U(R) = {1}.
Then the ring extension Z2 ⊆ R is algebraic if and only if R is a Boolean ring.

The next corollary characterizes the nonzero ring R of smallest cardinality with the property
that U(R) = {1}. First, we must address the fact that there are some inequivalent definitions of
“valuation ring" in the literature, even in the commutative case. In this regard, we will follow
the usage of, for instance, [13, page 176]. So, for our purposes, a ring V is said to be a valuation
ring if V is a nonzero commutative ring such that V is quasi-local and each finitely generated
ideal of V is principal.

Corollary 2.12. LetR be a nonzero commutative ring such that U(R) = {1}. Then the following
conditions are equivalent:

(1) R is a field;
(2) R is a valuation ring;
(3) R is quasi-local;
(4) R ∼= Z2.

Proof. It is clear that (1) ⇒ (2) ⇒ (3); and that (4) ⇒ (1). It remains only to prove that (3) ⇒
(4).

Assume (3). Then by Corollary 2.5, R is isomorphic to a direct product of finitely many,
say n, copies of Z2. This direct product has exactly n maximal ideals. As R is (nonzero and)
quasi-local, n = 1, whence R ∼= Z2, as desired.

We next use Proposition 2.4 to obtain new families of examples of commutative rings R such
that U(R) = {1}. In choosing an appropriate context that may lead to examples with a non-
Boolean flavor, we are motivated by Corollary 2.11 to consider rings that are not algebraic over
their prime rings. Of course, the simplest examples of such rings are polynomial rings (over
nonzero coefficient rings). Theorem 2.12 shows that in the commutative case, the “U(R) = {1}"
property transfers between (that is, to and from) a ring and its polynomial ring (in arbitrarily
many variables).

Theorem 2.13. For any commutative ring R, the following conditions are equivalent:
(1) U(R) = {1};
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(2) For each nonempty (possibly infinite) set {Xi} of commuting, algebraically independent
indeterminates over R, the ring R[{Xi}] has only 1 as a unit;

(3) There exists {Xi} as in (2) such that the ring R[{Xi}] has only 1 as a unit.

Proof. Without loss of generality we can assume that R 6= {0}. It is trivial that (2)⇒ (3). Also,
it is clear that (3)⇒ (1), since {1} ⊆ U(R) ⊆ U(R[{Xi}]). Finally, assume (1). To prove (2),
let Λ = {Xi | i ∈ I} be a set of commuting, algebraically independent indeterminates over R
and let A = R[Λ]. It suffices to prove that if f ∈ U(A), then f = 1. By restricting attention to
the indeterminates that actually appear in f or its multiplicative inverse, it is then clear that there
exists a finite subset J of I such that f is a unit of R[{Xj | j ∈ J}]. Thus, by replacing I with
J , we may assume, without loss of generality, that I is finite. Then, by induction on the cardinal
number of I , we may assume that Λ = {X}, a singleton set, with f a unit of A = R[X]. As
A ∼= Z2〈{X}〉, the proof can be finished by applying Theorem 2.1. For readers wishing to avoid
considerations involving noncommutative rings, the preceding sentence can be replaced by the
next paragraph.

We have f 6= 0 (since R 6= {0} ensures that 0 6= 1 in A), and so we can write f = rnX
n +

rn−1X
n−1 + · · · + r0 for some non-negative integer n and some finite set of elements rk ∈ R

with rn 6= 0. The nature of the units of a polynomial ring over a commutative ring is well
known: cf. [10, Lemma 6.1.2]. Therefore, r0 ∈ U(R) and each of the elements r1, r2, . . . , rn is
nilpotent. Consequently, r0 = 1 by hypothesis; and 0 = r1 = r2 = . . . = rn by Proposition 2.4.
Thus f = 1, as desired.

The most immediate way to build some examples by applying Theorem 2.13 would be to
take R in it to be any of the principal ideal domains satisfying U(R) = {1} that were found in
[9]. Many additional families of examples will be given below. But, first, the proof of Theorem
2.13 raises some important questions.

Question 2.14. Our interest in studying the rings R such that U(R) = {1} in a context going
beyond the setting of principal ideal domains from [9] has included some arguments involving
possibly noncommutative rings. As the above alternate way to finish the proof of Theorem 2.13
illustrated, some arguments are technically easier for the context of commutative rings. In view
of the care that was needed in proving Theorem 2.1, one must ask: besides the examples issuing
from Theorem 2.1, what are some other accessible families of noncommutative ringsR such that
U(R) = {1}?

