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Abstract Gerd H.Frickle et.al [1] introducedγ-graph of a graph. Consider the family of allγ-
sets in a graphG and we defineG(γ) = (V (γ), E(γ)) to be the graph whose vertices correspond
1 to 1 with theγ-sets ofG and twoγ-sets sayS1 andS2 are adjacent inG(γ) if there exist a
vertexv ∈ S1 and a vertexw ∈ S2 such thatv is adjacent tow andS1 = S2 − {w} ∪ {v} or
equivalentlyS2 = S1 − {v} ∪ {w}. The concept ofγ-graph inspired us to define Modifiedγ-
graph of a graph. Consider the family of allγ-sets of a graph G and define the modifiedγ-graph
G(γm) = (V (γm), E(γm)) of G to be the graph whose verticesV (γm) correspond 1-1 with the
γ-sets ofG and twoγ-setsS1 andS2 form an edge inG(γm) if there exists a vertexv ∈ S1 and
w ∈ S2 such thatS1 = S2 − {w} ∪ {v} andS2 = S1 − {v} ∪ {w}. In this paper we determine
G(γm) of some grid graphs.

1 Introduction

By a graph we mean a finite, undirected, connected graph without loops and multiple edges. For
graph theoretical terms we refer Harary [2] and for terms related to domination we refer Haynes
et al.[3, 4]. A setS ⊆ V is said to be a dominating set ofG if every vertex inV − S is adjacent
to some vertex inS . The domination number ofG is the minimum cardinality taken over all
dominating sets ofG and is denoted byγ(G) . A graphG is regular of degreer if every vertex
of G has degreer. Such graphs are calledr-regular graphs.

A path is an alternating sequence of vertices and edges,v1, e1, v2, e2, ...,

en−1, vn, which are distinct, such thatei is an edge joiningvi andvi+1 for 1 ≤ i ≤ n− 1. A path
onn vertices is denoted byPn. A pathv1, e1, v2, e2, ..., en−1,

vn, en, v1 is called a cycle and a cycle onn vertices is denoted byCn. A graphG = (V,E) is
called a bipartite graph ifV = V1 ∪ V2 and every edge ofG joins a vertex ofV1 to a vertex of
V2. If |V1| = m, |V2| = n and if every vertex ofV1 is adjacent to every vertex ofV2, thenG is
called a complete bipartite graph and is denoted byKm,n. K1,n is called a star. The bistarBn,n

is the graph obtained by joining the centers of two copies ofK1,n by an edge. IfG is a graph
onn vertices in which every vertex is adjacent to every other vertex, thenG is called a complete
graph and is denoted byKn.

For any graphG, its complementG is defined to be the graph whose vertex set is same
as that ofG and two vertices inG are adjacent if and only if they are not adjacent inG. Let G1

andG2 be two graphs with disjoint vertex setsV1 andV2 and edge setsE1 andE2 respectively.
Then theirCartesian product G1 ×G2 is defined to be the graph whose vertex set isV1 × V2 and
edge set is{(u1, v1), (u2, v2)| eitheru1 = u2 andv1v2 ∈ E2 or v1 = v2 andu1u2 ∈ E1}. A Grid
graph is the Cartesian product of two paths.

Gerd H.Frickle et.al [1] introducedγ-graph of a graph. Consider the family of allγ-sets in
a graphG and we defineG(γ) = (V (γ), E(γ)) to be the graph whose vertices correspond 1 to
1 with theγ-sets ofG and twoγ-sets sayS1 andS2 are adjacent inG(γ) if there exist a vertex
v ∈ S1 and a vertexw ∈ S2 such thatv is adjacent tow andS1 = S2−{w}∪{v} or equivalently
S2 = S1−{v}∪{w}. The concept ofγ-graph inspired us to define Modifiedγ-graph of a graph.
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2 Main results

Definition 2.1.Consider the family of allγ−sets of a graph G and define the modifiedγ−graph
G(γm) = (V (γm), E(γm)) of G to be the graph whose verticesV (γm) correspond 1-1 with the
γ−sets ofG and twoγ−setsS1 andS2 form an edge inG(γm) if there exists a vertexv ∈ S1 and
w ∈ S2 such thatS1 = S2 − {w} ∪ {v} andS2 = S1 − {v} ∪ {w}. Thus twoγ−sets are said to
be adjacent if they differ by one vertex.

