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Abstract We develop some recent work on interesting periodicity properties of a second or-
der linear recurrence sequence known as the Horadam sequence. Sufficient conditions for cyclic-
ity are stated and proved, using a new generating function approach, which address both non-
degenerate and degenerate characteristic root cases—through these we consolidate our knowl-
edge of, and recover, some previously observed periodic sequence behaviours which include the
phenomenon of so called ‘masked’ cyclicity.

1 Introduction

1.1 The Horadam Sequence

Consider the second order linear recursion (n ≥ 2)

wn = pwn−1 − qwn−2; w0 = a,w1 = b, (1.1)

which, characterised by the four parameters a, b, p, q ∈ C, defines the so called Horadam re-
currence sequence written {wn}∞n=0 = {wn}∞0 = {wn(a, b; p, q)}∞0 . Roots of the characteristic
polynomial P (λ; p, q) = λ2 − pλ + q for (1.1) give rise to separate degenerate (p2 = 4q) and
non-degenerate (p2 6= 4q) root closed forms for wn which are standard undergraduate exercises
to construct. For p2 6= 4q (p, q 6= 0), there are two distinct characteristic roots

α(p, q) = (p+
√
p2 − 4q)/2, β(p, q) = (p−

√
p2 − 4q)/2, (1.2)

with α+ β = p, αβ = q and, for n ≥ 0, a closed form

wn(a, b; p, q) = wn(α(p, q), β(p, q), a, b) =
(b− aβ)αn − (b− aα)βn

α− β
. (1.3)

For p2 = 4q, on the other hand, the characteristic roots co-incide as simply

α(p) = β(p) = p/2, (1.4)

and, for n ≥ 0,

wn(a, b; p, p2/4) = wn(α(p), a, b) = bnαn−1 − a(n− 1)αn. (1.5)

1.2 Ordinary Generating Functions in Context

Ordinary generating functions for sequences of Horadam terms, and powers thereof, have been
formulated and studied for over half a century, beginning with A. F. Horadam who seems to have
been the first to consider them [3] as he introduced the mathematical community to his sequence
and some preliminary results in two seminal papers of 1965. Stănică addressed exponentiated se-
quence terms in 2003, but gave generating functions only in series form—for the non-degenerate
characteristic roots case considered by Horadam—which contained elements from a particular
sequence {wn(2, p; p,−q)}∞0 [10, Theorem 1, p. 322] (some selected (initial value dependent)
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closed forms duly followed). In 2004 Mansour expressed a general form for (non-degenerate
case) power sequence generating functions by way of matrix determinant ratios [7, Theorem
1.1, p. 208] (extending to square powers of an arbitrary degree recurrence sequence in [8]), and
listed some special case instances; closed forms relating to the first four powers of Horadam
type terms were given at the end of the paper (see p. 211 therein). The most notable aspect of
Mező’s 2009 article is—amongst other results of a similar nature—a general form for the expo-
nential generating function of Horadam power terms [9, Theorem 14, p. 9]. Elsewhere results
have appeared scattered in the literature, such as the generating function for the square power
sequence {[wn(a, b; p, q)]2}∞0 of Haukkanen [2, Corollary 3.4, p. 361] who recovered the form
given originally in [3]. Generating functions have, not surprisingly, been derived for some well-
known sequences which are specialisations of the general Horadam sequence, as they have for
those comprising products of Horadam terms and such like (on which latter the reader is referred
to the survey [6]).

The paper is organised as follows. On concluding this opening section with more context for
the paper, Section 2 details our analysis and results which include proofs, examples and remarks.
A summarising section completes the paper, and offers future potential work for any interested
reader.

1.3 This Paper and Previous Work on Cyclicity

This paper is a development arising from previous work by the authors in which periodicity
properties of Horadam sequences have been examined using a matrix orientated approach to the
topic. It is motivated by the existence of so called ‘masked’ periodicity first noted in [4], of
which more explanation was given in a separate paper [5] and whose underpinning ideas appear
naturally here as part of the theory presented. We state and prove sufficient conditions for cyclic-
ity which cover instances of both characteristic root types, the results differing with each case.
Accordingly, they strengthen our insight into the occurrence of masked periodicity described
(for the non-degenerate roots case) in [5], and we are also able to recover degenerate roots case
periodicity criteria as discussed in Section 2.2 of [4]. It is worth making the point that since any
periodic Horadam sequence {wn}∞0 yields, for integer k > 1, further cyclic ones {(wn)k}∞0 ,
the lines of argument employed here can in principle also be applied to establish periodicity
conditions for these power sequences via appropriate generating functions either taken from the
literature or else produced by means of algebraic computing—this, however, lies beyond our
remit here.