Question 2.15. Commutativity of R was used in the proof of Theorem 2.13 in two ways: the
commutativity of R was inherited by rings of polynomials over R in arbitrarily many variables,
and U(R[X]) is well understood in case R is commutative. However, for an arbitrary noncom-
mutative ring, we are not aware of any characterization of the units of R[X]. It is easy to use
Proposition 2.4 in conjunction with some classical results of Amitsur and McCoy on radicals to
show that if R is a ring such that U(R) = {1} and X is an indeterminate over R, then R[X] is
a reduced ring and J(R[X]) = 0 (and char(R[X]) = 2 if R 6= 0). But we do not know how to
characterize the units of R[X] under these conditions. This raises the question: can one charac-
terize the units ofR[X] for noncommutative ringsR, at least in the case whereR[X] is a reduced
ring and J(R[X]) = 0?

Remark 2.16. The assumption “R is semi-quasi-local” cannot be deleted from conditions (4)
and (5) in the statement of Corollary 2.5. Indeed, consider the polynomial ring R = Z2[X]. By
Theorem 2.13, U(R) = U(Z2) = {1}, but R is not a Boolean ring (and R is not semi-quasi-local
or finite or one-sided Artinian or semisimple).

We next use Theorem 2.13 to build some new examples of commutative rings R such that
U(R) = {1}. By “new", we mean that the following examples cannot be explained by appealing
to Corollary 2.5, Corollary 2.10 or Corollary 2.12.
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Example 2.17. (a) The polynomial ring A := Z2[X] is a (commutative) integral domain, but not
a field, satisfying U(A) = {1}; also, A is not a Boolean ring and A is not semi-quasi-local. The
polynomial ring B := (Z2×Z2)[X] is a commutative ring, but not an integral domain, satisfying
U(B) = {1}; also, B is not a Boolean ring and B is not semi-quasi-local.

(b) For each non-negative integer n, there exists an integral domain (resp., a commutative
ring that is not an integral domain) R that is n-dimensional and Noetherian such that U(R) =
{1}.

(c) There exists an integral domain (resp., a commutative ring that is not an integral domain)
R that is a coherent ring such that dim(R) =∞ and U(R) = {1}.

Proof. (a) Since U(Z2) = {1} and U(Z2 × Z2) = {1}, Theorem 2.13 ensures that U(A) = {1}
and U(B) = {1}. Also, the conclusions that neither A nor B is semi-quasi-local come from
the general fact that if Λ is any nonzero commutative ring, then the polynomial ring Λ[X] has
infinitely many maximal ideals (cf. [14, page 25]). The other assertions are clear.

(b) Take R to be the polynomial ring A[X1, . . . , Xn] in n commuting algebraically indepen-
dent indeterminates over the ring A := F2 (resp., over the ring A := F2 × F2). As in the proof
of (a), Theorem 2.13 ensures that U(R) = {1}. As A is a zero-dimensional Noetherian ring, R
is n-dimensional by [7, Theorem 30.5] (cf. [14, Theorem 39]) and R is a Noetherian ring by the
Hilbert Basis Theorem.

(c) Take R to be the polynomial ring A[X1, . . . , Xn, . . . ] in denumerably many commuting
algebraically independent indeterminates over the ring A := F2 (resp., over the ring A := F2 ×
F2). Once again, as in the proof of (a), Theorem 2.13 ensures that U(R) = {1}. Also, since
A 6= 0, it is clear that dim(R) = ∞. (Of course, this is due to the chain {(X1, . . . , Xn) | n =
1, 2, . . . } of prime ideals of R.) Since A is a Noetherian ring, the fact that R is a coherent ring
follows from a result about direct limits of suitable directed systems whose transition maps are
flat: cf. [8, Corollary 2.3.4 and Theorem 2.3.3]. The other assertions are clear. This completes
the proof.

The next result collects some other ways to build some relevant rings. Proposition 2.18 (a)
is motivated by Theorem 2.13. (Indeed, the latter result ensures that R := Z2[X1, ..., Xn, ...]
satisfies U(R) = {1}. This example is of special interest because this ring R is not finitely
generated as an algebra over its prime ring Z2.) Our motivation for Proposition 2.18 (b) comes
from the possible vanishing of the nilradical of a direct product of commutative rings or the
Jacobson radical of a finite direct product of rings. One motivation for Proposition 2.18 (c)
comes from the fact that any ultraproduct (for instance, any direct product) of Boolean rings
is a Boolean ring. As ultraproducts may be less familiar to some readers than direct limits or
direct products, the proof of Proposition 2.18 (c) includes the definition of an ultraproduct, while
Remark 2.19 (a) indicates an alternate approach to Proposition 2.18 (c) via some relevant model
theory.