Example 2.2.Consider the graphG given in Fig. 2.1. HereS1 = {v2, v6}, S2 = {v2, v7}, S3 =
{v2, v8} are theγ-sets ofG. The Modifiedγ- graphG(γm) is given in Fig. 2.2.

b

b b

S1

S 2 S3
Fig. 2.2

Proposition 2.3.P3k(γm) ∼= K1.

Proposition 2.4.P3k+2(γm) ∼= Pk+2.

Proposition 2.5.P4(γm) ∼= C4.

Proof. Let v1, v2, v3, v4 be the vertices of the pathP4. Then it has 4γ-sets namelyS1 =
{v1, v3}, S2 = {v1, v4}, S3 = {v2, v3}, S4 = {v2, v4}. For i = 1, 2, 3, 4, degSi = 2. Hence
P4(γm) has 4 vertices and each vertex is of deg 2 so thatP4(γm) ∼= C4.

Proposition 2.6.P3k+1(γm) is isomorphic to the graph of order k2+5k+2
2 for k ≥ 2.

Proof. Case (1):k = 2

The path obtained isP7 and it has 8γ-sets namelyS1 = {v2, v5, v7}, S2 = {v2, v5, v6},
S3 = {v2, v4, v6}, S4 = {v2, v3, v6}, S5 = {v2, v4, v7}, S6 = {v1, v4, v7}, S7 = {v1, v4, v6} and
S8 = {v1, v3, v6}. The total number ofγ-sets ofP7 is 8. So the order ofP7(γm) is 8.

Case (2):k ≥ 3

Step (i): Let v1, v2, v3, . . . , v3k+1 be the vertices of the pathP3k+1. Consider the 4γ− sets
S1 = {v1, v4, v7, . . . , v3k−2, v3k+1}, S2 = {v1, v4, v7, . . . , v3k−2, v3k}
S3 = {v2, v5, v8, . . . , v3k−1, v3k+1}, S4 = {v2, v5, v8, v3k−1, v3k} of P3k+1. S1 is the onlyγ-set
with first the vertexv1 and last vertexv3k+1.

Step (ii): Now fixing the first and last vertices ofS2 and changing from the 2nd vertex we get
S5 = {v1, v3, v6, v9, . . . , v3k+1}. Similarly changing from the 3rd, 4th, 5th, . . . , kth vertex we get
(k − 2) γ-sets. Thus in step (ii) we get(k − 1) γ-sets.

Step (iii): Now fixing the first and last vertices ofS3 and changing from the 2nd vertex we get
{v2, v4, v7, v10, v3k−2, v3k+1}. Similarly by changing from the third ,fourth, fifth,. . . , kth vertex
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we get(k − 2) γ-sets. Thus step(iii) contains(k − 1) k-sets.

Step (iv): (k − 1) γ-sets have 2 adjacent vertices. They are{v2, v3, v6, v9, . . . , v3k}, {v2, v5, v6,

v9, . . . , v12, . . . , v3k}, . . . , {v2, v5, v8, . . . , v3k−4, v3k−3, v3k}. Thus this step contains(k − 1) γ-
sets. [since{v2, v5, v8, . . . , v3k−4, v3k−1, v3k} = S4].

Step (v): The lastγ-set of step (iv) is{v2, v5, v8, v11, . . . , v3k−4, v3k−3, v3k−3}.....(1). Fixing the
first vertex and last two vertices of (1) changing from the 2nd vertex we get{v2, v4, v7, v10, . . . ,

v3k−5, v3k−3, v3k}. Then changing from the 3rd, 4th, 5th, . . . , (k − 1)th vertex we get(k − 3) γ-
sets. Thus step (v) has(k − 2) γ-sets. [Here the lastγ-set is{v2, v5, v8, . . . , v3k−7, v3k−5, v3k−3,

v3k}].....(2).

Step(vi): Now consider theγ-set{v2, v5, v8, . . . , v3k−7, v3k−4, v3k−2, v3k}....(3). Fixing the first
vertex and last two vertices of(3) and changing from the 2nd vertex we get{v2, v4, v7, v10, . . . ,

v3k−2, v3k}. Similarly changing from th 3rd, 4th, 5th, . . . , (k − 1)th vertex we get(k − 2) γ-sets.
Thus step (vi) has(k − 1) γ-sets including (3).