In [5] sequence masking was, as we have noted, discussed in detail for the non-degenerate
roots case where those masking behaviours possible were shown to be dictated by the manner in
which primitive roots of unity can be used to characterise a Horadam sequence. What is meant by
the term ‘masking’ is that a fully general (arbitrary initial values) Horadam sequence can mask,
or hide, one or two special case (specific initial values) sequence(s) of smaller period. We will
see that Theorems 2.1 and 2.2 together combine to offer results supporting the phenomenon of
masking through the insight into periodicity that they offer, although the mathematics is couched
in a somewhat different manner in this paper which is in itself of interest and may prove useful
in examining sequences arising from linear recurrences of higher degree (see the Summary).

Although we do not address masking explicitly here, it is worth mapping the ideas of the
two forerunner works [4, 5] to what we will present below. In short, given initial (and arbitrary)
values a, b, and respective primitive nth andmth roots of unity ζ1 and ζ2, the Horadam recurrence
wn = (ζ1 + ζ2)wn−1 − (ζ1ζ2)wn−2 (n ≥ 2) of (1.1) produces a k(m,n)-cyclic sequence as we
will see (Theorem 2.1). One crucial fact to note, from [5], is that a matrix A = A(ζ1, ζ2) =
(ζ1+ζ2 −ζ1ζ2

1 0 ) associated intimately with the sequence, and which provided a convenient tool for
the analysis of periodicity in [4], is such that Ak(ζ1, ζ2) can be shown to possess eigenvalues
(ζ1,2)k in relation to its eigenvectors (ζ1,2, 1)T (T denoting transposition). By then fixing the
initial value b to be a multiple of a whose constant of proportionality is one of the primitive
roots (Theorem 2.2), the pair form a vector (b, a)T which lies along one of these eigenvectors
(scaled by a) and—through the Horadam recursion—a new sequence can be revealed (that is,
‘unmasked’) of period < k, as demonstrated in [5] (and, to a lesser extent, in [4]) by the theory
and examples provided; precisely how many sequences are available for unmasking, and what
period(s) they take, depends on the relationship between m and n in any given instance.
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2 Analysis and Results

2.1 Non-Degenerate Roots Case

We denote by

N(x) = N(x; a, b, p, q) =
∞∑
n=0

wn(a, b; p, q)xn =
a+ (b− ap)x
1− px+ qx2 (2.1)

the ordinary generating function of the Horadam sequence {wn(a, b; p, q)}∞0 which, on evidence,
appeared first in the work of Horadam [3, Eq. (22), p. 440]; its formulation is routine (see the
Appendix, where we appeal to a formula of his) and it lies at the center of the proof of our first
result.

Theorem 2.1. Suppose that distinct ζ1 and ζ2 are respective primitive nth and mth roots of unity
(m > n ≥ 2) and, in addition, roots of the Horadam characteristic polynomial P (λ; p, q).
Then the Horadam sequence {wn(a, b; ζ1 + ζ2, ζ1ζ2)}∞0 is a cyclic one of period k for some
k = k(m,n).

Proof. We show that for all possible scenarios of the primitive characteristic root orders m,n,
there exists an integer k = k(m,n) such that the said Horadam sequence is a k-periodic one—we
do this by establishing that the power series expansion of N(x) has self-repeating k-blocks of
Horadam term coefficients, and thus acts as a generating function for a period k sequence.

Given ζ1 and ζ2 are primitive roots of unity of respective order n and m (m > n ≥ 2), and
further that they are characteristic roots (so that ζ1 + ζ2 = p, ζ1ζ2 = q), then clearly ζ̂1 = 1/ζ1
and ζ̂2 = 1/ζ2 are (respectively) primitive nth and mth roots of unity too, and

0 = P (ζ1,2; p, q) = (ζ1,2)
2 − pζ1,2 + q =

1− pζ̂1,2 + q(ζ̂1,2)2

(ζ̂1,2)2
, (P.1)

from which we see that x = ζ̂1,2 are distinct roots of the quadratic 1− px+ qx2; in other words,
up to some multiplicative constant α∗ ∈ C,

(x− ζ̂1)(x− ζ̂2) = α∗(1− px+ qx2), (P.2)

which gives relations ζ̂1 + ζ̂2 = p/q, ζ̂1ζ̂2 = 1/q. Let us choose an integer k = k(m,n) such that
x− ζ̂1 and x− ζ̂2 are both factors of 1−xk, or equivalently that ζ̂1,2 are kth roots of unity (which
is true by inference). Expedient selection scenarios for k(m,n) are but three in number, readily
identified as the following: Case I: m and n are coprime⇒ k = mn; Case II: n is a divisor of
m ⇒ k = m; Case III: m and n possess a lowest common multiple l > m ⇒ k = l (this case
assumes that neither n|m nor that m,n are coprime, so that they have a lowest common multiple
l for which m,n < l < mn). In all three cases k = lcm(m,n), but separation is convenient
in helping to see more clearly the way masking arises and how many sequences are hidden in
each instance—examples supplied in [5] illustrated that two sequences (of period m and n) are
masked in Cases I and III, while Case II reveals a single period n masked sequence.