Proposition 2.18. (a) If {Ri} is a directed system of commutative rings such that U(Ri) = {1}
for all i, then the direct limit R := lim−→i

Ri also satisfies U(R) = {1}.
(b) If R is the direct product of a (possibly infinite) multiset {Ri} of rings, then U(R) = {1}

if and only if U(Ri) = {1} for each i.
(c) Let J be a (possibly infinite) index set and let F be an ultrafilter on J . Let {Rα | α ∈ J}

be a multiset of rings (possibly with Rβ = Rγ for some β 6= γ) such that V := {α ∈ J |
U(Rα) = {1}} ∈ F . Then the ultraproduct R :=

∏
Rα/F satisfies U(R) = {1}.

Proof. Part (b) is easy (and has already been used implicitly). As for (a), we assume familiarity
with direct limits of commutative rings, as in [2, Exercises 14, 15 and 21, pages 32-34]. Suppose
ξ ∈ U(R). Then ξ can be viewed as an equivalence class [ξi], with ξi ∈ Ri for all i, for which
there exists an equivalence class η = [ηi], with ηi ∈ Ri for all i, such that ξη = 1 ∈ R. It follows
from the above-mentioned exercises in [2] that there exists an index j such that ξiηi = 1 ∈ Ri
for all i ≥ j. Thus, if i ≥ j, then ξi ∈ U(Ri). Then ξi = 1 ∈ Ri for all i ≥ j. It follows that
ξ = [ξi] = 1 ∈ R, as desired.
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(c) Recall (cf. [10, page 180]) the following straightforward construction of the ring R.
Consider the direct product P :=

∏
α∈J Rα. Since F is an ultrafilter on J , it is easy to see that

I := {f = (fα) ∈ P | {α ∈ J | fα = 0} ∈ F}

is an ideal of P . Then the ultraproduct R =
∏
Rα/F is defined to be the factor ring P/I . We

will show that if u ∈ P is such that u := u+ I ∈ U(R), then u = 1 ∈ R, that is, that

T := {α ∈ J | u(α)− 1 = 0 ∈ Rα}

satisfies T ∈ F . Pick v ∈ P such that v := v + I = u−1 ∈ R. Then uv − 1 ∈ I; that is,

S := {α ∈ J | u(α)v(α) = 1}

satisfies S ∈ F . Observe that S ∩V ⊆ T . Since S and V are each elements of F and F is a filter,
it follows that T is also an element of F , as desired.

Remark 2.19. (a) A deeper perspective on Proposition 2.18 (c) is provided by Loś’s Theorem
(also known as the Fundamental Theorem of Ultraproducts, as in [3, Theorem 5.1.0.1]) and some
of its immediate consequences. For instance, since the axioms for rings constitute a first-order
theory, an application of [3, Corollary 5.1.0.3] gives another proof that any ultraproduct of rings
is a ring. Then, since the statement that U(R) = {1} can easily be expressed as a sentence in first-
order logic in the language of rings, Proposition 2.18 (c) follows at once from the reformulation
of Loś’s Theorem in [3, Corollary 5.1.0.3].

(b) Ultraproducts can be used to produce examples of integral domains R such that U(R) =
{1} and R is more complicated than the integral domains that were considered in Example
2.17. For instance, consider an ultraproduct R :=

∏
Rα/F such that Rα is a polynomial ring

Z2[X1, . . . , Xn] (where the positive integer n can depend on α) for F-many α (that is, such
that the set of indexes α for which Rα is such a polynomial ring is an element of F). Then R
is an integral domain (cf. [17, item 1.1.7]) and U(R) = {1} by Theorem 2.13 and Proposition
2.18 (c). In case each Rα is a polynomial ring of the above form (hence, a Krull domain and a
Cohen-Macaulay ring, hence universally catenarian), the prime spectrum of R can be studied to
some extent (cf. [18, page 783]) but is extremely complicated (cf. [18, especially page 793]).

(c) Consider the special case of Proposition 2.18 (c) in which U(Rα) = {1} for each α ∈ J .
As above, take P :=

∏
α∈J Rα. Hence, by Proposition 2.18 (b), U(P ) = {1}. Since the ring R

in Proposition 2.18 (c) takes the formR = P/I , we wish to stress that the property that a ring has
only the trivial unit is not preserved by arbitrary homomorphic images. To establish this fact, it
suffices to produce a Z2-algebra A such that U(A) 6= {1}. (Indeed, let A be any Z2-algebra that
properly contains Z2. Pick any generating set S ofA as a Z2-algebra. Necessarily, S is nonempty.
Take X to be any set such that |X| = |S|. Then A is a Z2-algebra homomorphic image of the
free Z2-algebra B := Z2〈X〉, and so A ∼= B/I for some ideal I of B. As U(B) = {1} by
Theorem 2.1, it follows that every Z2-algebra is isomorphic to a factor algebra of a Z2-algebra
that has only the trivial unit.) Notice that the Z2-algebra Z2[X]/(X2) has a (in fact, exactly one)
nontrivial unit, namely, 1 + X + (X2). This algebra will make another brief (but necessary)
appearance in the proof of Proposition 2.20 (b).