Step (vii): Now consider all theγ-sets containing 3 alternate vertices. They are{v2, v4, v6, v9, v12,

. . . , v3k−6, v3k−3, v3k}, {v2, v5, v7, v9, v12, v15, . . . , v3k−6, v3k−3, v3k}, . . . , {v2, v5, v8, . . . , v3k−10,

v3k−8, v3k−6, v3k−3, v3k}. Thus step (vii) has(k − 3) γ-sets. [The last 2γ-sets are (2) of step (v)
and (3) of step (vi)].

Step (viii): Using the above(k−3) γ-sets we can write(k−3)C2γ-sets with 2 pairs of alternate
vertices with first vertexv2 and last 2 verticesv3k−3, n3k. There are noγ-sets other than the
γ-sets got by the above 8 steps. Thus total number ofγ-sets

= 4 + k − 1 + k − 1 + k − 1 + k − 2 + k − 1 + k − 3 + (k − 3)C2

= 6k − 5 +
k2 − 7k + 12

2

=
12k − 10+ k2 − 7k + 12

2

=
k2 + 5k + 2

2.
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Remark 2.7.(1) Vertices of steps(v), (vi), (vii) and(viii) are of deg 4. Vertices of step(ii)
exceptS5, vertices of step(iii) and vertices of step(iv) are of deg 3 andS1, S3, S5, are the only
3 vertices of deg 2.
(2) Each dominating set is some number of swaps fromS1, S2, S5, S6, S7,

. . . , Sk+3 and henceP3k+1(γm) is a connected graph and is isomorphic to the graph given in Fig.
2.3.

Theorem 2.8.(P2�P2)(γm) is a 4-regular graph of 6 vertices.

Proof. Let {u1, u2, v1, v2}be the vertices of the gridP2�P2. Let S1 = u1, u2, S2 = u1, v1, S3 =
{u1, v2}, S4 = {u2, v1}, S5 = {u2, v2}, S6 = {v1, v2} are the 6γ- sets ofP2�P2. HereS1 is
adjacent toS2, S3, S4, S6; S2 is adjacent toS1, S3, S4, S6; S3 is adjacent toS1, S2, S5, S6; S4 is
adjacent toS1S2, S5, S6; S5 is adjacent toS1, S3, S4, S6 andS6 is adjacent toS1, S3, S4, S6.

Theorem 2.9.(P2�P4)(γm) is a 3- regular graph with 12 vertices.

Proof. Consider the gridP2�P4 given in Fig. 2.4.

u1 u2 u3 u4

v1 v2 v3 v4

Fig.2.4

Let u1, u2, u3, u4 and v1, v2, v3, v4 be the vertices of the first and second row of the grid
P2�P4. S1 = {u1, v3, v4},S2 = {u1, v3, u4},S3 = {u1, v3, u3},S4 = {v1, v3, u3}, S5 = {u1, v2, u4},
S6 = {u1, u2, v4},S7 = {u1, u3, v4},S8 = {v1, u3, u4}, S9 = {v1, u2, u4},S10 = {v1, v2, u4},S11 =
{u2, v2, u4},S12 = {u2, v2, v4} are theγ-sets ofP2�P4. HereS1 is adjacent toS2, S3, S6, S2 is
adjacent toS1, S3, S5, S3 is adjacent toS1, S2, S4, S4 is adjacent toS3, S7, S8; S5 is adjacent to
S2, S10, S11; S6 is adjacent toS1, S9, S12; S7 is adjacent toS4, S8, S9; S8 is adjacent toS4, S7, S10;
S9 is adjacent toS6, S7, S12; S10 is adjacent toS5, S8, S11; S11 is adjacent toS5, S10, S12 andS12

is adjacent toS6, S9, S11. The graph(P2�P4) (γm) is given in Fig. 2.5.
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Thus(P2�P4)(γm) is a cubic graph with 12 vertices.

Theorem 2.10.(P2�P6)(γm) is isomorphic to the graph G given in Fig. 2.6.
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Proof. Consider the gridP2�P6 given in Fig. 2.7. Letu1, u2, u3, u4, u5, u6 andv1, v2, v3, v4, v5, v6

be the vertices of the first and second rows of the gridP2�P4. S1={u1, v3, u5, v6}, S2={u1, v3, u5,

v6}, S3={u1, v3, u5, v5}, S4={u1, v3, u4, v6}, S5={v1, u3, v5, u6}, S6={v1, u3, v5, v6}, S7={v1, u3, v5,

u6}, S8={v1, u3, v4, u6}, S9={v1, u3, v4, u6}, S10={u1, v2, u4, v6}, S11={v1, v2, u4, v6}, S12={u2, v2,