Continuing, we consider now the function

F (x) = (1− xk)N(x) =
(1− xk)[a+ (b− ap)x]

1− px+ qx2 =
(1− xk)[a+ (b− ap)x]

q(x− ζ̂1)(x− ζ̂2)
. (P.3)

Since (x−ζ̂1,2)|(1−xk) then F (x) = F (x; a, b, p, q) is a finite polynomial of degree (k+1)−2 =
k − 1 and we write, for some f0, f1, . . . , fk−1,

F (x) = f0 + f1x+ f2x
2 + · · ·+ fk−1x

k−1 =
k−1∑
s=0

fs(a, b, p, q)x
s, (P.4)
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from which, by (P.3),

N(x) = F (x)(1− xk)−1

= F (x)(1 + xk + x2k + · · · )
= F (x) + xkF (x) + x2kF (x) + · · ·
= (f0 + f1x+ f2x

2 + · · ·+ fk−1x
k−1)

+ (f0x
k + f1x

k+1 + f2x
k+2 + · · ·+ fk−1x

2k−1)

+ (f0x
2k + f1x

2k+1 + f2x
2k+2 + · · ·+ fk−1x

3k−1) + · · · , (P.5)

being a generating function for the sequence {f0, f1, f2, . . . , fk−1, . . .} = {w0, w1, w2, . . . , wk−1,
. . .} that self-repeats with period k; this completes the proof.

Remark 2.1. Theorem 2.1 actually holds for n = m (when the characteristic roots are distinct
but have the same order); the sequence {wn(a, b; ζ1 + ζ2, ζ1ζ2)}∞0 has period m but is of no con-
cern in relation to masking which cannot occur (see [5, Remark 3, p. 117]).

The degenerate roots case is in fact covered as a corollary to the following result that is
different in nature (and in which ζ1 and ζ2 are interchangeable).

Theorem 2.2. Suppose that ζ1 and ζ2 are roots (which may or may not co-incide) of the char-
acteristic polynomial P (λ; p, q). If ζ1 is also a primitive kth root of unity and, in addition, if
the Horadam sequence initial values are related proportionally as b = aζ1, then the sequence
{wn(a, aζ1; ζ1 + ζ2, ζ1ζ2)}∞0 is a cyclic one of period k.

Proof. Setting ζ̂1 = 1/ζ1 and ζ̂2 = 1/ζ2, then we again consider the function F (x) of (P.3).
Since ζ̂1 is also a primitive kth root of unity then (x − ζ̂1)|(1 − xk) and it suffices merely to
show that (x − ζ̂2)|[a + (b − ap)x] to establish k-periodicity in the same manner as seen in
the proof of Theorem 2.1. This, given b = aζ1, is routine, for [a + (b − ap)x]/(x − ζ̂2) =
a[1+ (ζ1 − p)x]/(x− ζ̂2) = a[1+ (−ζ2)x]/(x− ζ̂2) = −aζ2(x− 1

ζ2
)/(x− ζ̂2) = −aζ2 ∈ R.

By way of example, consider first a case where ζ1 = i (a primitive fourth root of unity) and
ζ2 = 3, which results in the period 4 sequence {wn(a, ai; 3 + i, 3i)}∞0 = {a, ai,−a,−ai, . . .}.
For ζ1 = −1 (the primitive square root of unity) and ζ2 =

√
5i the sequence {wn(a,−a;−1 +√

5i,−
√

5i)}∞0 = {a,−a, . . .} is period 2. More useful to look at, perhaps, is the period 4 se-
quence {wn(a,−ai; ζ2 − i,−ζ2i)}∞0 = {a,−ai,−a, ai, . . .} where ζ2 has been left unassigned
(with ζ1 = −i the other primitive fourth root of unity) but does not appear within the sequence
at all. Execution of the Horadam recurrence (1.1) reveals the anticipated self-cancellation of
ζ2 throughout the process of sequence term generation—this is an observation found to be
not specific to this example and, holding generally, it is readily explained: re-casting (1.3) as
wn(ζ1, ζ2, a, b) = [(b−aζ2)(ζ1)n−(b−aζ1)(ζ2)n]/(ζ1−ζ2) for n ≥ 0, then upon setting b = aζ1
this closed form contracts to wn(ζ1, a) = a(ζ1)n and describes the sequence {a(ζ1)n}∞0 which
is k-periodic if ζ1 is a primitive kth root of unity.