Recall from the first paragraph of the Introduction that the study of the rings R such that
U(R) = {1} can be reduced in theory (by studying the units of suitable subrings) to the context
of rings R that are n-generated over the prime ring Γ, for n = 0, 1, 2. In case n is 0 (resp., 1),
such rings R are classified up to isomorphism in part (a) (resp., part (b)) of Proposition 2.20.
These results identify pertinent roles for the rings 0, Z2, Z2[X] and Z2 × Z2.

Part (c) of Proposition 2.20 identifies a different kind of behavior, for which Z2 × Z2 is,
up to isomorphism, the sole example. This has to do with minimal ring extensions (cf. [6]),
a concept that plays a role in parts (b) and (c) of Proposition 2.20. (Recall that if A ⊂ B are
rings, then A ⊂ B is said to be a minimal ring extension if there does not exist any ring C
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such that A ⊂ C ⊂ B.) The first classification result on minimal ring extensions was due to
Ferrand-Olivier [6, Lemme 1.2]: if k is a field, then a nonzero commutative k-algebra B is a
minimal ring extension of k (when we view k ⊆ B via the injective structural map k → B) if
and only if B is k-algebra isomorphic to (exactly one of) a minimal field extension of k, k × k
or k[X]/(X2). (A detailed proof of this result was recently given in Section 2 of the survey
article [4].) Although [6] introduced the notion of a “minimal ring extension" only in the context
of commutative rings, the literature has also considered this notion for ring extensions involving
(possibly) noncommutative rings (cf. [5] and its bibliography). This level of generality is needed
in Proposition 2.20 (c).

Proposition 2.20. (a) Let R be a 0-generated ring. Then R satisfies U(R) = {1} if and only if
either R = 0 or R ∼= Z2.

(b) Let R be a 1-generated ring. Then R satisfies U(R) = {1} if and only if R is isomorphic
to (exactly one of) Z2[X] or Z2 × Z2.

(c) Up to isomorphism, Z2 × Z2 is the only (possibly noncommutative) ring R such that
U(R) = {1} and R is a minimal ring extension of its prime ring.

Proof. (a) The “if" assertion is clear, and we will now prove the “only if" assertion. Suppose that
R 6= 0 is a 0-generated ring such that U(R) = {1}. Then R is a prime ring and, by Proposition
2.4, of characteristic 2, hence isomorphic to Z2, which completes the proof of (a).

(b) The “if" assertion follows from Theorem 2.13 and Proposition 2.18 (b). We will now
prove the “only if" assertion. As R is a 1-generated ring, R 6= 0 and R properly contains its
prime ring, Γ. Since U(R) = {1}, Proposition 2.4 allows us to identify Γ = Z2. ThusR = Z2[u],
for some u ∈ R \ Γ. If u is transcendental over Z2, then R ∼= Z2[X]. In the remaining case, u is
algebraic over Z2. Hence, by Theorem 2.9 (b), u2 = u. Then

Z2 ⊂ Z2 + Z2u = Z2[u] = R.

It follows that R is a 2-dimensional vector space over Z2, and so Z2 ⊂ R must be a minimal ring
extension. Moreover, R must be a commutative ring.

Consider the field k := F2 (= Z2). It is clear that if A and B are k-algebras, then any ring
isomorphism A→ B is also a k-algebra isomorphism A→ B. We next consider the alternatives
provided by the classification result of Ferrand-Olivier [6, Lemme 1.2] which was mentioned
above. First, observe that if k ⊂ L is a minimal field extension, then U(L) 6= {1} (the point
being that |U(L)| ≥ |k|2 − 1 = 3 > 1). Next, since x := X + (X2) is a nonzero nilpotent
element of R1 := k[X]/(X2), it follows from the “reduced" assertion of Proposition 2.4 that
U(R1) 6= {1}. (It can be seen directly that |U(R1)| = 2 since U(R1) = {1, 1 + x}; on the other
hand, Proposition 2.18 (b) ensures that U(k×k) = {1}.) Therefore, [6, Lemme 1.2] ensures that
R ∼= k × k, which completes the proof of (b).