u4, v6}, S13={u2, v2, u5, v5}, S14={u1, u2, v4, u6}, S15={u1, v3, v4, u6}, S16={u2, v2, v4, u6},
S17={v1, u3, u4, v6} are theγ-sets ofP2�P6. HereS1 is adjacent toS2, S3, S4; S2 is adjacent
to S1, S3, S15; S3 is adjacent toS1, S2; S4 is adjacent toS1, S10; S5 is adjacent toS6, S7, S8;
S6 is adjacent toS5, S7, S17; S7 is adjacent toS5, S6; S8 is adjacent toS5, S9; S9 is adjacent
to S8, S14, S16; S10 is adjacent toS4, S11, S12; S11 is adjacent toS10, S12, S17; S12 is adjacent to
S10, S11; S14 is adjacent toS9, S15, S16; S15 is adjacent toS2, S14; S16 is adjacent toS9, S14; S17

is adjacent toS6, S11 andS13 is an isolated vertex. Thus we get the graph given in Fig. 2.6.

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig.2.7

Theorem 2.11.(P2�Pn)(γm) where n = 2k, k ≥ 4 is isomorphic to the graph G with order
4

⌊

n+1
2

⌋

of which 8 vertices have deg 3 and the remaining vertices have deg 2. The graph G is
given in Fig. 2.8.
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Proof.

u1 u2 u3 un

v1 v2 v3 vn

Fig. 2.9

Consider the gridP2�Pn whenn = 2k that is given in Fig. 2.9. Letu1, u2,

u3, . . . , un andv1, v2, v3, . . . , vn be the vertices of the 1st and 2nd rows of the grid P2�Pn

when n = 2k. We know thatP2�Pn has domination number
⌊

n+1
2

⌋

. Consider the 6γ-
setsS1 = {u1, v3, u5, v7, . . . , un−3, un−1, un}, S2 = {u1, v3, u5, v7, . . . , vn−3, un−1, vn}, S3 =
{u1, v3, u5, v7, . . . , vn−3, un−1, vn−1}, S4 = {v1, u3, v5, v7, . . . , un−3, vn−1, un}, S5 = {v1, u3, v5,

u7, . . . , un−3, vn−1, un}, S6 = {v1, u3, v5, u7, . . . , un−3, vn−1, vn} of P2�Pn.

Case(1):k is odd
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Step(i): Fixing the first and last vertices ofS1 and changing from the 2nd vertex we getS7 =
{u1, u2, v4, u6, u8, u10 . . . , un−4, vn−2, un}. Fixing the first 2 vertices and changing from the 3rd

vertex we getS8 = {u1, v3, v4, u6, v8, u10 . . . , vn−2, un} . Proceeding like this, fixing the(k − 1)
vertices and changing from thekth vertex we getSk+5 = {u1, v3, u5, v7, u9, . . . , vn−3, vn−2, un}
. Thus we get(k − 1) γ-sets in Step(i).

Step(ii): Now fixing the first vertex ofS2 and changing the 2nd vertex we getSk+6 = {u1, v2, u4,

v6, u8, v10 . . . , un−2, vn} . Fixing first 2 vertices ofS2 and changing from the 3rd vertex we get
{u1, v3, u4, v6, u8, v10 . . . , vn−4, un−2, vn}. Continuing upto the change ofkth vertex ofS2 we
get(k − 1) γ-sets. Here the lastγ-set is{u1, v3, u5, v7, . . . , un−5, vn−3, un−2, vk} = S2k+4.

Step(iii): S3 is the onlyγ-set with first vertexu1 and first 2 verticesun−1, vn−1 andS4 is the
only γ-set with first vertexv1 and last 2 verticesvk−1, uk−1.

Step(iv): Fixing the first vertex ofS5 and changing from the 2nd vertex we getS2k+5 =
{v1, u2, v4, u6, v8, u10, . . . , un−4, vn−2, un}. Fixing the first 2 vertices and changing from the
3rd vertex we get{v1, u3, v4, u6, v8, u10 . . . , vn−2, un} . Continuing upto the change inkth vertex
we getS3k+3 = {v1, u3, v5, u7, . . . , un−3, vn−2, un} . Thus we get step (iv) has(k − 1) γ-sets.