We complete the section, and so the paper, by addressing the degenerate roots case and mak-
ing some wider concluding remarks.

2.2 Degenerate Roots Case

The case of degenerate characteristic roots Horadam sequence periodicity is dealt with as a sim-
ple instance of Theorem 2.2 that we state and then discuss briefly in context.

Corollary 2.1. Suppose (given q(p) = p2/4) that ζ1 = ζ2 = ζ are repeated (degenerate) roots of
P (λ; p, q(p)), with ζ also a primitive kth root of unity. Then the sequence {wn(a, aζ; 2ζ, ζ2)}∞0
is a cyclic one of period k.

Here, the function

D(x) = D(x; a, b, p) =
∞∑
n=0

wn(a, b; p, p2/4)xn =
4[a+ (b− ap)x]

(2− px)2 = N(x; a, b, p, q(p)) (2.2)
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is the Horadam sequence {wn(a, b; p, p2/4)}∞0 ordinary generating function associated with de-
generate characteristic roots ζ1 = ζ2 = ζ = p/2 (1.4), and is immediate from (2.1) with
q = q(p) = p2/4. Setting b = aζ then {wn(a, b; p, p2/4)}∞0 = {wn(a, aζ; 2ζ, ζ2)}∞0 is k-
cyclic, and is simply the sequence {a, aζ, aζ2, . . . , aζk−1, . . .} delivered by the collapsed form
of D(x) = D(x; a, b(a, ζ), p(ζ)) = a(1 − ζx)−1; the sequence term closed form wn(ζ, a, b) =
bnζn−1 − a(n − 1)ζn (1.5) reduces in this instance (that is, with b = aζ) to wn(ζ, a) = aζn

trivially, and confirms the result.

Remark 2.2. The interested reader is referred to [4, Section 2.2] for examples which illus-
trate Corollary 2.1 in practice. Note that the conditions in [4] are shown to be necessary ones
too. We do not attempt to establish that any of those in this paper are necessary, as an appeal to
generating functions such as we have made here does not appear to lend itself to any meaningful
proof strategies in this respect.

Note that while we do not address cyclicity of the exponentiated sequence {(wn)k}∞0 for
general k > 1, the (non-degenerate case) generating function for {(wn)2}∞0 is derived in the
Appendix—along with that for {wn}∞0 —using a formulation of Horadam himself; this is done
for the purposes of completeness and reader interest (degenerate case generating functions follow
readily as special case ones, of course). However they are constructed, one gets a sense of how
algebraically convoluted these generating functions become with increasing power k, although
extrapolation of the approach taken here to study periodicity for values of k beyond 1 remains,
as already mentioned, a valid potential means to deal with the sequences they represent even if
its implementation looks to be non-trivial.

3 Summary

The originality of this paper lies in the fact that periodicity analysis has been undertaken for
the first time through the fundamental (non-degenerate case) ordinary generating function of the
Horadam sequence which connects with Horadam’s very earliest work. We note that relatively
little attention was devoted to the degenerate roots case at the start of this era, and Horadam’s
article [3]—in which a closed form for D(x) (2.2) is absent and to which there is but the briefest
of reference made—reflects this. Quite recently, the notion of masked cyclicity has been ex-
plored from the viewpoint of complex ‘generators’ (these are primitive roots of unity written in
exponential form), and the ideas have been generalised to higher order recurrence systems [1]
using an established methodology; periodicity conditions are illustrated in particular for a degree
three linear recurrence model.

One final thought rests with the possibility that, working from a known ordinary generating
function, the proof strategies employed here might be applied in future to yield counterpart
cyclicity results for sequences governed by a fully general order three type extension of (1.1), or
one of even higher degree still—this is left as an open problem.