For an alternate end for the proof of (b), one can begin at the point where one has shown “u
is algebraic over Z2" and argue as follows. Then R = Z2[u] is a commutative ring and a finite-
dimensional vector space over Z2. Hence R is a finite ring and also an algebraic extension of Z2.
Thus by Theorem 2.9 (b), R is a finite Boolean ring. So (cf. Corollary 2.5), R is isomorphic to a
finite direct product of n copies of F2, for some integer n ≥ 2. As this ring isomorphism is also
an isomorphism of vector spaces over k := F2, we have n = dimk(R) = 2, thus completing the
alternate proof of (b).

(c) It is clear that any ring R which is isomorphic to Z2 × Z2 must satisfy U(R) = {1} and
must be a minimal ring extension of its prime ring. Conversely, suppose that R is a ring such that
U(R) = {1} and R is a minimal ring extension of its prime ring. To prove that R ∼= Z2 × Z2,
one need only rework the proof of (b), bearing in mind also that Z2 ⊂ Z2[X] is not a minimal
ring extension (thanks to the existence of, for instance, Z2[X2]). This completes the proof.

From the above point of view of studying the behavior of the n-generated subrings, it is
apparent from parts (a) and (b) of Proposition 2.20 that the key to understanding the rings R
such that U(R) = {1} is to understand the case n = 2. Thanks to Theorem 2.13, we know
that Z2[X,Y ] is one such ring. While we will not solve the general “n = 2" problem here,
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we will say more about it in Theorem 2.21. First, we will devote a paragraph to two results of
Heinzer-Roitman, the second of which falls under the “n = 2" umbrella.

Recall that Proposition 2.20 (a), (b) identified special roles that are played in the theory
by the rings 0, Z2, Z2[X], and Z2 × Z2. Those roles should be contrasted with the following
result of Heinzer-Roitman [9, Theorem 3.5]: a ring R is a finitely generated Euclidean domain
such that U(R) = {1} (if and) only if R is isomorphic to either Z2 or Z2[X]. (It is interesting
that the “Euclidean" context would lead, for rings that are 0- or 1-generated, to an answer that
consists of uniting half of the above answer from Proposition 2.20 (a) with half of the answer
from Proposition 2.20 (b); notice that the Boolean rings 0 and Z2 × Z2 would not fit into the
domain-theoretic context.) Perhaps more to the/our “n = 2" point is the following result of
Heinzer-Roitman [9, Example 2.3]: the ring

R := F2[X,Y ]/(Y
2 + Y +X3 +X2 + 1)

is a non-Euclidean principal ideal domain such that U(R) = {1}. As noted in [9], this ring R is
the coordinate ring of an affine curve of genus 1 over Z2. In particular, dim(R) = 1.

For convenience, some of Proposition 2.20 will be restated in the next result. Theorem 2.21
will also say more about the case n = 2 (and, more generally, the n-generated case) for com-
mutative rings, while also delving into attempts to characterize the examples of “low" Krull
dimension. (As noted in the penultimate sentence of the preceding paragraph, there are good
algebro-geometric reasons for focusing on the one-dimensional examples that are integral do-
mains, but our approach to them in Theorem 2.21 will use standard tools from multiplicative
ideal theory.) Those attempts will lead to a final list of open questions, some of which are remi-
niscent of some open questions that were identified in [9].

Theorem 2.21. Let R be a ring. Then:
(a) U(R) = {1} ⇔ U(A) = {1} for every finitely generated subring A of R⇔ U(A) = {1}

for every 0-generated, 1-generated, or 2-generated subring A of R.
(b) R is a 0-generated ring satisfying U(R) = {1} if and only if R is either 0 or isomorphic

to Z2.
(c) R is a 1-generated ring satisfying U(R) = {1} if and only if R is isomorphic to either

Z2 × Z2 or Z2[X] (for some element X that is transcendental over Z2).
(d) If R is an n-generated commutative ring for some positive integer n and if U(R) = {1},

then dim(R) ≤ n.
(e) If R is a 2-generated commutative ring and U(R) = {1}, then either R ∼= Z2 × Z2 × Z2

or R ∼= Z2 × Z2 × Z2 × Z2 or dim(R) is either 1 or 2. (All four possibilities can arise.)
(f) If R is a 2-generated (commutative) integral domain and U(R) = {1}, then either there

exists X ∈ R which is transcendental over Z2 such that Z2[X] ⊂ R is an integral ring extension
or R = Z2[X,Y ] for some pair X,Y of algebraically independent indeterminates over Z2.

Proof. The assertion in (a) was proved in the first paragraph of the Introduction. The assertions
in (b) and (c) were proved in parts (a) and (b), respectively, of Proposition 2.20.