Step(v): Fixing the first vertex ofS6 and changing from the 2nd vertex we getS3k+4 = {v1, v2, u4,

v6, v8, v10, . . . , vn−4, un−2, un}. Fixing the first 2 vertices ofS6 and changing from the 3rd vertex
we get{v1, u3, u4, v6, u8, v10, . . . , vn−4, un−2, un} . Proceeding in a similar manner we arrive at
the setS4k+2 = {v1, u3, v5, u7, . . . , un−3, un−2, vn} . Thus we get(k − 1) γ-sets.

Step(vi): S4k+3 = {u2, v2, u4, v6, u8, v10 . . . , un−2, vn} andS4k+4 = {u2, v2, v4, u6, v8, u10, . . . ,

vn−2, un} are the 2γ-sets with first 2 verticesu2, v2 and last 2 verticesvn, un respectively. Thus
total number ofγ-sets

= 6 + k − 1 + k − 1 + k − 1 + 2

= 4k − 4 + 8

= 4k + 4

= 4(k + 1)

= 4
⌊

2k + 1
2

⌋

(2.2)

Case(2):k is even

Step(i): Fixing the first vertex ofS1 and changing from the 2nd vertex we getS7 = {u1, v2, u4, v6,

. . . , vn−2, un}. Fixing the first 2 vertices ofS1 and changing from the 3rd vertex we getS8 =
{u1, v3, u4, v6, u8, . . . , vn−2, un} . Proceeding like this we get (by changing from thekth vertex)
Sk+5 = {u1, v3, u5, v7 . . . , un−3, vn−2, un} . Thus step(i) has(k − 1) γ-sets.

Step(ii): Fixing the first vertex ofS2 and changing from the 2nd vertex we getSk+6 = {u1, u2, v4,

u6, v8, . . . , vn−4, vn−2, vn}. Fixing the first 2 vertices ofS2 and changing from the 3rd ver-
tex we getSk+7 = {u1, v3, v4, u6, v8, . . . , un−2, vn} . Proceeding like this we arrive at the set
{u1, v3, u5, u7, . . . , un−3, un−2, vn} . Thus this step contains(k − 1) γ-sets.

Step(iii): S3 andS4 are the only 2γ-sets with last 2 verticesun−1, vn−1 and first vertexu1 and
v1 repectively.

Step(iv): Fixing the first vertex ofS5 and changing from the 2nd vertex we getS2k+5 =
{v1, v2, v4, v6, u8, v10 . . . , vn−2, vn}. Fixing the first 2 vertices ofS5 and changing from the 3rd

vertex we getS2k+6 = {v1, u3, v4, v6, u8, . . . , vn−2, un} . Proceeding like this we getS3k+3 =
{v1, u3, v5, u7, . . . , vn−3, vn−2, un} . Thus Step(iv) has(k − 1) γ-sets.

Step(v): Fixing the first vertex ofS6 and changing from the 2nd vertex we getS3k+4 = {v1, u2, v4,
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u6, . . . , un−2, vn}. Fixing the first 2 vertices ofS6 and changing from the 3rd vertex we get
S3k+5 = {v1, u3, v4, u6, . . . , un−2, vn} . Proceeding like this by changingkth vertex we get
S4k+2 = {v1, u3, v5, u7, . . . , vn−3, vn−2, vn} . Thus Step(v) has(k − 1) γ−sets.

Step(vi): S4k+3 = {u2, v2, u4, v6, v8, . . . , vn−2, un} andS4k+4 = {u2, v2, u4, u6, v8, . . . , vn−2, vn}
are only 2γ-sets with first 2 verticesu2, v2 and the last verticesun, vn respectively. Thus the
total number ofγ-sets= 6 + k − 1 + k − 1 + k − 1 + 2 = 4(k + 1) = 4

⌊

2k+1
2

⌋

. Thus in both
cases we get the total number ofγ-sets ofP2�Pn = 4

⌊

n+1
2

⌋

.

HereS1, S2, S3; S4, S5, S6; S7, S2k+5, S4k+4; Sk+6, S3k+4, S4k+3 form a triangle.S1, Sk+5, Sk+4,

Sk+3, . . . , S7 form a path ;S2k+5, S2k+6, S2k+7, . . . , S3k+2, S3k+3, S5 form a path;S2, S2k+4, S2k+3,

. . . , Sk+6 form a path ;S3k+4, S3k+5, . . . S4k+2, S6 form a path in(P2�Pn)(γm).

Thus(P2�Pn)(γm), wheren = 2k, k ≥ 4 is connected and is given in Fig. 2.8.
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