Appendix

Background to Formulations of Generating Functions. Denote by Nk(x) the non-degenerate
roots case ordinary generating function

Nk(x) = Nk(x; a, b, p, q) =
∞∑
n=0

[wn(a, b; p, q)]kxn (A.1)

for the sequence {(wn)k}∞0 (k ≥ 1), noting that N1(x) = N(x) of (2.1) in Section 2.1; the cor-
responding degenerate case function is Dk(x) =

∑∞
n=0[wn(a, b; p, p

4/4)]kxn = Nk(x; a, b, p, p4

/4). We derive N1(x) and (in full detail) N2(x) as examples of Horadam’s 1965 formula [3,
Eq. (42), p. 442]

Nk(x) =
k∑
s=0

(
k

s

)
Ak−sBs(1− αk−sβsx)−1, k ≥ 1, (A.2)
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where α, β are the characteristic roots (1.2) and the constants A,B are A = (b − aβ)/(α − β),
B = (aα − b)/(α − β) (used in Horadam’s closed form wn = Aαn + Bβn matching (1.3);
Horadam gave (A.2) as an alternative version of the sum

∑∞
n=0(Aα

n+Bβn)kxn he wrote down
for Nk(x)). This is an instructive procedure in itself, and we can appreciate how quickly the
algebraic complexity of Nk(x) increases with k; formulations for neither N1(x) nor N2(x) were
detailed in [3], the latter function being merely stated with reference to (A.2) and the former
offered as an implied reader exercise in confirmation.

Case k = 1. Noting the relations A+B = a and Aβ +Bα = ap− b, (A.2) gives

N1(x) =
1∑
s=0

(
1
s

)
A1−sBs(1− α1−sβsx)−1

=
A

(1− αx)
+

B

(1− βx)

=
A(1− βx) +B(1− αx)

(1− αx)(1− βx)

=
A+B − (Aβ +Bα)x

1− (α+ β)x+ (αβ)x2

=
a+ (b− ap)x
1− px+ qx2 , (A.3)

which is (2.1); D1(x) = D(x), as given in (2.2).

Case k = 2. This case is surprisingly more involved, with (A.2) yielding

N2(x) =
2∑
s=0

(
2
s

)
A2−sBs(1− α2−sβsx)−1

=
A2

(1− α2x)
+

2AB
(1− αβx)

+
B2

(1− β2x)

=
A2(1− αβx)(1− β2x) + 2AB(1− α2x)(1− β2x) +B2(1− α2x)(1− αβx)

(1− α2x)(1− αβx)(1− β2x)

= Nu
2 (x)/N

l
2(x), (A.4)

say. The denominator is dealt with easily, for we see that, employing the relation α2 + β2 =
(α+ β)2 − 2αβ = p2 − 2q,

N l
2(x) = (1− α2x)(1− αβx)(1− β2x)

= [1− (α2 + β2)x+ (αβ)2x2](1− αβx)
= [1− (p2 − 2q)x+ q2x2](1− qx)
= 1− (p2 − q)x+ q(p2 − q)x2 − q3x3. (A.5)

The numerator requires more effort, for as a polynomial in x it is, after some re-writing,

Nu
2 (x) = (A+B)2 − [p(A2β +B2α) + 2AB(p2 − 2q)]x+ q(Aβ +Bα)2x2

= a2 − [p(A2β +B2α) + 2AB(p2 − 2q)]x+ q(b− ap)2x2, (A.6)

where the coefficient of x needs some attention. First, we note that A2β+B2α = [(b− aβ)2β+
(aα− b)2α]/(α− β)2 = [b2(α+ β)− 2ab(α2 + β2)+ a2(α3 + β3)]/(α− β)2 = [b2p− 2ab(p2−
2q) + a2(p3 − 3pq)]/(α − β)2 (having used α3 + β3 = (α + β)3 − 3αβ(α + β) = p3 − 3pq).
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With AB = (b− aβ)(aα− b)/(α− β)2 = · · · = (abp− a2q − b2)/(α− β)2, then

[x]{Nu
2 (x)} = −p[b

2p− 2ab(p2 − 2q) + a2(p3 − 3pq)] + 2(abp− a2q − b2)(p2 − 2q)
(α− β)2

...

= −(4q − p
2)[b2 − a2(p2 − q)]
(α− β)2

= b2 − a2(p2 − q), (A.7)

since α− β =
√
p2 − 4q. Thus, with N l

2(x) (A.5), and Nu
2 (x) (A.6) (completed by (A.7)),

N2(x) =
Nu

2 (x)

N l
2(x)

=
a2 + [b2 − a2(p2 − q)]x+ q(b− ap)2x2

1− (p2 − q)x+ q(p2 − q)x2 − q3x3 , (A.8)

whose numerator is in agreement with [3, Eq. (65), p.446] and whose full form tallies with
others elsewhere. Nowadays, of course, such a result is readily available from standard algebraic
software which we have used to check it. Calculation of Nk(x) for k = 3 (which is prohibitively
difficult by hand) and higher values may, if required, be found computationally.

Finally, note that

D2(x) = 16
4a2 + (4b2 − 3a2p2)x+ p2(b− ap)2x2

(4− p2x)3 (A.9)

is immediate from (A.8).
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