(d) As n 6= 0, it follows thatR is nonzero (andR is not a prime ring). So, by the final assertion
of Proposition 2.4, the prime ring of R can be identified with Z2. Since R is an n-generated ring,
there is an ideal I of the polynomial ring B := Z2[X1, . . . , Xn] such that B/I ∼= R. Since Z2
is a 0-dimensional Noetherian ring, we have dim(B) = n (cf. [7, Theorem 30.5], [14, Theorem
39]). Hence dim(R) ≤ n.

(e) Suppose the assertion fails. Then, by (d), dim(R) = 0. As R is also reduced (by Propo-
sition 2.4), R is a von Neumann regular ring (cf. Corollary 2.6). Since U(R) = {1} as well,
R is a Boolean ring [1, page 5]. By Proposition 2.4, the prime ring of R can be identified with
Z2. Since R is a finite-type algebra that is integral (that is, algebraic) and hence module-finite
over its (finite) prime ring Z2, R is a finite (Boolean) ring. Therefore (cf. Corollary 2.5), R is
isomorphic to a direct product of n copies of Z2 for some non-negative integer n. As R is an
2-generated ring, n cannot be 0, 1 or 2, since 0 and Z2 are each 0-generated and Z2 × Z2 is
1-generated. To obtain the desired contradiction, it suffices to show that n ≤ 4. This inequality
will be established in the next paragraph.

By the “2-generated" hypothesis, R = Z2[a, b] for some a, b ∈ R. As R is a Boolean ring,
a2 = a and b2 = b. It is now easy to verify that the Z2-vector space

E := Z2 + Z2a+ Z2b+ Z2ab
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is closed under products. It follows that E is a ring, necessarily coinciding with R. As |E| ≤ 24

and |R| = 2n, we have 2n ≤ 24, whence n ≤ 4, as desired.
Finally, for the parenthetical assertion, it suffices to observe the following four facts: the

coordinate ring example of Heinzer-Roitman [9, Example 2.3] that was discussed above is one-
dimensional; the polynomial ring Z2[X,Y ] (whose only unit is 1, by Theorem 2.13) is two-
dimensional; Z2×Z2×Z2 is 2-generated (after all, it is generated by {(1, 0, 0), (0, 1, 0)} and the
only potential singleton generator, (1, 1, 1), fails to generate (1, 0, 0)); and E := Z2×Z2×Z2×Z2
is 2-generated. This fourth fact can be verified as follows. Since E is neither 0-generated nor 1-
generated and E is a Z2-vector space of cardinality 24 (as dimZ2(E) = 4), one need only produce
elements a, b ∈ E such that the Z2-span of {0, 1, a, b} has cardinality exceeding 23. We leave to
the reader the calculational verification that if one chooses a := (1, 1, 0, 0) and b := (1, 0, 1, 0),
then the elements 0, 1, a, b, ab, 1 + a, 1 + b, 1 + ab and a+ b in E are pairwise distinct.

(f) Since Proposition 2.4 allows us to view R as a finite-type algebra over Z2, it follows that
dim(R) coincides with the transcendence degree of (the quotient field of) R over Z2 (cf. [7, The-
orem 31.16]). Also, by (e), dim(R) is either 1 or 2. Therefore, since the partners in an integral
ring extension have the same Krull dimension (cf. [14, Theorem 44]), an application of a funda-
mental normalization theorem [16, Theorem 14.4] reduces our task to proving the following: if
(dim(R) = 2 and) R contains a pair X,Y of algebraically independent indeterminates over Z2
such that Z2[X,Y ] ⊂ R is an integral ring extension, then R ∼= Z2[X,Y ].

Let K denote the quotient field of R. Now, since R is assumed to be 2-generated, R =
Z2[u, v] for some u, v ∈ R. It cannot be the case that both u and v are algebraic (that is, integral)
over Z2 since R (being of Krull dimension 2) cannot be a field. By relabeling if necessary,
we can assume, without loss of generality, that u is transcendental over Z2. It will suffice to
show that u and v are algebraically independent over Z2 (for then R = Z2[u, v] ∼= Z2[X,Y ], as
desired). Note first that v 6∈ Z2(u) (for, otherwise, K = Z2(u, v) = Z2(u) and 2 = dim(R) =
tdZ2(K) = tdZ2(Z2(u)) = 1, a contradiction). Therefore, by [11, Theorem 1.5, page 313], it is
enough to prove that v is transcendental over Z2(u). Suppose, on the contrary, that v is algebraic
over Z2(u). Then, since transcendence degree is additive in towers [11, Theorem 1.11, page
316], we get

2 = dim(R) = tdZ2(K) = tdZ2(Z2(u)) + tdZ2(u)(K) = 1 + 0 = 1,

the desired contradiction, thus completing the proof.

Remark 2.22. (a) It may be helpful to reformulate part of Theorem 2.21 (c)-(f) in terms of
dimension, as follows. Each 2-generated integral domainR such that U(R) = {1} has dimension
either 1 or 2. The only 2-generated two-dimensional integral domain R such that U(R) = {1}
is, up to isomorphism, the polynomial ring Z2[X,Y ]. The 2-generated one-dimensional integral
domains R such that U(R) = {1} consist of certain rings of characteristic 2 (such as the ring in
[9, Example 2.3]) for which there exists X ∈ R which is transcendental over Z2 and Z2[X] ⊂ R
is an integral ring extension.

(b) It seems natural to ask what one can say about the last kind of integral domain mentioned
in (a), namely, the 2-generated integral domains R such that U(R) = {1} and there exists X ∈ R
which is transcendental over Z2 with Z2[X] ⊂ R being an integral ring extension. (Necessarily,
any such R is one-dimensional and of characteristic 2.) One obvious conclusion, thanks to the
Krull-Akizuki Theorem, is that (even if “2-generated" is replaced by ‘finitely-generated" and
one ignores the “U(R) = {1}" hypothesis) the integral closure of R (in its quotient field) is
a Dedekind domain. Under certain conditions, one can conclude more. For instance, a result
of Heinzer-Roitman [9, Theorem 3.4] implies that if such an R is a Euclidean domain, then
R ∼= Z2[X]. A relevant class of domains was given by Heinzer-Roitman [9, Theorem 2.1], a
special case of which states the following: if f(X,Y ) = Y 2 + Y + p(X) where the polynomial
p(X) ∈ Z2[X] has odd degree, then R := Z2[X,Y ]/(f) is a Dedekind domain such that U(R) =
{1}. This result was followed by Heinzer-Roitman [9, Theorem 2.2], giving a necessary and
sufficient condition for an R that has been constructed in this manner to be a principal ideal
domain. The above-mentioned example from [9, Example 2.3] is such a principal ideal domain
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which is a 2-generated ring, necessarily one-dimensional, and happens not to be a Euclidean
domain. Question 2.23 will essentially ask for a characterization of the kinds of R satisfying
U(R) = {1} that we have been discussing here in (b).

(c) If we take the coefficient ring to be R := Z2 × Z2 and form the polynomial ring over
it in infinitely many variables, Theorem 2.13 produces examples of commutative non-domain
rings E such that U(E) = {1} and E is not finitely generated over R. The “smallest" such E is
R[X1, X2, . . . , Xn, . . . ], which is isomorphic to

Z2[X1, X2, . . . , Xn, . . . ] × Z2[X1, X2, . . . , Xn, . . . ].

One may be tempted to say that this E has “infinite transcendence degree over R." We will re-
frain from any such assertion because of the subtleties exposed by E. Hamann during 1986-1992
in a series of papers concerning various inequivalent notions of “finite transcendence degree" for
algebras over commutative rings that are not integral domains. In any case, the above example
E (and similar polynomial rings over R that are built by using uncountably infinite sets of inde-
terminates) should be contrasted with the examples of integral domains D in [9, Section 4] such
that U(D) = {1} and D is of infinite transcendence degree over Z2. This completes the Remark.

Rather than asking the trite question of whether one can develop methods for arbitrary com-
mutative rings that could produce results rivaling what was done for integral domains in Theorem
2.21, we will focus the next question on trying to further what was accomplished in Theorem
2.21.

Question 2.23. The approach in Theorem 2.21 to the problem of characterizing the integral
domainsR such that U(R) = {1} reduces to finding a tractable answer to the following question.
If R is a (necessarily one-dimensional) 2-generated integral domain of characteristic 2 such that
there exists an integral ring extension Z2[X] ⊂ R (with X transcendental over Z2), can one find
necessary and sufficient conditions on this integral ring extension so that U(R) = {1}? (Note
that [9, Example 2.3] shows that an integral domain R satisfying these conditions need not be
isomorphic to the polynomial ring Z2[X]. Indeed, this example of Heinzer and Roitman shows
that the integral extension mentioned in Theorem 2.21 (f) cannot be ignored in general.)

As a practical matter, “knowing" a ringR does not ensure that one “knows" the set of subrings
of R. As a result, there are a number of attractive examples and attractive questions that do not
fit into our subring-focused program that is based on Theorem 2.21. For instance, in [9, Section
4], Heinzer and Roitman construct a (necessarily infinitely generated) principal ideal domain R,
with quotient field K, such that U(R) = {1} and tdZ2(K) = ∞. We close by raising one of the
“attractive questions" that were alluded to above.

Question 2.24. For some positive integer n, does there exist an n-generated two-dimensional in-
tegral domainR such that U(R) = {1} andR is not isomorphic to the polynomial ring Z2[X,Y ]?
(By parts (b), (c) and (f) of Theorem 2.21, an affirmative answer would have to feature n ≥ 3.)

3 Appendix

Proposition 2.20 and Theorem 2.21 may lead one to ask if there are any connections between the
“n-generated ring" and “minimal ring extension" concepts that are not cast in the “U(R) = 1"
setting. In that regard, Remark 3.1 (a) presents one such connection which, although quite easy,
stimulates the examination in parts (b)-(g) of Remark 3.1 of the possible validity of a number of
putative generalizations and analogues of the result in part (a).

Remark 3.1. (a) If Γ ⊂ B is a minimal ring extension and Γ is a prime ring, then B is a 1-
generated ring. To see this, pick u ∈ B \ Γ. Then the “minimal ring extension" hypothesis
ensures that B = Γ[u]. As Γ is the prime ring of B and B 6= 0, the assertion follows.

(b) The “prime ring" hypothesis in (a) cannot be deleted. In fact, there exists a minimal
ring extension A ⊂ B such that B is not an n-generated ring for any non-negative integer n.
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Moreover, there is such an example in which both A and B are fields. To see this, it suffices to
take A := Q and B := Q(

√
2). While A ⊂ B is a minimal ring extension (since dimA(B) = 2),

there do not exist b1, . . . , bn ∈ B such that B = Z[b1, . . . , bn]. Indeed, if such bi existed,
necessarily with bi = mi + si

√
2 for some rational numbers mi and si, then

Q = A ⊆ Z[{mi + si
√

2 | 1 ≤ i ≤ n}] ∩Q,

whence Q = Z[{mi, 2sisj | 1 ≤ i, j ≤ n}] (by the irrationality of
√

2), which is a contradiction
since Q is not a finite-type Z-algebra.

(c) Despite (b), we do have the following result in positive characteristic. Let k ⊂ B be
finite fields, not necessarily with k a prime ring/field. (For instance, let k be a finite field and let
k ⊂ B be a minimal field extension.). Then B is a 1-generated ring. For a proof, recall that the
multiplicative group of nonzero elements of B is cyclic (since B is a finite field), say generated
as a group by some element y ∈ B. Thus B = Zp[y] where p := char(B). As Zp is the prime
ring of B and B 6= 0, the assertion follows.

(d) The “1-generated ring" conclusion in (c) can fail in arbitrary positive (prime) charac-
teristic p if the base field k is not assumed to be finite. Indeed, if X and Y are commuting
algebraically independent indeterminates over Zp, then the field extension A := Zp(X,Y 2) ⊂
B := Zp(X,Y ) is a minimal ring extension (since dimA(B) = 2), but there does not exist
u ∈ B such that B = Zp[u], for otherwise, consideration of transcendence degree would give
2 = tdZp(B) = tdZp(Zp[u]) ≤ 1, which is a contradiction.

(e) Returning to the context of characteristic 0, we next give a result that serves as a coun-
terpoint to the assertion in (a). If A is an algebraic number field and A ⊂ B is a minimal
field extension (or, more generally, a finite-dimensional algebraic field extension), then B is 2-
generated as a Q-algebra. For a proof, one need only use the Primitive Element Theorem of
classical field theory (for finite-dimensional field extensions of characteristic 0) to get u ∈ A
such that A = Q(u) = Q[u[ and v ∈ B such that B = A[v], as one then has B = Q[u, v].

(f) In closing, we show that the “algebraic number field" type of condition on the base fields
in (a) and (e) cannot be deleted. In fact, if F is any countable field (of unspecified characteristic)
and κ is any infinite cardinal number, then there exists a minimal field extension A ⊂ B of fields
containing F such that B cannot be generated as an F -algebra by a set of cardinality at most κ.
To see this, note first that if a set S of cardinality at most κ generates a commutative F -algebra E ,
it follows from the usual rules of arithmetic with infinite cardinal numbers (which hold because
we are assuming the Zermelo-Fraenkel foundations of set theory and the Axiom of Choice) that

|E| ≤ ℵ02κ = max(ℵ0, 2κ) = 2κ < γ := 2(2
κ).

Then take S = {Xi} to be a set of commuting algebraically independent indeterminates over F
such that |S| = γ, pick Xj ∈ S, and put A := F ({X2

i }) and B := A(Xj). Note that A ⊂ B is a
minimal ring extension (since dimA(B) = 2). Moreover, B cannot be generated as an F -algebra
by a set of cardinality at most κ, since |B| = |A| ≥ γ > 2κ.
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